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E. Sparre Andersen [z] ') presented to the XV th International 
Congress of Actuaries, New York, z952, a model of a collective risk 
process with a positive gross risk premium where the epochs of 
claims formed a renewal process. Let qe(u) (where u denotes the 
original risk reserve) dmlote the ruin probability in this model. 
Generalizing the classical result Sparre Andersen deduced the 
inequality 

'V'(u) < e ~t,, 

where R is a suitable positive number depend.ing on the distribu- 
tion function (continuous to the right), P(y) ,  - -  coo < y < coo, 
P(o) < i, for the amounts of claims in case a claim occurs and also 
depending on the distribution function, K(t), l > o, K(o) = o, for 
the times between the epochs of successive claims, (The times 
between the epochs of successive claims, the inter-occurrence times, 
are assumed to be independent and identically distributed random 
variables. The time l)etween the starting point and the epoch of the 
first claim is assumed to be independent of and to have the same 
distribution function as the inter-occurrence times. The amounts of 
claims are assumed to be independent of each other and of the 
epochs of claims arid to be identically distributed.) 

In fact, 

R = s u p  {~ I * < 0 , f ( * )  ~ P(*)  k ( - -  c~) < I ', 

t) N u m b e r ~  in b r a c k e t s  refer  to t h e  h s t  (~f r e f e r e n c e s  a t  t he  cml  ~)f t h e  
p a p e r .  
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where 

p(s) = [ e~y dpO,), 
~ m  

o 

Q) is the greatest  positive value, for which p(s) is analyt ic  and regular 
in the strip o < Re(s) < (2 and c > o is the constant  gross risk 
premium per unit of time. 

Thus  it is assumed tha t  Q > o, corresponding to the same as- 
sumption in the Cramfir theory  ([3] P- 52) . Of course, as in the 
Cram6r theory it is also assumed that  

pL = ~ y dP(y) is finite. 
- m  

Fur thermore ,  it is assumed that  

kt = f~ t dK(l)  is finite, 
o 

and that 
p l  

c > k ~  

corresponding to the Cram& assumption ([3] P. 46) tha t  ?,-= 
= c - - p ~  > o .  

Specializing to the Poisson case, dK(t)  = e -t, dl, we easily retr ieve 

the Cramfr  definit ion ([3] P. 53), 

R=sup{~l~<Q,~+c~--p(~)  >o /  

since in this case we have 

I 
/~(~) _- _ 

I--S 

At this point  we observe that  the ~zel risk prenlium in the cast  of 
the non-Poisson renewal process is nol prol)ortional to time. 
However ,  as a consequence of the well-known renewal theorem 
([4] P. 347), the net risk premium for a time-il~terval of length 
h in  ihe lo~zg r~l,~ is t)rot)ortional to h. (If K(l) is ar i thmet ic  as e.g. in 
the determinist ic  case: K(t) = z ( t - - h t )  some caut ion is ~meded) 
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In fact the formula  for the ne! risk p remimn  in the t ime in terva l  

(T1, T2] is 

V(T,, 72) = ib~ E [I<"*(T2) - -  Kn*(T~)], 
n , 1  

where K n* as usual denotes  the nth convolut ion of K with itself. 

We get 

V(Ti, T2) pt 

P~ 
The assumptiol t  c > ~-~ thus is an assumpt ion  tha t  in the long run 

the safe ty  loading is positive. 

Considering tile risk reserve 

x(l) = .  + c l -  Y(t), 

where Y(I) is the accumula ted  amoun t s  of claims, Sparre  Andersen 
wrote  this reserve in the form 

n 

X(t )=~ ,~+  Z ( c h - - y ~ ) + c ( t - - h - - h - - . . . . - - t ~ )  

where tl + [2 -t- . . . .  -~- h, i = I, 2 . . . . .  are the epochs of claims 
and 3'* are the corresponding amoun t s  and 

h + / , 2 +  . . . .  + G _ < t < h + t , 2 +  . . . .  + t , ~ + 1 .  

(If t < tl, we have  X(t) = u + ct). Since ruin only can occui when t 
is an epoch of claim as a consequence of the assumpt ion  c > o, Sparre  
Andersen could reduce the ruin probleln to the considerat ion of a 
denumerab le  num ber  of linear inequalit ies involving the t t ' s  and 
the yt 's  . The existence of the ruin probabil i t ies  for a finite or in- 
finite period could thus easily be proved.  

Sparre  Andersen derived an integral  equat ion for ~ F ( U )  and 
p roved  tha t  there are no other  solutions subjected to be bounded  
by  e- nu. 

