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Introduction 

Although unnecessary assumptions are sometlfing we all t ry  to 
avoid, advice on how to do so is much harder  to come by  than 
admonit ion.  The most  widely quoted  dic tum on the subject,  often 
referred to by writers on philosophy as "Ockham's  razor"  and 
a t t r ibu ted  generally to William of Ockharn, states " E n t i a  non 
sunt  mul t ipl icanda prae ter  necessi ta tem".  (Enti t ies are not  to be 
multiplied wi thout  necessity.) As pointed out  in reference [i], 
however,  the au then t ic i ty  of this a t t r ibut ion  is questionable.  

The same reference mentions Newton 's  essentially similar state-  
ment  in his Principia Mathemat ica  of 1726. Hume  [3] is credited 
by  Tribus [2c] with pointing out  in 174o tha t  the problem of statis- 
tical inference is to find an assignment of probabili t ies tha t  "uses 
the available information and leaves the mind unbiased with respect 
to what  is not known."  The difficulty is tha t  often our  da ta  are 
incomplete  and we do not  know how to create an intelligible inter- 
pre ta t ion wi thout  filling in some gaps. Assumptions,  like sin, are 
much more easily condenmed than avoided. 

In the author ' s  opinion, impor tan t  results have been achieved 
in recent years  toward solving the problem of how best to utilize 
da ta  tha t  might  heretofore  have been regarded as inadequate.  The 
approach taken and the relevance of this work to certain actuarial  
problems will now be discussed. 

Bias and Prejudice 

One type  of unnecessary assumption lies in the supposition tha t  
a given es t imator  is unbiased when in fact  it has a bias. We need 
not discuss this aspect of our subject  at  length here since what  we 

~) Originally presented at the seminar on Mathematical Theory of Risk 
and allied topics, auspices of the Committee on Mathematical Theory of 
Risk, Casualty Actuarial Society, November 16, 1966. 
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might consider tile scalar case of the general 1)roblem is well 
covered in textbooks and papers on sampling theory. Suffice it to 
say that  an estimator is said to be biased if its expected value 
differs by an incalculable degree from the quanti ty being estimated. 
Such differences can arise either through faulty procedures of data 
collection or through use of biased mathematical fommlas. I t  
should be realized that  biased formulas and procedures are not 
necessarily improper when their variance, when added to the bias, 
is sufficiently small as to yield a mean square error lower than the 
variance of an alternative, unbiased estimator. 

As an example of bias due to sampling procedure, sut)pose we 
sample a population in a non-random, haphazard manner so that  
probabilities of selection vary in an unknown way. There is no 
method by which to calculate the difference between the expected 
value of the mean of such a sample and the mean of the population. 
Hence, the sample mean is a biased estimator. On the other hand, 
if probabilities of selection are known, appropriate weighting will 
provide an unbiased estimator. An example of bias due to choice 
of mathematical formula is the use of ratio-estimates, as where the 
ration of y to x obtained by sampling is multiplied by a known 
population total of x to estimate the population total of y. The 
combined bias and standard error of a ratio estilnate is often less, 
however, than the standard error of the best alternative unbiased 
estimate. An estimator is not considered to be biased if there is any 
way of removing the bias. Thus, the sum of the means of random 
samples of x and of y is considered to be an unbiased estimator of 
the expected value of x if we know the expected value of y. "]'his 
is because we can subtract the latter quanti ty leaving x + .y - -  Ey, 
the expected value of which is clearly Ex. 

Our concern here is not primarily with point estimations but 
with complete statistical distributions. We shall consider any 
distribution function characterized by parameters or form not 
directly derived from the data as" prejudiced". This seems an apt 
characterization since different analysts may derive different 
functions from a given set of data if they go beyond the data in 
their specifications. These differences can inferentially be imputed 
to differing personal prejudices (perhaps unconscious) in favor of 
one function over another. 
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I t  is shown by J a y n e s  and  Tr ibus  t ha t  the ass ignment  of the Pz 
for which S is at  a m a x i m u m  (K being an a rb i t r a ry  constant)  is 

p~ : exp. [ - - a  o - -  algl(x~)--a2g2(x d - -  . . . . ]  (3) 

in which the a ' s  are Lagn-angian multil)liers sat isfying the re- 
qu i rements  of ~ (x )  and 

a o = In Eexp.  [Ea~g~(xl) ] (4) 
t r 

while 

and  

gr(X) -= - - 3 a o l b a  r 

Var. [gr(x) ] = ?~ao/3a ~ 

S = Kao + IiZ a, g~(x) 
r 

= mean  of gr(X) 

