
A N O T E  ON SOME COMPOUND POISSON 
D I S T R I B U T I O N S  
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At the Lundberg  Syml)osium, Stockholm 1968 Jung  and Lundberg  
presented a report  on similar problems as those t rea ted  in this 
note, and to the Astin colloquium, Berlin 1968 the present  author  
presented a report  with the same title as this note, where some of 
the results in the f i rs t -mentioned report  were commented  upon. 
Jung  and l .undberg  kindly discussed the topic here concerned with 
the present  au thor  some time after  the colloquium. On account  of 
this discussion, the 1)resent au thor  withdrew his repor t  from the 
publicat ion in its original form. The following context  is a revision 
and a complet ion of the author ' s  report  to the coUoquium. 

x. Basic d@)~ilio~zs 

Let  ,r be a pa ramete r  measured on its original, absolute scale, 
and let s = i(T) (or l --  l(T) ) be the same paramete r  measured 
on an operat ional  scale with respect to the probabi l i ty  distr ibution 
[g(z)]mexp [-g(x)] / m !  (or the corresponding for t). The  para- 
meter  will often be referred to as " t ime" ,  which does not imply 
a restr ict ion of the theory  to proper  t ime parameters .  

A random function X(s) is said to be dis t r ibuted in a cPd i.w.s. 
(compound Poisson dislrib~tlio~ in the wide sense), if the distr ibution 
function of X(s) for every  fixed parameter  point (s, .r) in a finite 
or infinite domainc of the parametr ic  space as a function of • can 
be wri t ten in the following general form 

"2 f e-~(v~), , ,  t¥,,,* (x. ~) d~, U(v, ,~) / m!, ~ = ~(~). (Ia) 
m o 0 

where the asterisk power m*, here and th roughout  this note, is 
taken to mean, for m > o, the m times i tera ted  convolut ion of the 
distr ibution function with itself, and, for m = o, unity.  W(x, s) 
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a 

= f V(x, u) du/s, V(x, s) being the conditional distribution func- 
0 

tion of the size of one change in X(s) relative to the hypothesis 
tha t  the change has occurred at  s, here abbreviated to the change 
distribution. U(v, "r) is a distribution function, called the structure 
function. In the general case V(x, s) and U(v, "r) may  depend on 
s and ,~ respectively. If, particularly,  these functions are supposed 
to be independent  of the parameter,  they will be denoted V(x), 
U(v) respectively. In the particular case, where V(x) = c(v--c~), 
ct being an arbi t rary but fixed constant  and ¢(~), here, and in 
the following context,  the unity dislribution equal to zero for 
negative values, and to uni ty  for non-negative values of ~, the 
cPd is said to be elemeulary and, in the opposite case, non- 
elementary. In the elementary case the distribution of X(s) is 
defined by the integral appearing in (Ia) ~,ith x - - c ~ ,  so that  
W ( x ,  = W ( x )  = 

In this note, the distribution defined by (Ia), in the particular 
case, where U(v, "r) ---- U (v) independent ly of-r ,  will of reasons 
given below, be called a cPd :I. If, in addition, U(v) = ¢(v--',fj), 
yt being an arbi t rary but  fixed constant,  the c P d ' I  reduces to 
a Poisson probabili ty distribution, in the gencral case, a non- 
elementary, or, if V ( x ) =  ¢(x--c~), an ele,mentary distribution, 
defined by the integral with W(x, s) = W(x) = I. If, on the other 

hand, U(v, "r), particularly,  is in the form Z Q~,,~ (-r)~U'~"(v), 
m I , ,  0 

where Qm,(-r) is a not specified probabili ty distribution of the 
variable m~ assuming only integer values, the distribution defined 
by (Ia) may  be called an aco cPd" I (average of convoluted cPd" I), 
(cf. section 6, here below). An aco cPd" I can, as proved later in 
this note, be interpreted as a bunch distribution, as for the element- 
ary case defined by Thyrion (~I]*, p. 68), provided tha t  this 
definition is extended to include the non-elementary case (which 
under certain conditions is possible, see section 7 here below), and 
to allow the number  of cvents within each bunch to dcpcnd on 
a parameter.  

*) Numbers within square brackets refer to tile list of hterature at the 
end of this note. 
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If the term equivalent is used for two variables, for which the 
distribution function of one of the variables can be t ransformed to 
the distr ibution function of the other  variable, by a simple transfor-  
mation of the paramete r  or of the pa ramete r  vector,  a variable with 
the eh.f. (characteristic function) in the form q~ (-~) = 1~ [oq~ (-t/) ], 
where an angle over the symbol for a ch.f., here and in the 
following context ,  is taken to mean the generat ing function, 
defined by ~(z) ~ q~(-i log-,~), 9(~) being a ch.f., -,~ a real variable 
and i the imaginary unit, is said to be equivalent to a generalized 
variable with the ch.f. ~qo(vl) by  a generalizing variable with the 
ch.f. ,q~(-t~). Consider a (,J--I) t imes i tera ted  generalization for which 
the ch.f. can be writ ten in the following general form 

~('~)= ~9,{~i F~( . . .  ~-~,[,~ (~)])]} (Ib) 
A variable with such a ch.f. is by  Thyr ion  [I], said to be dis t r ibuted 

in bunches (,~ =- 2), or in bunches of bunches (v > 2), provided 
tha t  yq% (-~) are ch.f. of variables assuming only integer values. If 
assuming the conditions referred to in section 7 are fulfilled, ,,q~L ('q) 
may  be allowed to be a ch.f. of a cont inuous variable, and, if the 
functions /¢ (-~, sy) are subs t i tu ted  f o r / p  (~), the random function 
X (g~), ~,, = (st, s 2 . . . s,j) will, in this note, be said to be dis tr ibuted 
with a bunch distrib~llion of order ,~, if it is equivalent  with the 
variable defined by %(-~, £,,) in this ex tended form of (Ib). Thyr ion 
has proved, that ,  for v > 2, %('tl) can also be wri t ten in the form 

~%[%_~ ('~)], where % L (-t}) is in the form of (Ib). I t  might  be 
remarked,  tha t  %(-,~). v > 2 can also be writ ten ~+~_x [~%('~) ] with 
l+~_t('t~) in the form of %_ ~('Q) according to (Ib). 

The  ch.f. of an aco c P d ' I  can be t ransformed in the form 
t~L[o,~0t('~, so), s~], s t, s 2 being parameters  on some operat ional  scales 
(in the non-e lementary  case under  the conditions referred to in 
section 7). Thus, an aco c P d ' I  can be in terpre ted  as a bunch 
distr ibution (cf. section 6 here below). This bunch distr ibution is 
of the order  2, if Qml(S,) is not a bunch distribution,  in the opposite 
case the aco cPd"  i is of an order greater  than 2. Thus, an aco 
cPd"  i is a par t icular  case both of (ia) and, subject  to the con- 
ditions ment ioned in section 7, of (Ib). 

The class c P d ' v  (cPd of the order  ,J) shall for v = 1 , 2 . . .  be 
defined, for v > 2, as a bunch distr ibution of the order  ,~, where 
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part icular ly,  ~%(~, sj) defines a cPd • I for each v a l u e j  = 1 , 2 . . .  v, 
and, for v = I, as a distr ibution in the form of (Ia) with U(v, ,r) = 
U(v) independent ly  of .r; in fact,  the ch.f. in the form defining 
cPd"  v for v > 2, reduces to this form for v = I. 

If, and only if, the joint  probabili t ies of X(g~) on disjoint 
domaines of the parametr ic  space are well-defined in the sense 
of stochastic process theory,  X(g~) const i tutes  a stochastic process. 
For  such a process, the following terms shall be used cPp i.w.s., 
aco cPp" I and cPp" v, if the distr ibution of X(g~) is defined by a 
cPd i.w.s., aco cPd"  I and cPd"  v respectively.  

2. Remarks to lhe lerminology 

The terrninology in the field t rea ted  in this note is ra ther  con- 
fusing. 

The  author ' s  own terminology has previously not  accounted for 
a differentiat ion between a random function, which for each value 
of the parameter ,  eventual ly  restricted to a certain domaine of the 
parametr ic  space, has an absolute distr ibution in one of the forms 
defined in the previous section, and a randorn function, which, in 
addition, fulfils the conditions for const i tu t ing a stochastic process. 
This is due to the belief, tha t  in cases, where the existence of well- 
defined joint  probabili t ies for random functions with given such 
distr ibutions has not been established, it would later  be possible 

to establish the conditions for the existence of such probabilit ies,  
wide enough to cover all actual  applications to phenomena,  for which 
a priori process models seem to be rational,  l .a ter  in this note, such 
conditions for some of the distr ibutions considered will be dealt  
with. 