If  we introduce d3(u) = I - - q e ( u )  the probabi l i ty  of non-ruin, 

Sparre  Andersen ' s  integral  equat ion  can be wri t ten 
t* + ¢ ~  

(l'(u) = f dK(v) I q)(u + cv - - x )  dP(x). 
o - m  
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This equation is well-known in the Poisson case (see [4~ P. I 8 I ) .  AS 
in this particular case the general equation has the following 
simple meaning: Let v denote the epoch of the first claim. Then non- 
ruin can only occur if u + cv is not less than the amount x of the 
claim at v and the probability of non-ruin in this case is O(u + 
+ c v - - x )  since the process starts anew after the claim has oc- 
curred but on a new risk reserve level. Taking account of the 
distribution functions for v and x the equation follows. 

2. Further results 

Let ~(u, T) denote the probability of uon-ruin in the interval 
(o, T]. Then, in the same simple way as for O(u) we obtain the 
equation 

7 '  u + c v  

• (.,  7") = I ~K(v) I * (u + c v -  x, T -  ~)dP(x)  + ; gK(~). 
o - m  T 

The type of unicity which Sparre Andersen proved for T =  co 
can in the same way be proved here. 

The equations for O(u) and O(u, T) can be solved by application 
of the Wiener-Hopf technique used by Cramdr ([3~ section 5.8) in 
the Poisson case. The application in the general case turns out to be 
simple. There are two reasons for that. First, we have restricted 
ourselves to the case c > o, second, the ahove simple equations lend 
themselves equally well to the application of the \Viener-Hopf tech- 
nique as the deeper Cram6r integral equations ([3] P. 6I). (These 
latter equations do not seem to have direct analogues in the general 
case. However, assuming K(t) to be exponential one may derive 
them from the above equations.) 

Following Cram~r we introduce 

o 

Letting 

o(~,, .) = ~ - -  ~( , , ,  z) = ~ + f e ~" d, ~(u,  .), .. > o, ~ _< o 
o 

(by definition O(u, o ) =  I ~ tF ' (u ,  o ) =  I) we easily obtain the 
following equation from the integral equation for (l~(u, T) 
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u + ¢ o  _ _  

* ( u ,  z)  : :  I (~ - -  e,v) d K ( v )  + ]: e'" d K ( v )  I ¢ (u + cv - -  

- - x ,  z) dP(x), u _> o, [, < o 

Since cO(u, o) -= (l)(u, co) = qffu) we obviously  retr ieve the inte- 
gral equa t ion  for q)(u) if we let z --- o in the last equat iov.  

In  analogy with the Cramdr t r ea tmen t  we now define 

~i;(,~, ~) = o for  ,~ < o ('('(,~, ~) = ~(~) - -  $ ( ~ ,  z)  f o r  e , , ~ , ' y  , '~al .),  

f i (~t ,  z)  = o f o r  u >_ o ,  
m u 4 c v  

~i(u, z) = f ( I - - e  zv) dK(v) + iezvdK(v)  f qb (u. 4- cv - - . v , z )dP(x )  

for u < o, 

and  get 

u o 

f o r - - c o  < u <  co. 

we get 

Let t ing  

cO(s, z)  = .i ~'" d,, ,¢(,,, =), R~(~) < R, ~ < o. 
- m  

f eSU d~ ~2(u, z), Re(s) > o, ~ < o, 
- m  

¢ ( s ,  ~) ( i  - -  k ( z  - -  cs)  p ( s ) )  = - -  a ( ~ ,  z ) .  

Here  we observe tha t  in the Pob;son case dig(v) -: e- v dv, we have  

# ( s )  
i - -  k ( z  - -  cs)  2 ( s )  - -  i - -  I + cs - -  z 

which function plays all essential role in Cram6r ' s  t rea tmel l t .  [n fact,  
Cram6r shows the factor izat ion ident i ty  ([31 P. 60) 

p(s)  B (.~, ~) 
i + cs - -  z A (s, z) 
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xvhelJc 

log d (s, z) -- fee* dxM(x, z), analytic and regular for Re(s) < I{, 
0 

o 

log B (s, z) -= - -  S eSx dxM(x ,  z) almlytic and regular for Re(s) > o, 

m 

M(x, z) = ~ ~/~! I v "  ~ e  - " - ~  (1""'(x + ~ v ) - - ~ )  dr. 
n i o 

However, itl the general case art analogous factorization of 
t - -  k(z - -  cs) p(s) can be effected. The generalized M(x, z) has the 
form 

M(x, z) = ~ ~/,* [~,o(p, ,*(x + ~)  - -  ,) d K n * ( v )  
n t o 

If K(v) is corttinuous the commctiozls between the generalized 
A(s, z), B(s, z) aad M(x,  z) are unchanged. If K(v) is discontinuous 
some obvious caution is rteeded. 