= var iance of gr(x) 

Specific Derived Dislribulions 

Known Dala Distribution wilh Maximum Enlropy 

Range  Uniform 
m 

E p ,  = I P l  k_ exp. ( - -%)  - -  I 

Mean* Exponen t i a l  

P'ixi = x Pc = exp. (--ao--alxi) 
1 , - 0  

Mean and var iance* 

p~x I = 
o 

p,x  = x 
o 

Trunca t ed  Gaussian 

P¢ = exp. (--ao--aix~--a2x~) 

* ~ p,L= I 
~ ,  o 
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Success in these areas suggested that valid applications might be 
found in the area of statistical inference [2d, 2e]. Shannon's measure, 
which he called the "entropy" or "uncertainty" of a distribution, 
is defined by: 

S = - - K N p i  lnpl (z) 

where.pc is the probability associated with the i ' t h  discrete possibil- 
ity and the summation is taken over all possibilities having non- 
zero prol)al)ility. K is an arbitrary scaling factor. " f . n "  refers to 
natural logarithms although inclusion of a scaling factor would 
permit use of logarithms to any base. 

An amusing sidelight on the naming of this measure is related 
by Tribus [2tf] : 

\¥hen Shannon discovered this function he was faced with the 
need to name it, for it occurred quite often in the theory of 
communication he was developing. He considered naming it 
"information" but felt that  this word had unfortunate popular 
interpretations that  would interfere with his intended uses of 
it in the new theory. He was inclined towards naming it "un- 
certainty" and discussed the matter with the late John Von 
Neumann. Von Neumann suggested that  the function ought to 
be called "entropy" since it was already in use in some treatises 
on statistical t he rmodynamics . . .  Von Neumann, Shannon 
reports, suggested that there were two good reasons for calling 
the function "entropy".  " I t  is already in use under that  n a m e , "  he 
is reported to have said, "and besides, it will give you a great 
edge in debates because nobody really knows what entropy is 
anyway." Shannon called the function "entropy" and used it 
as a measure of "uncertainty,"  interchanging the two words in 
his writings without discrimination. 

Shannon showed that  this measure is unique in satisfying the 
following criteria : 
(a) It should depend only upon the probability distribution, i.e., 

S is a function of Pl ,  P2 • • • p n .  

(b) If all of the Pl are equal, then p~ = Ifl~ and S is a monotonically 
increasing function of n. 

(c) The measure should be consistent in the sense that if we con- 
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sider events A and B in the context of a state of knowledge X, 
then we should have 

S(ABIX) = S(AIBX) + S(BtX) 

That is, the entropy ascribed to A and B jointly in the context 
of X equals the entropy that would be ascribed to A in the 
context of B and X plus the entropy that  would be ascribed to 
B alone in the context of X. This parallels the law of compound 
probabilities. 

Formal Results 

Defining the minimally prejudiced distribution function as that 
for which S is at a maximum, let us look at the derivations of some 
familiar distributions. These problems will be characterized by the 
information available and the solution derived by maximizing S. 
We assume that nothing whatever is known about each distribution 
beyond what is stated. In practice there might be additional, non- 
quantitative data that  would preclude use of the functions derived 
here in certain cases. Derivation of the minimally prejudiced 
distribution subject to common qualitative constraints would be 
an important extension of presently known results. 

In a wide variety of problems, available information may be in 
the form of averages such as the mean first power, mean square, 
mean cube, etc. of the variate x. The following results would apply 
to means of any single-valued continuous functions, for example 
trigonometric or logarithmic functions, as well as to the usually 
reported integral power functions. We can denote these various 
means as 

~r(X) = Z]9~gr(X~) (2) 

where r = I, 2, 3 . • • m for m different functions of x and Xp~ = I. 
The measure just presented enables us to compare statements 

about a distribution in such a way that  we can select that one 
among all satisfying the given data which, by virtue of maximum 
entropy, best complies with Ockham's dictum in the sense of assert- 
ing the least information. As noted by Tribus, "By using this prin- 
ciple, the observer reduces his subjectivity to the minimum possible 
value." In problems where this procedure inevitably leads different 
analysts to the same result, the author considers that subjectivity, 
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or prejudice, has been reduced to zero. The only challenge tha t  
might be made to this claim would seem to rest upon the degree 
of subject ivi ty  entailed in adopting the principle of max imum 
entropy as a criterion in the first place. Whether  the case for 
adoption of this principle is so overwhehning as to remove all 
possibility of subject ivi ty on tha t  point (so tha t  its rejection is 
outr ight  error) will not  be argued here. I t  does seem clear, however, 
that  as between persons who adopt the principle as a convention, 
there is no room for personal prejudice. This alone is a strong 
recommendation for ally convention not demonstrably in error. 