As, however, the recent s tudy  by  Jung  and Lundl)erg (in the 
report  ment ioned in the in t roduct ion here above), which will be 
commented  upon, later in this context ,  has given very  negative 
results with respect to the application of process models of this 
type,  it seems necessary to restrict  the previous notat ion cPp  to 
cases, where the conditions for the existence of well-defined joint  
probabilit ies ei ther can be postulated,  or deducted  from other  
assumptions.  In all other  cases the term cPd shall be used. - -  
Fur ther ,  the terms cPp i.n.s. (in the narrow sense) and s ta t ionary  
or non-s ta t ionary  cPp,  previously in t roduced by  the au tho r  for a 
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cPp : I, and a cPp : 2 respectively, have, so far, been used by other 
authors in quotations. They may, therefore, be replaced by cPd : I, 
cPp : I and cPd : 2, cPp : 2 respectively without risk for confusion. 

The translation of the word "compound",  as used here above, 
as distinct from the word "colnposed" used by Rdn3d et  al [2], 
for the composed Poisson processes, which are principally different 
from cPp, into French and German, implies certain difficulties. In 
French the word " c o m p o s 6 "  has been used both for "compound" 
and "composed";  in German a cPp has often been called ein 
z u s a m m e n g e s e t z t e r  P o i s s o n  P r o z e s s ;  to the knowledge of 
the present author composed Poisson processes have not been 
treated by German authors. It seems also difficult to find another 
German translation for "composed" than z u s a m m e n g e s e t z t .  In 
French the word "compound" exists, but is very seldom used, e.g. 
in une  c o m p o u n d  m a c h i n e  it v a p e u r .  The word "mixed", 
sometimes used for a cPp, is, however, easily translated into French 
and German. It  remains, however, to find translations of "com- 
posed"; for this word it would not be advisable to use "composd" 
and "z u s a m men ges e t z t", which would lead to misunderstanding 
of earlier works, where these terms have been used for "compound".  
Also the term, a weighted Poisson process, in German translated 
into ein g e w i c h t e t e r  P o i s s o n  P r o z e s s ,  has - -  though more 
seldom - -  been used for a cPp. A translation of this term into 
French could, eventually, be un p r o c e s s u s  de P o i s s o n  
p o n d e r d .  Perhaps the words "mixed" for "compound" and 
"weighted" for "composed" could be accepted. 

For a non-elementary process the confusion seems to be still 
greater. A non-elementary Poisson process [U(v) = ~(v--¥,)] has, 
thus, been called a compound Poisson process (Ge. ein z u s a m m e n -  
g e s e t z t e r  P o i s s o n  P rozes s ) ,  which is the same term as that 
commonly used for a general cPp independently of being elementary 
or non-elementary. This is apt to lead to serious misunderstandings 
(in fact, the definitions for a "compound" Poisson process in the 
first and second edition of Feller's well-known textbook Part  I 
seem not to be consistent). Therefore, the use of "compound" for 
the designation of a non-elementary Poissoll process, must be 
avoided, which applies also to the German translation. The random 
function distributed in a cPd is equivalent to the nmnber of changes 
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generalized by the size of a change. Therefore, the term "general- 
ized", in German "verallgerneinert", is often used for "non- 
elementary", the corresponding word "gdndralisd" in French, is 
- -  as far as is known by the author, - -  always used for "non- 
elementary". However, even in certain elementary distributions, 
e.g. a cPd :2 ,  the variable is often equivalent to a generalized 
variable, thus, the term "generalized' is a wider concept than 
"non-elementary". This last-mentioned term, quoted from Lund- 
berg [3], affords a distinction between the case, where the general- 
izing variable is the size of a change, from other cases of general- 
izing variables possible. The use of the terms "elementary" and 
"non-elementary" is facilitated by the possibility of a direct 
translation into French and German. 

3. Some remarks on the Poisson process 

In the report by Jung and Lundberg [4], which was referred to 
in the introduction of this note, the conditions for the constitution 
of processes by random functions, with given absolute distribution 
functions in one of the forms defined in section I, were discussed. 
In fact, these conditions, as formulated in [4], seem to be very 
restrictive, and it is, further, said in [4], that, if these conditions 
are not satisfied, the random functions may not constitute stochastic 
processes, or, if such processes are constituted, they will not be 
sufficiently specified, and may include processes with less realistic 
properties. In this section the results with respect to Poisson- 
distributed random functions will be commented upon, and, in 
later sections, other results in the quoted paper will be discussed. 

In [4] it is said, that  a random function known to be distributed 
with a Poisson probability distribution (elementary or non-element- 
ary) constitutes a Poisson process, if it is homogeneous in :, and the 
intensity, which in this case is constant, may be either an arbitrary, 
but fixed constant or an estimate from a random experiment. If, 
however, the random function, X(,r) say, is heterogeneous in .r, with 
the intensity ~w(~) say, where ~ is constant, the random function 
X(t) obtained by the transformation of .r in X(,r) according to the 

t 

relation ~ ---- ~(~) ---- xJ'w(u)du, is said to constitute a Poisson 
0 

proces if and only if w(~) is a known, integrable function of -r. 



334 A NOTE ON SOME C O M P O U N D  POISSON D I S T R I B U T I O N S  

I t  is said tha t  "As soon as w (-r) is unknown, or contains a r a n d o m  
element, the model of a Poisson process is no longer applicable", 

If, on the other hand,  the usual basic conditions for a Poisson 
process, except the homogeni ty  in time, a) homogeni ty  in space, 
tha t  is any  finite number  of (lj, y~) being the t ime point and the 
size of the i th  change are independent  random variables, and tha t  
ally li will have the probabil i ty densi ty e 4 for t > O, and b) rar i ty  
of multiple events, are satisfied, the random function concerned 
consti tutes a Poisson process (according to Bflhlrnann [5] it  should 
even not be necessary to include b) in the basic conditions, as 
according to hint, b) is a direct consequence of the homogeneity 
in space and in transformed time, and of the simple properties of 
the sample functions in the restricted space; an assertion for which 
a proof will later be published). I t  seems, therefore, admissible to 
use an estirnate of the intensi ty w('r), or of the mean number  of 
events for certain periods of absolute t ime % as a function of % 
for the definition of a Poisson process. Should this assertion not 
be true, m a n y  results reached in numerical investigations of the 
theory of the insurance risk were to be rejected. The mapping of 
the parametric space, defined by t -- t(-r), implies tha t  t is a never 
decreasing function of ,:, as, even in random experiments, t'('r) is 
essentially positive, with one-to-one correspondence, in both 
directions, so tha t  the est imating problem is reduced to tile 
estimation of a function with very simple properties. According 
to the present author 's  opinion, a denial of the admissibility of 
using such estimates calls in question the general principles, which 
are the basis for the application of est imated statistics depending 
on a parameter,  to several problems in a wide field of statistic 
research. The reader will also be referred to Cramdr's well-known 
survey of the risk theory [6], where the Poisson process was 
rigoroulsy deducted, after the transformation of the t)arameter, 
from the basic assumptions. The author  has not found any s ta tement  
in Cramdr's survey to the effect, tha t  the theory developed by him 
should not be applicable, if the parameter  I has to be estimated. 
[rl fact, numerical examples on the expansion of the distribution 
functions (one of these examples is applied in a calculation of the 
ruin probability) with tile application of chosen values of ! have 
been given. 
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It  is a conlmon objection against the estimations of quantities 
dependent on time, that  the applications of the estimates for 
prediction must be based on very uncertain extrapolations of the 
estimated trend. It is very easy to construct examples of a sequence 
of numbers of events for several years, in situations, where it seems 
a priori quite irrational to use a process model, and, where the 
sequence may be described as a sequence of results of a Poisson 
process during the observation period. In such examples the extra- 
polation to future time of the observed trend seems to be meaning- 
less. But for phenomena of a type for which a process model is 
likely to be applicable, the state of things is different. It  is, then, 
necessary to apply the connnonly used precautions for the estimation 
of a time trend. Such a precaution is an analysis of the time 
variation of all circumstances of influence o11 the statistic to be 
estimated and extrapolated. As an example, for which such 
methods are used, is the prediction of risk premiums for the 
establishment of new rates for non-life insurance, e.g. motor in- 
surance, where the risk premium depends on a great number of 
circumstances variable in time, and which, in addition, is the result 
of a more complicated process than the Poisson process. In this 
connection statistical methods of the types multiple regression 
analysis, and the so called factor analysis are used. The factor 
analysis implies a gTaduation of a function of time and other factors 
of influence on the risk in a form, which makes it possible to separate 
the effects of the different arguments on the risk (cf. e.g. Phil_ipson 
[7] ). As an example of this kind, also the development of the market 
price for a commodity may be mentioned. The estimation of the 
time trend of the number of events, particularly, in situations, 
where the increase of the number during disjoint intervals may be 
considered independent variables, is often much simpler than the 
prediction of future risk premiums. This is i.a. due to the fact, that  
the number of factors of influence on the number of events is 
often materially less than the number of factors influencing the 
risk premium. Also the ordinary statistical tests, e.g. the z2-test, 
is often simpler for the number of events. Methods for the differ- 
entiation between the Poisson model, and some standard models, 
based on heterogeneity in space, have also been devised. In Swedish 
Motor Insurance it has been possible to give safe numerical evidence 

23 
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for the necessity of using models of the last-mentioned type. In an 
investigation of this insurance, for which the observation period 
related to the calendar years from 1947 to 1954 , both years inclusive, 
the time trend both of the claim frequency, and of the risk premium 
was estimated for a very fine classification of the risk factors 
by the methods indicated here above, The rating table introduced. 
in 1955 was based on an extrapolation of these statistics. These 
were later compared with the actual experience, and the extra- 
polated risk premiums were found to agree satisfactorily with the 
results of this experience for three and four years after 1954; for 
the claim frequency this was valid for a greater number of years. 