With  the generalized A(s, z) and B(s, z) we get 

¢~ (s, z) ~;,(s, z) 
A (s, z) = - ~i~, z~' o < I~(s) < R. 

Observing that  the left member is analytic,  regular and bounded 
for Re(s) _< R - -  ~ and that  the right member has the salne property 
in Re(s) >_ E, where E is an arbi t rary positive number  we conclude 
that  both members represent a constant  for fixed z. 

Thus we get 

(s, z) q~ (o, z) 
- A (o, ~) - .4 (o, ~) '  m ( ~ )  < g ,  ~ < o : ( s ,  z) 

OF 

A (~, z) 
(~', z) = 

A (o, z) " 

From this ident i ty  it is now possible to deduce analogues of 

Cram&'s explicit expressions for W'(u), q-'(u, z), and W(u, T) (E3] 
pp. 57-68 ). In order to secure absolute convergence hi the expres- 

sions for UP'(u, z) we assume some condition of the following type 

l ~ ( z - -  cs) = 0 ( ~ - ~ ) ,  .~ = r m ( s )  . > ± ~ ,  ~ > o, 

which i.a. is satisfied by each F-distr ibution for a suitable choice of ~. 
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After this precaution we can write down the following analogues 
of Cramfr's formulas ([3] P. 67 formulas (99) and (Io2)) 

I:I + f ~  

f = 2 iAb   s(I - -  k(z - -  cs) p(s) 
ds, 

. >_o ,~  < o , o  < . < R, 

(z -- o gives q~(u)) 

I f I - -  d - l t '7 '  tF(u, T) -- lim Ud(u, i.q)d.q. 

It is also possible to deduce (after some precaution) an asymptotic 
formula for qe(u) analogous to Cramfr's corresponding formula 
([3] P. 68) 

q"(u) = C e -R" + O(e -{R ~0),,), u - ~  cm 

where 0 > o and 

f(R) 1S(R, o) 
C = A ~ o , - o ) R f ' ( R ) , f ( s )  = k ( - -  cs) p(s). 

3. F ina l  remarks 

A complete account of the considered generalization including 
detailed proofs will be given in a forthcoming paper in the Skan- 
dinavisk Aktuarietidskrift [6]. I will also draw the attention to 
three recent papers by Brans [2] where he has treated the general 
problem of a risk process, where the epochs of claims form a renewal 
process. Brans--like Prabhu [5] in the Poisson case--uses queue- 
theoretic methods. 

R E F E R E N C E S  

LI] ANDERSEN, 15. SVARRE, t957: On t i le  co l lec t ive  t h e o r y  of  r isk m tile case  
ot c o n t a g i o n  b e t w e e n  the  c la ims.  Transact ions  X I ;ta ln lernat ional  
Congress o f  Actuaries ,  N e w  York,  vol 1I, 219-229 

[2] BRANS, J P. ,  1066-1967: Le p r o b l 6 m e  de  la ru ine  en th6or ie  co l lec t tve  du 
r i sque .  Cas non m a r k o v i e n .  P r emi6 re  pa t t i e .  Le m o n t a n t  to ta l  des  s tms t re s .  
E x t s t e n c e  e t  m e s u r a b l l i t 6  de  la ruinc.  I )euxt6tnc  pa r t i e  Cas des  opdra -  
t m n s  5. c a p i t a u x - r i s q u e s  n6gatffs .  I.e p roces sus  {ZN(t), t >_ O I ZN(O) = uL 
Tro i s i6me  p a r t m .  Cas des  o p d r a t t o n s  £ c a p l t a u x - r i s q u c s  posi t f fs  l .e p ro -  
cessus  '~Zp(t), ! >_ o I Zr,(o) = u}. Cahzers du Centre d'l~tudes de Recherche 
Opdralionelle, Brttxelles, 8, 159- r 78, 9, 5-3 t, t 17-122. 



GENIZ.RALIZATION OF RUIN THEORY I.I 5 

[3] CRAMER, H., 1955. Collective risk theory.  ,[ub, lee volume of Fbrsdkr~ngs- 
akt,ebolag, et Skand*a. 

E4] FELLI~R, \~J., 1966: .4n Introduction to Probab*hty Theory and ~ts .4 pplica- 
t~ons, vol. I i  'Wiley 

E5] PRABHU, N. U , t96I :  On the ruin problem of collective risk theory.  The 
Annals of Mathematical Stat,st,cs, 32, 757-764 

[60 "I'aoRIN, O , I97o: Some remarks  oll the ruin problcln in case the epochs of 
claims form a renewM process. Skand, navisk Aktuar~etidskrift, L[I I ,  
29-50 