We now make certain observations concerning Shannon's  
measure: 
I. If the logarithm is taken to base 2 (rather than to the base e) 

S is equal to the expected number  of questions in a taxonomic 
game, such as Twenty  Questions, that  woukl be needed to 
remove all doubt.  [2b] 

2. In general, S is a measure o[ the "f la tness"  of a distribution, 
hence of the relative equali ty with which probabilities are 
assigned. This is consistent with the intuit ive notion tha t  event 
A should not be assumed, without  reason, to be more likely 
than event B. (It seems obvious tha t  consistent results cannot  
be expected if probabilities are assigned whimsically.) 

3. The measure is differentiable, hence can be maximized by 
classical methods (i.e., without  resort to linear programming or 
other i terative procedures) to yield minimally prejudiced 
functions as extremals.  

4. The fact tha t  the measure employs a summation of probabilities, 
rather than an integral, apparent ly  precludes its use in problems 
that  require continuous distributions. Yet, the class of phenom- 
ena involving only a finite number  of particles and the emission 
or absorption of discrete quanta  of energy may  be sufficiently 
broad as severely to limit, if not to rule out, the occurrence of 
physical events for which continuous distributions are strictly 
appropriate. Physical considerations aside, the digitalization of 
measurements converts da ta  representing even theoretically 
continuous distributions into discrete form. This author  does 
not see it as a flaw, therefore, that  the measure of entropy has 
not been defined for continuous distributions. 
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While we pres tnnably  exercise no conscious favor i t i sm for one 
one type  of d is t r ibut ion funct ion over  ano ther  and we tes t  all 
plausible choices impar t ia l ly ,  we are necessari ly l imited to those 
f tmct ions with which we are famil iar  and which we can handle  
ma themat i ca l ly .  The  p h e n o m e n a  we s tudy  are not  necessari ly so 
constrained.  In  some problems,  however,  ~ e  are fo r tuna te  in tha t  
the da t a  include in format ion  tha t  a process is involved which can 
produce  only a par t icular  kind of dis tr ibut ion,  so there is no possibil- 
i ty  of prejudice.  

The Logical I~tcoltsislency of Prefltdice 

Let  us suppose tha t  da ta  X imply  conclusions C v. Let  us suppose,  
fur ther ,  tha t  we do not quite know how to in terpre t  X and cannot  
draw any conclusion unless we assume Y also to be true. Then we 
draw the conclusion C.v v and tender  it as C x.  Tha t  this is clearly 
a false coin is seen when someone else similarly finds it necessary 
to m a k e  an assumpt ion ,  say Z, and tenders C v z as C x.  More 
embarrass ing,  we ourselves m a y  at  a later  da te  find assumpt ion  
W to be more agreeable than  Y so we now find ourselves with a 
different conclusion, Cx~ r, f rom the same data .  Al ternat ively ,  we 
m a y  telescope the process and  offer two or more  conclusions 
s imul taneously ,  at  the same t ime admi t t i ng  their  dubious na ture  
b y  reveal ing the a l te rna t ive  assumpt ions  we found ourselves 
obliged to adop t  but  between which we are at  a loss to choose. 

The  thesis of this paper  is tha t  there is a way  out  of this d i l emma 
in an imt)or tant  class of problems.  

E~tlropy 

By way of wielding Ockham ' s  razor,  we might  devise some 
measure  whereby dit terent funct ions could he compared  as to 
ntnnl)er of "en t i a " .  Of all funct ions consistent  with the da ta  we 
might  select the one, or ones, requir ing the fewest "en t i a " ,  i.e., 
the least  infornmtion,  as being minimal ly  prejudiced.  The  au thor  
joins others,  cited in the references hereto,  in proposing a measure  
employed  by  Shannon [4] in the develol)ment  of informat ion  theory  
and subsequent ly  adop ted  by  J aynes  [5], Tr ibus  [27 and others  in 
re-der ivat ions  of the theorems of stat is t ical  mechanics  and thermo-  
dynamics .  
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Mean and mean  logar i thm* 

o 

Z p ~ l n x ~  = l n x  
o 

G a m m a  

p,  = exp. (--ao--alx~--a2x~) 