In cases, where it can be proved with sufficient precision that  the 
number of events in disjoint intervals are mutually independent, 
and/or that  the number is Poisson-distributed, and that  a process 
model is likely to he applicable, by the estimation of the time trend 
in the expected number of events, the Poisson process must - -  due 
to all experience - -  be applicable, even for a prediction provided 
that  the estimation, and the extrapolation, is made by using 
appropriate methods. This principle shall in this note be called 
2broposition G. An extension of this principle to cases, where the 
number of changes in disjoint intervals are dependent, and where 
the absolute probabilities are of any of the types defined in section I, 
the Poisson distribution exclusive, seems also to be possible, as 
judged from the experience of motor insurance referred to in the 
previous paragraph. In fact, the proposition has been applied in 
several numerical investigations, e.g. in ~3]. 

4. The developments with respect to a cPd :I in [3] and i4] 
In his deduction of a Polya process by using the limit of a Polya- 

Eggenberger distribution, Lundberg [31 introduces the notation 
pn(t)Ah(t) "for the conditional probability of an event" in the 
interval (t, t+Ah(t))  "when n events have taken place up to b". 
This must, tacitly, imply a postulate of the existence of sucli a 
probability. Further, the expression obtained for p~z(t) is continuous 
in t (p. 17, 1.c.). In the general theory, the starting point is a process, 
so that  the existence of the conditional probabilities is postulated, 
which applies also to the continuity of pn(t) with respect to t (3), 
p. 27, 1.c.), and to the equations (29), (30) and (3 o*) (Lc.), which are 



A NOTE ON SOME COMPOUND POISSON DISTRIBUTIONS 337 

deducted on these assumptions. In chapter 4 (1.c.) the condition 4) 
(p. 27, 1.c.) is disregarded, so that  pn(t) is no longer necessarily 
uniformly bounded for all n. I t  is, then, proved that the forward 
and backward differential equations have a unique solution, 
provided that pn(t) is a non-negative, continuous function of t for 
every fixed n (or at least integrable over a finite interval of l), and 
that  this solution satisfies all the fundamental conditions of a 
generMized Markov process under the additional assumnption that 
EMax pn(u) ~- 1 from the result m in tile parameter point s, which 
defines the starting point of the forward differential equation, forms 
a divergent sequence in n for ew:ry finite interval o < u < T. Gener- 
alized is here taken to mean a process, for which the funda- 
mental conditions are disregarded for intervals starting in (m, s) 
with zero probability. A cPp" I, first mentioned in [3], P. 2o and 
described by the words, that  "these processes are characterized 
by the" (absolute) "probability for ~, events up to t for each real 
value ~ > o being equal to a Laplace-Stieltjes integral" in the 
form of the ruth term in (Ia) with V ( x ) - - ~ ( x - - c l ) ,  13(v, ,r) = 
U(v) independently of ,r. A cPp" I is later (p. 7 6, 1.c.) defined by 
the words "if and only if the intensity function of an elementary 
process satisfies the recurrence formula", p n + i ( / ) = p ~ ( t ) -  
p;~(l)/p~(l), "it will define a compound Poisson process", cPp" I 
After the definition of the absolute probability of a cPp" I (p. 7I, 
1.c.), Lundberg seeks "an approximate expression of the probability 
of an event occurring during a short interval (t, l+zXl) under the 
condition that  n events occurred during the preceding interval 
(o, t)", interpreting t as a time parameter. This probability is, then, 
denoted pn(t)Al ,  where fl~(t) is said to express the "i~tensity" 
The existence of such conditional probabilities is, therefore, tacitly 
understood in the words quoted (pp. 20, 71, 1.c.). The expression 
obtained for pn(l) is continuous in t for fixed n, and leads to the 
recurrence formula quoted here above. Further, the definition 
(p. 72, 1.c.) contains the following sentence "if an elementary 
random process exists with an absolute probability function" in 
the form of the Laplace-Stieltjes integral defined here above "the 
process will be called a compound Poisson process. .  " (cPp: I), 
which, thus, contains an explicit statement of the postulate tacitly 
understood in the quoted parts (pp. 2o, 71, I.e.). In Theorem 6 
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(P. 73, 1.c.) it is stated that" "Given a function P(t) with the prop- 
erties I) P(t) completely monotonic for t > o, 2) lim P(t) = I, 

t ~ 0  

the function =pn( t ) " ,  ~- P~n÷l)(t) / P(m(t), "constitutes for 
n = o , I  . . . and for t > o an intensity function of an elementary 
process in the generalized sense. The process defined by this 
intensity function is a compound Poisson p r o c e s s . . . "  (cPp" I). 
I t  is, then, proved that  the solutions of the forward differential 
equations defined by pn(t), fulfil all the fundamental conditions of 
a Markov process, and that the absolute probabilities have the form 
of the Laplace-Stieltjes integral referred to above, so that  the 
process is a cPp '  I. 

The only possible interpretation of Theorem 6 (p. 73, 1.c.) is that, 
if P(t) fulfils the conditions given in the theorem, there exists an 
intensity function deduced from P(t), which defines a c P p ' I  
constituted by a random function Y(t) say. It does not follow, 
however, that every random function X(t), for which the probability 
for non-occurrence in the interval (o, t) is given by P(t) satisfying 
the conditions of the theorem, and, consequently, the probability 
distribution of the number n of changes in the interval (o, t) is 
given in the form of the Laplace-Stieltjes integral referred to above 
in terms of P(l), necessarily constitutes a random process. If and 
only if the joint probabilities of X(t) are well-defined in the sense 
of stochastic process theory, X(t) is identical with Y(t), and con- 
stitutes a cPp • I defined by p,~(t). This is consistent with the previ- 
ously quoted parts from Lundberg's book and with the last para- 
graph on p. 84 (1.c.). 

In [4], Theorem 6 in [3] has been quoted by saying, that a com- 
pletely monotone function for t > o, P(t), with the limit for 
t--~ o equal to unity "may always define a compound Poisson 
process" (cPp" i). By the discussion above, pn(t) deduced from 
.P(t) always defines a cPp" I, even if a random function, assumed 
to be distributed with a cPd" I, deduced from a function with the 
assumed properties, does not constitute a stochastic process, unless 
the joint probabilities are well-defined; but, if the last condition is 
fulfilled, the random function, thus defined, constitutes a c P p  I. 
The following words in ( [4], P. 8), that  every process with absolute 
probabilities in the form of a cPd" I, does not necessarily be a 
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cPp"  I, are - -  in the author ' s  opinion - -  not  consistent  with the 
developments  in [3] (cf. p. 72, 1.c.), as, if and only if a random 
funct ion dis t r ibuted with a cPd"  I const i tu tes  a r andom process, 
this process must  be a cPp  : I. The degenerate  counter  example  in 
[4] for a random function with a given cPd"  I, which does not  
cons t i tu te  a cPp • I, does not  - -  as far as the present  au thor  can see - -  
cons t i tu te  a stochastic process whatsoever ,  at  least not  a Markov 
process. Even  if the example were to lead to a s tochast ic  process, 
the example  is so unrealistic, tha t  the conditions of the example  
are not  likely to be satisfied for any phenomenon,  for which one 
chooses to apply  process models. 

I t  is in [4], further,  asserted, that ,  if the  risk in tens i ty  can be 
wri t ten ~ w(~:), where -2 may  be es t imated by  a random exper iment ,  
and w(.r) ma y  contain a random element,  and, if ]V(.r) is d is t r ibuted 
in a c P d ' I ,  N(~) is, in general, nei ther  a cPp"  I, nor  a well- 
defined random process, if the  t ransi t ion probabili t ies are not  
defined. According to the in terpre ta t ion  given above of Theorem 6, 
[3], it is ahvays possible to deduct  an intensi ty  ffmction Pn(0,  which 
defines a cPp  : I, the r andom function N(t), obta ined by  the trans- 
format ion t = ~ (~r), does, however,  const i tu te  the said c P p '  I, if 
and only if the transit ion probabili t ies of N(t) are well-defined, in 
which case they  are the solutions of the differential equat ions in 
terms of pn(t) derived from the given cPd  • I. By  this in te rpre ta t ion  
N(t) cannot  cons t i tu te  a stochastic process, which is not a cPp"  I. 
As far as an extension of these s ta tements  to the case, where t(,) 
or ~ w(~) are es t imated from random experiments ,  is concerned,  
the reader  is referred to what  has been said in the previous section 
(proposition G). I t  is, fur ther ,  referred to Chapter  VII  of [3] 
(part icularly p. i37), where t has been es t imated from the experience,  
and used in two process models for comparison with the reality.  
Thus, proposit ion G seems to have been taci t ly  unders tood in this 
chapter  (VII, 1.c.). 

In [4] it has been remarked,  tha t  a general stochastic process is 
not  defined by  the absolute probabili t ics in each paramete r  point.  
A bir th  process is complete ly  defined by  the condit ional  probabilit ies,  
or by the intensi ty  function.  If, in addition, the recurrence relat ion 
for pn(t) of a cPp  : I holds ( [3], P- 68, E4] P. 7, quoted  here above), 
the process is a cPp"  I. The  definition of pn(t) in Theorem 6 [3] 
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leads to this recurrence relation. Further ,  in most cases, where it 
is deemed appropriate to apply stochastic process models, it must  
be natura l  to postulate the existence of well-defined joint probabil- 
ities. In cases, where it cannot  be assumed, tha t  the phenomenon 
is homogeneous in space, the simplest basic assumption, seems to 
be the assumption of exchangeabil i ty of the sum total  of the 
changes on each interval  of a sequence of an arbi t rary number  of 
intervals of equal length, wi thout  change in the probabil i ty function 
of the process. According to Bfihlmann [5], a cPp : I can be deducted 
from such an assumption, which seems to be a natura l  postulate 
for phenomena for which a cPd :  I has been found to hold, and, 
where it is deemed rational to apply stochastic process models. 

Vor purposes of a fur ther  elucidation of the comments  in this 
section, and for obtaining direct proofs of the assertions made, the 
author  wiLl in the next section give two therorems which are based 
on modern process theory and wl~ich contain assertions intended 
to give a clear picture of the author 's  interpretat ion of Thcorem 6, [3]. 

5. A short review of lhe theory of translalor operators and lwo theo- 
rems on the problems discussed in the previous seelion 

The following review of the definition and certain properties of 
t ranslator  operators has been di'awn out from a book by Dynkin,  

8 ~ [81. The reader is for a full dcscription referred to [ j, I ch. 3. 
In I 3.I (l.c.) a Markov process is defined. The following items 

are given: a) a function ~((o) in some space t-I taking values in 
[o, co] (~ may  also be an arbi t rary  fixed finite constant  or equal to 
infinity), b) a function x,(oo) for ~o ~ ~), l ~ [o, ~ (o~) ], takiug values 
in the state space (E, B), c) a , -algebra Me defined on ~t  = 
{(o' ~ (oo) > t~, for each l > o, and d) a function t~(A) for each 
x ~ E, on some ,-algebra i o on gl, which contains Mt for all t > o. 
Then, if and only if certain conditions 3 . I A -  3.IG are satisfied 
(if 3.IG is not satisfied, this can be achieved by a suitable elargemcnt 
of fl/), the quadruple (x,, ~, Mr, Px) defines a Markov process ( [8], 
I 3.1). Let  +(t) be a function taking values on the interval o _< t < F, 
in E, and the shift by the amount t of +(t), cl, be defined by ct +(u) = 
+( t+u)  (o < u < i~--l). The condition 3.IG requires tha t  the set of 
trajectories of the process is invariant  under  all shifts ( [8], I 3.1). 
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Let  v be the mapping of f2o on {+(t)}, the family of d?(l) for all 
intervals (o < t < X); this mapping associates each oo ~ f~ to a 
t ra jectory xu(o~), [o < u < ~ (oo) ]. Let  the lranslator operators ×t 
be defined by the following relation 

x t B = 4 -1 c[lv B for every B ~ N*, (2a) 

where N* denotes the minimal  system of subsets in f20, tha t  
contains all the sets {o~ • xt(~) e P} (t > o, P C E), and is closed 
under the union and the intersection of any  nulnber of sets, and 
under  the operation of taking complements.  The t ranslator  operators 
fulfil, i.a., the following relations 

×~ {xh ~ P} = {xt+t~e P} for any t > o, h > o, P C E (2b) 

([8] I 3.5)- If ×t with these properties exists, 3.1 G is fulfilled. 
Let Mt be a completion of Mt with respect to Px [by including 

all sets 1" such tha t  F x C F C F 2 ,  Pz(F~) = P~(Po)], N the 
e-algebra on f~o generated by the sets {xu e F} (u > o, P e B), 
and N the intersection of N* defined under (2a) with the completion 
of N, with respect to Pu corresponding to all initial distributions ix. 
Then, the following assertion holds 

Pz(A×tB) = I Pz,(B) Pz(do,) for A e Mr, B E N (2c) 
A 

([8], I 3.6). The quadruple (xt, ~, Mr, Px), where the measures Pz 
have been extended to the g-algebra 11~7Io, defines a Markov process, 
as, in fact, the existence of ×t with the properties given in I 3-5 - -  3.6 
(1.c.) implies, tha t  the conditions 3 . I A - - 3 . I G ,  referred to in the 
definition of a Markov process, are satisfied. ( [8] I 3.6, Corollary 2). 

If for a random function X(t), ×~ with these properties exist and 
the a-algebras can be defined in such a way tha t  (2c) holds, X(t) 
shall in the following context  be said to be admissible, and, in the 
opposite case, non-admissible. 

T t l E O R E M  I 

Let a random function N(t), which assumes only integer values, 
be admissible or non-admissible in the sense of the definition just  
given, and for every fixed value of a continuous real parameter  
t ~ [o,~], where ~ may  be finite or infinite, be distr ibuted with a 
given distribution P~(t) in the following form, where the s tructure 
function U(v) is a distribution function independent  of t. 
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P,,(t) = f e-Vt(vt)" dU(v)/n!, and the functions n,,(t), gn,,(t, At) 
O 

be defined by the following relations. 

~n(t) = --P(o"+ ~)(t)/P(on)(t), where P~n)(t) = ~"Po(t)/~t n 

l 
I - - % , ( t )  a t  + o ( a t )  f o r , e =  o 

gn,,(t, At) = n,~(t) At + o(At) forv = I 

o (At) for ,~ > I 

and for sufficiently small values of At. 

Then, 

I) Po(t) is a completely monotone function of t for t > o, equal 
t o l f o r t  = o. 

2) n,,(t) is for fixed n a positive, continuous function of t < ~ for 
every fixed n. 

3) P , , ( t + a t ) =  g~.o(t, at) p,, (t) + g,, -1.1 (t, At) Pn_ , ( t )+  o(at) 
for every t < ~, and for all n. (3) 

4) The forward differential equation, obtained by the limit passage 
of (3) for A t - >  dr, substituting the conditional probabilities 
for Pn(t), and the corresponding backward differential equation 
have a unique solution, which fulfils the fundamental conditions 
of a generalized Markov process, being a cPp : I, defined by nn(t) 
and the termination point ~. 

5) N(t) may or may not constitute a process, as defined in 4). 

Proof. By assumption, ~,(t) is defined for any t in the interval 
o < t <  ~, thus, P , ( I + A t )  is, for o . ~ t + A t < ~ ,  a well-defined 
probability. 

By the insertion of t + A t  for t in Pn(t), and by using an 
asymptotic expression for the product of the functions e -vat and 
(t + At)nit n, to be deducted here below, an easy calculation leads 
to (3). The asymptotic expression of the said product is obtained 
by using the MacLaurin expansions for the functions concerned 
and by the following calculation {I + n[At + o(At)~/t} × 
{I - - v A t  + o(At)} ~ I - - v A t  + o(At) + n[At + o(At)]/t .  The as- 
sertion 3) is, thus, proved. I) is a direct consequence of the well- 
known theorem given by Bernstein and Feller; 2) is a consequence 
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of the definition of =,~(1) and Pn(t). For the demonstrat ion of 4) the 
reader is referred to the proof of Theorem 6 [3], and to the ]3ernstein- 
Feller theorem. 5) is a consequence of N(t) being, not necessarily, 
an admissible random function. 

T H E O R E M  2 

Let  the random function N(t) be defined as in Theorem I, and, 
assume, particularly,  tha t  N(t) is admissible, as defined before the 
Theorem I. 

Then, N(t) consti tutes a cPp • I defined by the intensi ty function 
pn(t) = ~n(t), as defined in Theorem I, and by the terminat ion 
point ~. The forward differential equation of this process is in the 
form of the limit, when &t tends to dr, of the difference equation (3), 
with the subst i tut ion of pn(t) and the conditional probabifities for 
rc,,(t) and Pn(t), respectively. 