= x, - a '  exp. (--ao--alx,)  

Mean logar i thm and mean Be ta  dis t r ibut ion 

logar i thm of complemen t  p~ = exp. [--ao--a~lnx,--a21n(i--x,) ] 
where o ~ x ~ .r = xi -a' ( z - - x / ) - a :  e-a0 

From theory  and the foregoing examples  it can correct ly  be 
inferred t ha t  for every  dis t r ibut ion there  is a t  least  one specification 
as to the da t a  which rnust be known for tha t  d is t r ibut ion to be  
the min imal ly  prejudiced dis t r ibut ion.  Also, there is a unique 
minimal ly  prejudiced dis t r ibut ion for each specification of known 
data .  In  general,  forf(x)  to be the rninimally prejudiced dis t r ibut ion,  
tlle known da t a  mus t  be tlle expected  value of the na tu ra l  logar i thm 
of f(x). For  example ,  wha t  da t a  mus t  1)e known in order  t h a t  
f(x) = sin x where o < x < ~ / 2  ? Ev iden t ly  we shall have  p~ = 
exp. ( - - a . - - a l l n s i n  x) = sin x if a .  is set equal to zero and a I -~ I. 

A n Apparenl Paradox 

An appa ren t  pa radox  can arise in the f i t t ing of dis t r ibut ions  of 
the generalized exponent ia l  type,  p~ = exp. (a o + alx ~ + a2x ~ + . . . ) ,  
which more  or less typ i fy  the sys tem of m a x i m u m  entrol)y , wheu 
actual  dis t r ibut ions are be t t e r  f i t ted by some other  curve.  At  such 
a t ime we are inclined to ask wha t  is so good abou t  a sys tem tha t  
does not give the best  fit. The  point  to rememl)er  here is t ha t  if 
we have  the dis t r ibut ion function,  or if we have  a s u m m a r y  of it 
in the form of grouped data ,  there is no par t icular  reason to prefer  
the generalized exponent ia l  over  any  other  curve.  Equa t ion  (3) 
applies s t r ic t ly  only when our da ta  are l imited to the expec ted  
values of g~(x), go(x) etc. I f  we have  more informat ion  we should 
use it. Theoret ical ly ,  of course, by  calculat ing the mean  values of 
a sufficient numb er  of funct ions of x we can a l )proximate  any  
a rb i t r a ry  dis t r ibut ion as closely as we please. 

Tile discipline advanced  here does not tell us what  funct ion best  
fits a more  or less comple te ly  specified dis tr ibut ion.  I t  does tell 

* See page  380. 
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us, however, what data to summarize in order that a given kind 
of distribution function shall be best characterized by that data. 
For example, if a class of distributions are found to be of the log- 
normal type, tile data we should be collecting are the mean and 
variance of log x. Similarly, if the distributions for a certain kind 
of variable are typified by a Gamma distribution, then we should 
compile mean values of x and log x, and so on. Such knowledge is 
economical since necessary data can often be summarized in the 
course of ordinary processing of cases without the necessity of 
compiling a great many separate distributions. 

It is obviously advantageous, by judicious selection of the 
function of x to be averaged, to reduce the number of statistics 
that  must be compiled. 

Of more importance, in tile author's oi)inion, is that  for any 
given data the criterion of maximum entrol)y leads to what he 
believes to be a mathematically optimum compliance with the 
principles attributed at the outset of this paper to Ockham and 
Hume for the avoidance of prejudice and unwarranted assumptions. 

Enlropy as a Measure of Homogeneity 

Let a classification plan subdivide a population of risks into n 
classes such that for any particular layer of loss the probability of 
occurrence of a loss during a specified time interval is p, for the 
i ' th class. Then for that layer of loss the entropy of this classification 
scheme is as defined in Eq. (z). As between two classification plans 
applied to tile same population of risks, the plan for which S is 
smaller contains the more information {less entropy). As between 
two populations classified according to the same plan, S is greater 
for the more homogeneous population. This measure is of interest 
in comparison with the coefficient of variation, proposed by Bailey 
[6] as a measure of homogeneity. It is not clear how much advantage, 
beyond consistency with the general theory advanced here, entropy 
offers over Baileys measure. 