Proof. Let the conditional probabil i ty for an increase of ,J units 
in N(t) on the interval  (t, t + At) relative to the hypothesis  tha t  n 
events have occurred on the interval  (o, t) be designated by 
f, , ,(t, At). By assumption, these probabilities are well-defined in 
the sense of stochastic process theory. By using (2c), which, by  
assumption is applicable, in this case, the following relation is 
obtained 

tt  

_P,,(t + At) ---- Z fn  . . . .  (t, At) P,~_~(t), ~ > t + At (4) 
V-0 

This may  also be derived from the following arguments.  Let  Bn(t ) 
be the set of elements for which N(t) = n and An_ ~,~(t, At) the 
intersection of B . . . .  (t) and Bn(t + At). Then for ~ > t + At 

+  xt) = ) x A,, M(~I &t) 
v - O  - v ,  

The probabil i ty for fixed values of n and of t < ,~ - -  &t of the set 
in the left membrum of this relation is given by the left membrum 
of (4), and the probabilities of the sets in the right membra  for 
n = o, n > o respectively given by the right membrum of (4); 
thus, (4) holds. 
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By assumption, (3) of Theorem I also holds. For each value 
of n and t + &t the left membra of (3) and (4) are equal, which, 
thus, applies also to the right membra, for all values of n, and of 
t <  ~ - -  At, so that  f~,~(t, At) =g,~,~(t, At) for all v = o , I . . . n ,  
for all n and for every t < ~--At.  

Thus, there exist asymptotic expressions for fna(t, At) in the 
form given for gn,~(l, At) in Theorem I, with the substitution of 
pn(t) for r%(t), and the asymptotic expression for Pn(t + At) is in 
the form given in (3) with the same substitution. Therefore, the 
assertions 4) of Theorem I hold for N(I), subject to the assumptions 
of Theorem 2. Thus, N(t) constitutes a c P p : I ,  defined by the 
intensity function pn(l) = r%(t) and the termination point ~, with 
the differential equation defined in the assertion, which, thus, has 
been proved. 

o~ 

Remark" Consider the distribution function Z Pn(t) Vn*(x), 
n , , 0  

where Pn(t) is defined in the Theorem I. I t  is easily seen, that the 
Theorems ~ and 2, can be extended to the case, where X(t), 
distributed with a given distribution function in this form, is sub- 
stituted for N(l). The extension of a cPp : i with absolute distribu- 
tion functions, thus defined to the case, where the change distribu- 
tion is dependent on t, V(x, t) say, is a particular consequence of a 
theorem given by Jung I9], the absolute distribution function of 
X(I) is, then, given in the form of (Ia), with U(v,.r) ~ U(v) in- 
dependently of z. Independently of Jung, this result was obtained 
by the present author Ero], later extended to the general case in (Ia). 
In Eio] the starting point was the forward differential equation of 
a cPp : I with the change distribution V(x, l), assuming, that there 
exists a modification of V(x, t), ~V(x,t) say, such that the distribu- 

tion function of X(t) is in the form YE Pn(1) l~n*(x, l) for every 
n o 

fixed t. An easy deduction leads to a differential equation in the 
form t~'(t) = zt--~t; ~t, zt being ch.f. corresponding to ~V(x,t) and 
V(x, t) respectively; a solution of this equation leads, after con- 
version, under mild regularity conditions to ITV(x, t) = W(x, 1) as 
defined under (Ia) (cf. Cramdr, [61, 6.I). If in Theorem I, X(t) with 
the change distribution V(x, t) is substituted for N(t), (3) will be 
obtained in the form: 
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P , ( t+&t )  gV(x , t+&t)= g,,,o(t,At) Pn(t) ITvn*(x, t ) +  
+ g,,_,,dt/xt) P,~_,(t) ITVO,-')*(x,t). V(x, t) + o (At), 

where ITV(x, t) is defined as here above. This leads, if quant i t ies  of 
smaller order than  the order  of At are neglected, to the differ- 
ential  equat ion for ~t just  given, which, thus, holds asymptot ica l ly  
for X(t) ; this gives the following corollary to Theorems I and 2. 

Corollary. If the random function X(t) is d is t r ibuted with a non- 
e lementary  cPd"  I, defined by  Pn(t), V(x, t) and ~, there  exists a 
random function Y(t), which const i tutes  a c P p ' I  defined by  
r%(t), V(x, t) and ~, with the absolute distr ibution funct ions given 

by  Z Pn(t) W'~*(x, t), where W(x, t) is defined as under  (Ia). If 
r t ~ o  

and only if X(t) is admissible, as defined before Theorem I, it  
const i tu tes  such a process. 

6. About the amalgamation of independent random processes 

In I4] the following s ta tements  with respect to the amalgamat ion  
of independent  e lementary  cPp"  I were made. For  greater  clar i ty 
the te rm cPp " I will be added to the te rm con-tpound Poisson process, 
as used in [41. Also the s ta tements  in [41 with respect to a random 
function of the operat ional  t ime t, were in solne cases formula ted  
by  using a function of the absolute pa ramete r  v. In  the following 
lines, the assertion with respect to a fnnction of t, shall be accord- 
ingly formulated.  

In the case, where N~(-:), ~ = 1,2 . . .  m const i tu te  independent ,  
e lementary  compound Poisson processes (cPp" i) with the absolute 

m - -  

paramete r  z, N('r) = Z N~(z) const i tutes  a compound Poisson process 
I £ " 1  

(cPp" I) with a s t ruc ture  funct ion equal  to the convolut ion of the 
s t ruc ture  functions of the components .  In the case, where the 
components  only af ter  the t ransformat ion t --  l(-r) are compound  

m 

Poisson processes (cPp" I) in operat ional  t ime t, N(I) = ~., N~(t) 
I . L - t  

is a compound  Poisson process (cPp" I), if and only if t,(.v) = 
k~ t(x), where leu are independent  of x for every  value of ~, and if 
i(z) are known funct ions;  this case has in [4] been called a "v e ry  
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special case". If t~(,r) are for every  value of ~ a known function of 
-~ bu t  not  propor t iona te  to t(r), N(l) const i tutes  a cPp i.w.s. 

I t  will be observed here, tha t  it seems not  impossible to ex tend  
the proposit ion G (see section 3 here above) to be applied also to 
the amalgamated  process in cases, where the components  are 
c P p : i  only af ter  the t ransformat ion of the parameters  to ta('r), 
and, even, where these functions, not  necessarily, are propor t ionate .  

An amalgamat ion  of a number  of independent  c P p : I  shall 
later  in this note be dealt  with as a par t icular  case of more general 
models, to be defined in the nex t  section. 

Firs t  an extension of the  t e rm "convolu t ion"  shall be introduced.  
Let  ~ be a discontinuous or cont inuous variable,  r andom or non- 
random. Let  H* be an operator ,  which, applied to a given set 

of distr ibution functions,  where the components  correspond to the 
ch.f. q~(-~), defined for every  value of ~, t ransforms the set into a 
distr ibution function,  which corresponds to the ch.f. exp 
[J'd~ log ~¢(,5)J the Stieltjes integral  being taken over  the range of ~. 
If, part icular ly,  the set is finite, or enumerable,  the t rans form 

m l 

reduces to the asterisk product  rI*,  m~ _< oo and, if, in addition, 
f 0 

all the elements of the given set are equal, to an asterisk power. 
In  these cases the opera tor  defines an ordinary  convolution,  and, 
if ~, is allowed to form a non-enumerable  set, the  t ransform m ay  
be called a convolution in the extended sense. I t  is seen, that ,  in all 
cases, tlie t ransform reduces to uni ty  for ~ = o. In the following 
contex t  it will, for simplicity, be assumed tha t  ~ forms a finite or 
enumerable  set;  the extension to non°enumerable  sets is s t ra ight  
forward.  

If in the dis tr ibut ion funct ion of an aco c P p :  I, as defined in 
section I here above,  lII%U~(v) is subs t i tu ted  for ~Um~*(v), the  

if,) 
dist r ibut ion funct ion obta ined  defines a distr ibution,  which m a y  
be called an extended aco cPd : I. If .~ is, at least, enumerable,  the 
probabi l i ty  distr ibution of f, m a y  be denoted  Q,,,, (s~), which is a 
probabi l i ty  distr ibution of the discontinuous variable m~. After  the 
t ransformat ion  to the operat ional  scales, st, s2, where s2 has been 
defined in section i,  the ruth te rm of (Ia) can, on the par t icular  
assumptions for an elementary,  ex tended  aco c P d :  I, be wri t ten  
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in one of the following alternative forms, where the second form 
is obtained from the first form by an, evidently permissible, 
reversion of the integration and summation, and by using the 
proporties of the Laplace transform of a convolution. 

Pm,(S,S~)-~ Se-VS:(vs~)"~.dv [ E Qm,(sl) H*2Ut(v)]/m2! (5 a) 
o m l , , 0  ~ " 0  

r a  I , o  f , , 0  

The ch.f. corresponding to (5b) can be written 
m r a  t 

x Qm,(sl) n s2), 
m t . 0 f ~ l  

where 2~i(-p,, s2) corresponds to the ith factor of the asterisk product 
in (5b). In the particular case, where 2~,(-r,, s~) = 2~(~, s2) indepen- 
dently of i, the distribution is a bunch distribution according to 
section I, in the elementary case and, under certain conditions, 
in the non-elementary case (see section 7 here below). The amal- 
gamation of m~ elementary cPp" I for a fixed value of m~, has, 
by (5b) in the general case, the following distribution function 

[I* 2Udv) Ira2! (5c) 
o | ,  o 

In fact, (5c) is consistent with the "very special case" referred 
to in the quotation from [4~, on account of the definition of s2 in 
section I, which tacitly implies that the expected number of 
events in the ith component can be written y,~ s2, where y,~ is the 
mean of 2Ui(v ) for each value of i. This can also be expressed in 
terms of the intensities of the components. Supposing that this 
intensity for ith component can be written 2×, w,(,), if =×, is in- 
dependent of ~ and w,(,) of i, the change of the variables of 
integration leads to modified structure functions 2Ul(2~v/2×,)= 
oU,(v) say, for every value of i, so that the convolution is in the 
form of (5c) with 2Ul instead of o U t. The extension of the amalgama- 

' r f  

tion to cases, where the operational parameters s2, = j" 2×,w,(u)du, 
@ 

implying a dependence on i for both , t  and w,(T), shall be shortly 
referred to later in this note. 
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7. The models of grouping in general 

A model  called the  simple grouping shall be defined as follows. 
Consider a group of a popula t ion,  called a main group, defined as 
a finite or enumerab le  set of sub-groups. Each  sub-group is associated 
with  a r a n d o m  funct ion ,Y(s2~), i ~ 1,2 . . . m l, where, in the  general  
case, m 1 is a r a n d o m  variable.  ~Y(s2, ) is ei ther  equaJ to ,N(s2, ), 
the e l emen ta ry  case, or to iX(s2,), the non-e l emen ta ry  case. iN(s2,) 
has  a p robabi l i ty  dis t r ibut ion ,R~o~,(so.,), and ,X(s2d the change 
dis t r ibut ion ,V(x, s~l ). Each sub-group is supposed to be homogeneous, 
t aken  to mean,  t ha t  it can be a rb i t ra r i ly  divided into any  n u m b e r  
of minor  groups,  such t ha t  all the minor  groups have  the same 
volume,  and the  same probab i l i ty  dis t r ibut ion of the n u m b e r  of 
events ,  and,  in the  non-e l emen ta ry  case, the same change distr ibu- 
tion, for the  cont r ibu t ions  to iY(s2d. I t  is, further ,  assumed tha t  
these  cont r ibut ions  are admissible r a n d o m  functions,  so t ha t  

tY(s21) cons t i tu tes  for each value of i a Markov  process, defined by  
the  in tens i ty  funct ion irm~,(S2i), say, and  by  the te rmina t ion  point  
~, to be defined below, and,  in the non-e lementa ry  case, by  the  
change dis t r ibut ion ,V(x, s2,). The process of a sub-group is called 
a sub-process.  These sub-processes are assumed to be mu tua l l y  
independent ,  and  to have  non-decreasing,  and  r ight  cont inuous  

trajectories.  The  process associated with the main  group, the main 
process, is cons t i tu ted  by  the r a n d o m  funct ion Y(sl, s2 ) -~  

m t n t  1 

i ~Z Qm,(sl) E s2~, and the E Q,,,, (si) E ~.~ (so~), where g,2 -- 
m I o [ 1 n t  I , , o  f ,  1 

t e rm  for mi ~- o shall be equal  to Qo(s~). In  the par t icular  case, 

where for all values  of i sol = "(2, S w(u)du and nei ther  .~ nor  w(u) 
0 

depends  on i, the main  group  shall be said to be stationary (if the 
condit ion is fulfilled for an in terva l  o ,~ .~ ~ T, the main group is 
s t a t i ona ry  on this interval) .  I f  the main  group is non-slalionary, it 
is assumed tha t  the i th  sub-group enters  only once into the 

main  group,  a t  the point ,  ,% say, and  leaves the main  group at  
the  point  ~% say, where ,To, tx~ m a y  depend on co ~ ,t), the 
reference space of the i th sub-process,  which, therefore,  mus t  be 
app rop r i a t e ly  enlarged. In  the  calculat ion of the cont r ibut ions  to 
the main  process on the in te rva l  o < -~ < T it  is, further,  assumed 
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tha t  each subprocess with ~ ~ T, s tar ts  at  zero, and terminates  
at ~ ' 1 -  (to corresponding to ~, on the operat ional  scale for the 
i th  sub-process. T h a t  these assumptions with respect to the sub- 
processes do not restr ict  the general i ty  of the calculation of the 
contr ibut ions  to the main process on (o, T), can be seen from the 
following arguments .  If a sub-group were to enter  several times, 
the group can be divided into a nmnber  of new sub-groups, which 
all fulfil the condit ion of a single entry.  Fur ther ,  if a sub-process 
s tar ts  at a point  before ,~o, and, if the te rminat ion  point  of the 
process is later  than **~ < T, the contr ibut ions on the in terval  
(o, T) to tile random function, and to the operat ional  t ime of 
the main process can be wri t ten i Y ~ -  iYo, ~ s ~ -  ~so, where lYp 
lsj refer to the points ,-:y, f = o,I.  These contr ibut ions  are equal 
to those, which are rendered by  a sub-process, which s tar ts  at  zero 
and terminates  at  t '~-- iTo,  and such tha t  the random function and 
the operat ional  t ime are equal to zero at ,~ = o, and to ~yx-- ,yo,  
¢sx--,So respect ively at i '~t--l~o. For  the case where i'a > T, the 
i th  sub-process shall not  be t ransferred to another  scale. 

T- ~T o 

For  a non-s ta t ionary  main group s ~ = k ~  ~ w~(u) du, i = 
0 

1,2 . . .  m~, corresponds to , ,  if lT~ ~ T, and with the modificat ion 

of the integral  to y for i-r~ > T, so that ,  in this case, an amalgama-  
f--o 

t ion of ml sub-processes in the form of cPp:  z, for a fixed value of 

n h, is a cPp  with the s t ruc ture  funct ion of the form I] :~ Uoi(~2v/s~), 

which depends on ~ so that  the amalgamated  process is a cPp 
i.w.s.; this is consistent  with the assertion for the general case 
quoted  from I4]- The "ve ry  special case" in this assertion implies 
tha t  s2l = kl s2, and the s t ruc ture  funct ion of the amalgamat ion  of 

m t  

m~ cPp:  I is in the form 1II 2Ui(v/k,), independen t ly  of , .  Thus  
f - 1  

the "ve r y  special case" in [4] is character ized by  the concept  a 
s ta t ionary  main group, for a simple grouping, where all the sub- 
processes are cPp:  I. In this case Y(si, ~2) can be reduced to the 
form Y(s~, so}; in the e lementary  case Y(s~, s~,) are dis t r ibuted with 
distr ibution functions in the a l ternat ive  forms of (sa) and (5b). I t  
m a y  be possible, to extend these forms to inchlde also a non- 
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s ta t ionary  main group, and, under  certain conditions (cf. Theorem 7 
below), to the  non-e lementary  case. 

B y  the assumptions made  so far, the  main group is, in general, 
heterogeneous i.e. tY(s2,) are generally dependent  of i. In the part ic-  
ular case, where ,Y(s2,) -: Y(s2) independent ly  of i for i = 1 , 2 . . .  ml, 
the main group being homogeneous, "Y(sl, so) is, in the e lementary  
case, and, under  certain conditions (cf. section 7 and Theorem 7 
here below), in the non-e lementary  case dis t r ibuted in a bunch 
distr ibution.  

An iterated grouping shall be defined as follows. A head group of 
a popula t ion is defined as an, at least, enumerable  set of main 
groups, each defined as in the simple grouping. The relation between 
the head group and the main groups shall be the same as the 
relation between the main group and its sub-groups in the simple 
grouping. As, generally, a main group is heterogeneous,  the i t e ra ted  
grouping could be in terpre ted  as a simple grouping, if this were to 
include heterogeneous sub-groups. 

In the following theorem it will be referred to a condition defined 
in the following lines. 

Condition A. In a Markov process, defined by the intensi ty  
funct ion Pn(t) for l < ~, which is cont inuous in t for every  
fixed n, ~ = ~(~) being the terminat ion  point  of the process, 
the condit ional  probabil i ty,  fn,~ (t, At), for the occurrence of v 
events on (t, t+Al) relat ive to the hypothesis  tha t  n events 
have occurred on the in terval  (0, t) shall satisfy relations in the 
form given for gno (t, At) in Theorem I, for M = o, I and > I, 
respectively,  for t+At  < ~, and shall be equal to zero, for 
,~ > o, and for t+At  > ~. 