Applicalions lo Composile and Convolul.ed Dislribulions 

We define a composite distribution as the result of mixing two 
or more dissimilar distributions. It is obvious that  for tile mixture 
all of the functions x, x 2, x a etc. will have as their expected values 
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the weighted averages of the distributions brought together. This 
enables us to describe the composite distribution without further 
analysis in terms of Equation (3). It does not, however, assure that  
the distribution so determined will provide a good fit to the data 
unless the functions being averaged are appropriate to describe 
each of the separate distributions. 

We define an n-fold identically convoluted distribution as the 
distribution of the sum or mean of n values selected independently 
from the same (infinite) parent population. The parameters of such 
a distribution are shown by Kendall [7] to vary as follows: 

Parameter Parent Population Convolution 

Mean x Sum nx, mean .~ 

Relative Variance V 2 = 2/~2 V2/n 

FE(x--~)3; ~ 
Skewness ~x = [E(x__~)312 ~1/n 

[ E ( x - ~ ) 2 ]  ~ ~ - -  3 
- -  - - - + 3  Kurtosis ~2 E(x__x)4 n 

Parameter values shown for the convolution can be used to compute 
Ex 2, Ex 3, Ex 4, etc. and similarly substituted in Eq. (3)- Of course, 
if the parent distribution function is known explicitly its convolu- 
tions can be calculated by standard methods [81. 

Comparison with Olher Schools of Slatistical Inference 
The method of minimum prejudice, or maximum entropy, is 

distinguished from the Neyman-Pearson school of statistical in- 
ference in that  whereas the latter school sets up hypotheses and 
judges their plausibility in terms of the probability of occurrence 
of an observed event given the truth of a hypothesis, the former 
method goes straight from the data to the answer without any 
testing whatsoever. No testing is theoretically even possible if the 
method of maximum entropy has been strictly followed, since all 
available data will have gone into the calculation and no further 
information is obtainable, in principle, by testing or otherwise. 

As a practical matter, the two approaches apply under different 
circumstances. If the only available data are several different kinds 

26 
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of means, the distribution with maximum entropy is asserted to 
be the appropriate distribution on these dala.  As more data, such 
as a histogram, are acquired an entirely different curve may be 
indicated from what was derived from limited data. In principle it 
should be possible to derive a maximum entropy distribution from 
any arbitrary data. Very little is known, however, as to just how 
to go about incorporating data other than averages. This should 
be a fruitful field for study. Fully developed, it ought to obviate 
the need for Chi-square and other tests in a great many cases. In 
the meantime, however, it is entirely possible to conceive of using 
a Chi-square test, for example, upon receipt of more data, to 
confirm or revise any earlier choice of curve based upon maximum 
entropy. It might also be used where a generalized exponential 
function has been fitted to given data on the basis of selected 
parameters computed from more detailed data such as a histogram. 
The necessity for such a mixing of methods is less than satisfying. 

That the need for testing can be eliminated may come as a 
surprise to persons, such as the author, trained under the Neyman- 
Pearson influence. Yet it is readily apparent that  a solution derived 
strictly according to Bayes' theorem requires no testing. Application 
of this theorem does, however, require knowledge of prior probabili- 
ties. It is only in the at tempt to "fudge" an answer in the absence 
of such knowledge that  we find ourselves obliged to resort to 
confidence tests and the like. The method of maximum entropy, 
as a logical outgrowth and extension of Bayes' theorem, provides 
a solution to this dilemma in a wide class of cases. 

A c t u a r i a l  I m p l i c a t i o n s  

An obvious actuarial implication arises in the calculation of 
deductibles under conditions of inadequate data. Given only the 
mean of a non-negative variable, we know the exponential distribu- 
tion is the minimally prejudiced estimate of the distribution. 
Sometimes we may have more information, such as that f(o) = o. 
This implies that  In x has a finite mean *. Hence we might let f(x) = 
exp. (--% - -  a l x  - -  a~ In x) = (x) exp. ( - - a  o - -  a l x  ) if a 2 = I. 

*) This impl icat ion holds wi thou t  qual i f icat ion only for discrete  dis t r i -  
bu t ions  which are the only  d is t r ibut ions  for which en t ropy  has been def ined 
here. 
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W h e t h e r  such a so lu t ion  is va l id  is one  of the  ques t ions  to  be  
s tudied.  (If we knew the  m e a n  va lue  of In x, this  equa t ion  wou ld  be  
m i n i m a l l y  p re jud iced  - -  bu t  is it m i n i m a l l y  p re jud iced  when  on ly  

the  existence,  no t  the  value,  of E( ln  x) is k n o w n  ? H o w  do we k n o w  

the  e x p o n e n t  of in x should  be u n i t y  ? Does  the  a r b i t r a r y  select ion 
of  this va lue  for  the  e x p o n e n t  b e t r a y  a pre judice  ?) 