A Markov process with never  decreasing, right cont inuous 
trajectories,  which satisfies this condit ion belongs to the class of 
pure b i r th  processes. 

For  the following theorem two sequences of index vectors {Mj} 
and {Se}, will, further ,  be introduced.  For  each fixed value of m~ 
and 7n2, the vector  Mj {,~x 3, i = 1,2 . . . mr} shall, for a fixed value 
of j ,  be obta ined by the choice of mt values, in an a rb i t ra ry  but  
fixed order, of values for ,~.j, such that ,  for the fixed value of 
j ,  ,~xj is, for each i, equal to one of the components  of the vector  
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m 1 

( 0 , I . . .  m2), and that  Z # j  = m2 for the fixed value of j.  This 

shall be i terated in every possible way  including the permutat ions,  
and X' shall denote the summat ion  over all possible values of j,  

obta ined in this way. Similarly, for each fixed value of mt and ,~, 
the vector  S~ = {*e/c, i = 1,2 . . . rex} shall for a fixed value of k, 
be obta ined by  the choice of mL values, in an arbi t rary  bu t  fixed 
order, of values for l¢k, such that  for the fixed value of k ~ k  is, 
for each i, equal to one of the components  of the vector  (0,I), and 

tha t  .Z **~ = ,~. This shall be i terated in every possible way  in- 

cluding the permutat ions,  and X" shall denote the summat ion  over 

all possible values of k, thus, obtained. 

TFIEOREM 3 

Consider a simple grouping, as previously defined in this section, 
on the domaine (o,s~) × (o, g2) corresponding to (o, T) on the 
absolute  scale, in the e lementary case, where ,Y(s2~) = ,N(s2~) = 
,N say, and ~/(st, g ~ ) - - N ( s t ,  g 2 ) =  N say. Let  the conditional 
probabilities, as defined in Theorem 2, be denoted *f,n,z,, (s~,, As~,) 
and let the indices ,~z~ be defined as in the previous paragraph. Let  
it, part icularly be assumed that  , % - - j o ,  defined previously,  does 
not depend on oo, which, thus, applies also to the corresponding 
point  ~, on the operat ional  scale. 

Then, 
I) N is an admissible random function with the probabi l i ty  distribu- 

tion, R.~, (s~, go) say, which fulfils the following relation. 

~,,,(s~, go) = Qo(sl) + Z 9,n,(S~) X'  ~i ,R,~, (sz,) (6a) 
m I " 1 [~ )  f ~. I 

2) If each sub-process satisfies Condition A, defined here above, the 
main process satisfies also this condition, and is defined by  the 
intensi ty function r m . ( S l  , S2) given by  the following relation. 

;n,, (s~, g2) = ~ Qm, (st) Z'  H ,R,,, ~ ,r,~,(s2, ) / R,,,. (s~, g2) (6b) 
m l - - J .  (J) |--I a-* 

3) The sufficient condition for that  Condition A being satisfied for 
the main group, is also a necessary condition. 

24 
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Proof. If  for all values of i, iN  are admissible, as assumed in 
the model, this mus t  also hold for the random funct ion equal  to 

m 1 

the  sum ~ ,N for fixed ml, consequent ly  also for N, defined as the 
I , . l  

weighted average of this sum with respect  to Qm,(s~), rnl = o,I  . . . .  
The  probabi l i ty  for the occurrence of ,~j events  in the  i th  sub- 
process, i = 1 , 2 . . .  m~, on the in terval  (o, s2,) for every  fixed value 
of ml and j ,  is given, provided all the sub-groups were to belong 
to the main group at  T, by  the produc t  of the independent  probabili-  

m 1 

ties in the j t h  t e rm of (6a), where, by  definition, % , ~  = m~. 

Should some of the sub-processes te rmina te  earlier than  T, the  
parameters  for these groups s2, are, by  definition, equal to ~,, 
corresponding to , -~-  ,'~0 and, therefore,  the assumption tha t  ,.r~ 
for all i are ~ T, may  be removed.  The  event  tha t  m2 events occur 
on the in terval  for fixed ln~, can be realized in several ways;  thus, 
by  the definit ion of Z', this sum applied to the  products  for each 

possible value of j ,  represents  the probabi l i ty  of m2 events  for 
fixed ml. If also m~ is allowed to vary ,  the weighted mean of 
these probabil i tes with respect  to Qm~(Sl) will be obtained,  so tha t  
(6a) holds, and, thus, the assertion I) has been proved.  

If  all sub-processes satisfy Condition A, the values of ,f,,,,,~ 
(s2,, As2~) are for v > I of lower order than  the order  of AS2,, 
for sub-processes with ~,--As2,  corresponding to a point  < T even 
equal to zero. The condit ional  probabi l i ty  for the occurrence of 
,*k events  in the i th  sub-process, i = 1 , 2 . . .  m~, on the in terval  
(s2,, s2, + As of) relat ive to the hypothesis  t ha t  ,~zj events  have 
occurred on the in terval  (o, s~,) can, for every  fixed value of ml, 

m2 and j ,  be wr i t ten  in the form %" II '°* *f ,~.l ":"-'°*) where ,ak Z J f v - / ,  0 

(k) f 1 

have been defined in the last paragraph before the theorem 
(the arguments s2~, As2~ have been left out), and, where the pro- 
babilities for more then one change on (s2~, s2~ + As2~) have 
been neglected. ]By the insertion of the expressions for ~f~,,~ = o, I 
according to Condition A, the terms of this sum, which con- 
ta in  at  least one factor  ,f,~j,1 for a sub-process, for which 
~,--As2,  corresponds to a point  "r less than  T will vanish, and other  
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terms, containing more than one such factor, for any sub-process, 
for which ~,--As2, corresponds to -r > T will be of lower order than 
the order of As2,. Consequently, if quantities of lower order than 

m I 

the order of &ss, are neglected, the sum reduces to Z iraqi(so.i), 

observing that  for values of i for which ~,--As2, corresponds to 
< T, ,r,~j(s2,) = ,r,~(~,) = o. Then, the absolute probability of 

the composite event, that  m2 events occur on (o, g2), and ms + I events 
on (o, h + Ag2) in the main process, is given by the numerator, and, 
by the assertion I), the probability for the occurrence of ms events 
on (o, g2) by the denumerator of (6b), which, thus, holds, The proof 
implies, that, if the Condition A holds for every sub-process, it 
holds also for the main process. Thus, the assertion 2) has been 
proved. 

If, for ~ > I and for at least one value of i, , f~.~ (s~t, Ass,) and 
~, - As21 corresponding to ~ > T, should be of the same or higher 
order than the order of As.o,, this should imply that  the contribution 
to the conditional probability for v events in the main process, 
should be of this order. This leads to that, in this case, Condition 
A does not hold for the main process. In fact, this affords en in- 
direct proof of the assertion 3) of the theorem, for a fixed value 
of T. By letting T decrease until all the sub-processes have ~t--As2, 
corresponding to • > T, the proof can be extended to include 
anyone sub-process, which does not satisfy the Condition A. Thus, 
the assertion 3) has been proved. 

Remark. By a remark made here above (just before the de- 
finition of the iterated grouping), a simple grouping being both 
stationary and homogeneous leads in the elementary case always 
to a bunch distribution according to the general definition quoted 
in section I of this note (Thyrion [I], p. 68). Thyrion has, however, 
(Eli], Ch. 2) introduced a specified model of such distributions, 
here called the T-model, which, in fact, is less general, than the 
model based on the ch.f. in section I. The T-model has been in- 
troduced in order to allow for the occurrence of several, simultaneous 
changes (cf. [II], p. 49), while by the theorem, the general model 
can also be applied to cases, where only one change on a small 
interval has a probability of the same order as the order of the 
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length of the interval,  while the probabi l i ty  of more than one 
change is of lower order. 111 the T-model  the number  of bunches 
is defined as the number  of sub-processes, in which already at least 
one change has occurred. This number  m a y  be designated by  m, 
which, by  definition, is less than  or equal to ml in the theorem, 
the probabi l i ty  dis tr ibut ion of m m ay  be designated b y  Q,,,(st). 
By a similar deduct ion to tha t  used in the theorem. Thyr ion  
obta ined  for the T-model  in the par t icular  case, where ~Rm~(s2~) = 
R,,~ independent ly  of sot and i, an expression for Rm,(S~) for the 
main process of the T-model,  in the form of (6a) with two impor-  
t a n t  modifications, one implying the elimination of all factors in the 
produc t  appearing in (6a), for which ,~tj = o, and the other  a 
t runca t ion  of the sum over  m~ on account  of the fact tha t  terms in 
this sum for which ml > m2 will for the T-model  vanish. In fact,  
by  the definit ion of m, the non-occurrence in mt - -  m sub-processes, 
with fixed mt and m has the probabi l i ty  I. Therefore,  one may  for 
the T-model  subst i tu te  the condit ional  probabi l i ty  for *~1 events, 
i = 1 , 2 . . .  mt for every  fixed value of mt and m relat ive to the 
hypothesis  tha t  no events  have occurred in mt - -  m sub-processes, 
for the absolute probabilit ies used in the proof of (6a). By  the 
subst i tu t ion in this proof of Q,n(S~) for Qm,(st), and by  the applica- 
t ion of the combinator ia l  methods,  as used by  Thyr ion  for the 
case where ~;Rm,,(s2~) = Rm~, it can be proved  tha t  Thyr ion ' s  form 
for (6a), called the T-form here below is a par t icular  case of (6a). 
Fur ther ,  the T-form can be ex tended  to cases, where IRm,,(s2~) 
depend on so~ and i. 