I t  appea r s  t h a t  in m a n y  i m p o r t a n t  p rac t i ca l  cases i nvo lv ing  
cons t r a in t s  of a fo rm inexpress ible  as averages ,  it is no t  feasible to  
m a x i m i z e  the  e n t r o p y  t h r o u g h  use of the  calculus  of va r ia t ions  to 

f ind ex t remals .  Correct  answers  in such ins tances  m a y  be ca lculable  

on ly  t h r o u g h  i t e ra t ive  procedures .  [9] 
In  col lect ive risk t h e o r y  it seems unl ike ly  t h a t  we shall  ever  h a v e  

sa t i s fac tor i ly  specif ied d i s t r ibu t ions  of the  claims ar is ing f rom 
he te rogeneous  portfol ios.  I t  m a y  be t h a t  Eq.  (3) p rov ides  our  bes t  
e s t ima te  of such d i s t r ibu t ions  for p rac t ica l  purposes .  

F ina l ly ,  in such imponde rab le s  as the  p r o b a b i l i t y  d i s t r ibu t ion  of 
the  er ror  in exis t ing  ra tes  - -  which  m u s t  be e s t i m a t e d  if c redibi l i ty  
is to  be ca lcu la ted  using Gauss ' s  t h e o r e m  on m i n i m u m  var iance ,  
comple te  specif icat ion of d i s t r ibu t ions  is a p p a r e n t l y  ou t  of the  
ques t ion.  I u  this and  m a n y  o the r  cases we m u s t  set t le  for a g o o d  

deal  less in fo rma t ion .  I t  seems clear  t h a t  in such ins tances ,  as in 
others ,  we are well adv i sed  to  use such i n fo rma t ion  as we h a v e  wi th  
a m i n i m u m  of p re jud ice  a n d  u n s u p p o r t e d  a s sumpt ions .  
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piura quod potest fier~ per pauciora' (Sent. li, l)ist 15, o). These words 
as Mr. Thorburn points out, are actually quoted 1) 3 , Sir Isaac Newton 
m his third editmn of his Prmctpia Mathematica of 1726 (De Mundi 
Systemate, lib. ill, p. 387). This is .Regula 1, and continues, 'Natura 
ennn simplex est el: rerum causis superfluis non luxuriat" but the 

26* 
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garb led  vers ion  m tile fonal 'entl,~ non  s u n t  mu l t i phcand , l  p r a e t e r  
necess i t a t em '  was i n v e n t e d  by  J o l m  Ponce  of Cork in 1639 and  took  i ts  
p r e sen t  shape  for the  f irst  t ime  in the  Loglca Vetus  et  N o v a  of J o h n  
Clauberg  of G r o n m g e n  in i654. E v e n  m his ph i losophy  there  is m u c h  
t h a t  is u n t r u e  in the  name,  weapon,  and  fo rmula  bes towed upon  O c k h a m  
b y  pos t e r i t y . "  
The  Encyc lopaed i a  B n t t a m c a ,  however ,  says  theft " T h e  famous  d ic tum,  
'p lura l i tes  non  est  p o n e n d a  sine necessmLe' (mul t ip l ic i ty  o u g h t  n o t  to be 
pos i ted  w i t h o u t  ilecessity) has  become k n o w n  as ' O c k h a m ' s  razor '  
t h o u g h  i t  h a d  a l r eady  been  s t ressed b y  o the r  Scholas t ics ,"  w i t h o u t  
corrmlent lng  upon  the  v a r i a t i o n  in word ing  nor  cha l lenging  the  a t t r i -  
b u t i o n  to Ockhanl .  I n  the  followulg p a r a g r a p h  it  says  " . . .  Ockhan l  d id  
no t  m a k e  m u c h  of the  phi losophica l  a r g u m e n t s  of earl ier  theologians ,  
a n d  appl ied  to theo logy  his famous  ' r a z o r ' . . . "  
This  a u t h o r  re l inquishes  the  t a sk  of any  f u r t h e r  research  in to  the  a u t h e n -  
t ic i ty  of ' O c k h a m ' s  razor '  to quah f l ed  m e d i e v a h s t s  
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