Fo r  a s ta t ionary  and homogeneous main group an extension of 
the bunch distr ibution in the T-form to the non-e lementary  case 
was indicated by  Thyr ion  in [II] ,  and, further ,  analyzed by  him [12], 
for the case, where ~R,n,,(s2~) = Rm~(s~) i.e. dependent  on the same 
pa ramete r  as the pa ramete r  in @,(s~). In [12] he states, tha t  the 

dis tr ibut ion functions in this case can be wri t ten  E Rm=(Sl)V'"'*(x ) 

if Rm,(st) is an e lementary  bunch distribution,  for the par t icular  
case, where O,,(s~) is a Poisson distribution,  and, tha t  this con- 
dition should also be a necessary condition. According to Arfwedson, 
the condit ion is necessary for an a rb i t ra ry  change distr ibution,  
only if R,,~,(sl) = Rm, independent ly  of st, in the opposite case, a 
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funct ion in the form of the e lementary  Poisson bunch dis t r ibut ion 

i.e. a function of the form Bn(t  ) = X e- t  t,,,R,,~, . . . . .  n t~)l m! shall be a 
m , , 0  

probabi l i ty  distr ibution,  only if certain conditions are fulfilled. 
These condit ions are, Ro(t) ~ o, and two other,  given in the form 
of two inequalities for b,, = Bn(t)/Bo(t), namely  b2 ~ b~/2 and 
b a ~ bl b 2 -  b~/3. He adds, however,  the remark,  that ,  if Ro(t ) is 
negative,  it can be el iminated by a t ransformat ion of the parameter .  
Such an eIimination leads to the T-form. Arfwedson seems in the 
in t roduct ion  to have based the Poisson bunch distr ibution on the 
T-model,  as the bunch is associated with insurance claims which 
occur in a bunch,  exemplified by  an air craf t  accident,  bu t  his 
formal  developments  are more general, as for the T-model  R0(t ) is 
always = o. In one of the examples,  earlier in t roduced  by  Arfwedson, 
Ro(t ) ~ as assumed to be positive, and the deduct ion of this model  
was based on the assumption,  tha t  the probabi l i ty  of mult iple  
changes on a short  in terval  is of the same order as the order of the 
length of this interval .  Thyr ion  has for the same example  deduc ted  
dis tr ibut ion in the T-form, eliminating Ro(l ) [I, I2]; Arfwedson has 
remarked,  tha t  the two solutions are consistent,  [I37. Thus,  the 
distr ibution according to (6a) is in the T-form, if Ro(t ) = o, must  
be reduced to this form, if Ro(t ) < o, or may  be, a l ternat ively ,  given 
with Ro(l ) > o, or, in the T-form, by  the elimination of Ro(t). A 
bunch distr ibution in the T-form does, thus, not  necessarily, be 
applicable to the T-model,  as, (6a) can be given in the T-form,  
even if Condition A is fulfilled. In the example just  ment ioned  
Rm~(t) = Rm, independent ly  of t, so tha t  Condition A is not  
fulfilled. La te r  in this note  (the remark  to Theorem 7)- an example  
will be given, where the bunch dis tr ibut ion function m ay  be t rans-  
formed into the T-form, and where Condition A holds. Thus,  it m a y  
be said, tha t  in a way, the T-form is more general than (6a) with 
positive iRo(se,), even if the grouping model is more general than  
the T-model.  

8. Parlicular resulls for  lhe simple grouping 

For  a fixed value of ml, the amalgamat ion  of nzl sub-processes in 
the form of c P p : I  for each i, leads to a c P p : I  or a cPp  
i.w.s, depending on whether  the main group being s ta t ionary  or 
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non-stationary. In this section it will be assumed that the main 
group is stationary, and that all the sub-processes are cPp" I. 

Then, the following recurrence relation similar to that, given by  
Lundberg for a c P p : I  ([3], (93)), holds for the probabilities of 
the main process. 

r=,(s 1, so) = Cruz+I) Era.+1 (Sl, S2) / S2 R,,,,Csl, S2). (Ta) 

In fact, by the insertion of recurrence relations according to 
( [3], (93)) for each sub-process into (6b) for the case considered 
here, (7 a) is directly obtained. By the differentiation of Rm,(sl, so) 
with respect to s~ the following relation (7 b) is obtained, if the 
dependence of sl on s2 is neglected. In fact, if also this dependence 
is taken into account, it will not alter the result in (7b), provided 
that Qml(Sl) is a probability distribution in a process, and satisfies 
the Chapman-Kolmogoroff equation. This will first be proved on 
the assumption, that  also Qm,(sl) satisfies Condition A. If q,.,(sl) 
denotes the intensity function in this case, the derivative of 
Rm,(sl, s2), with respect to s~, if the dependence between s 2 and s~ 
is not taken into account, can be written 

--qo(SJ Qo(sO - -  ~ q,,,(s~)Qm,(S~) Z:' H ,R,~, (s~) + 
m a ~ t (1) ~ 1 

+ .x q.,,_ds,)Q,,,,_Js,) z '  n ,R,,,(s~) 
ra t .- I (t} I , ,  t 

for a fixed value of m2. This expression is equal to zero, which may 
be seen by the insertion of the variable of summation F = m~--I 
into the second term. By using Chapman-Kolmogoroff's equation, 
this may be extended to the case, where the process defined by 
Qm,(S~) satisfies this equation, but not Condition A. Therefore, the 
following relation holds under these conditions. 

~R. , , ( s , ,  s~)/~s~ = 

- -  r,n,(sl, s2) Rm,(sl, s2) + rm..-1(sl, s2) R,n,-x(sl, s=) (7 b) 

It  will be proved, that  the function Rn. ' ,,,,(~, t=, s~, s=) defined 
by the following relation satisfies (7b) with the substitution of this 
function for Rm~(sl, s2). 
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Zm,(S~) = R . , ,  m, (t~, t~, s~, s~) = 

= --  I - - - -  Rm.(st ,  s2) / Rn ,  (t,, t2) (7 c) 
n2 \ s ~ /  So/  

In fact, 

~,(s~)l z ~ , ( s ~ )  = 

- -  m21s2 + ( m o - - n o ) / ( s o - - t 2 )  - - r m , ( s , ,  s2) + m2/s2, 

and Zm,_t(so.) / Z,,,(s2) = ( m 2 - - n 2 ) /  [(s2--sl) r,~,_l (s~, s2) 3. 

From these relations (7 b) is directly obtained. This is a modifica- 
tion of a part of the proof of Theorem 6 in [31 (P- 73-75). By using 
the remaining parts of this proof, it can be proved that  the solutions 
of (7c) satisfy the fundamental conditions for the conditional pro- 
babilities of a generalized (cf. section 4 here above) Markov process 
with the absolute probabilities ~,,,(sx, s2). 

9. Remarks  on the iteration of  a grouping  and on an extension to the 
case where frt and ,~o depend on o~ 

In the proof of Theorem 3 the homogeneity of the sub-groups, 
which is assumed for the simple grouping, has not been used. 
Consequently, the relations (6a), (6b) hold for a head group, if 
,R,~j(s2d, ,r,~j(s2,) are associated with the ith main group. As the 
relations hold for the main group, expressions in the form of (6a), 
(6b) may be inserted for the functions just mentioned, respectively. 
Also the remark to the theorem, and the result of the previous 
section may be modified, so that  the iterated grouping will be 
included. It  is, further, seen that  the grouping may be iterated 
several times. Further, if it is assumed that  s2,, and the operational 
parameter corresponding to **o are, for i = 1 , 2 . . .  ml to be con- 
sidered sequences of different values of random variables, . and *0 
say, the probabilities and nmnerator of the intensity function can 
be expressed for every fixed value of m ~ , . ,  *o in the form of a 
weighted mean of IS' in (6a), (6b) with the substitution of . and 

m~. - -  .o for s2, with the weight functions equal to the probabilities 
for cr + *o being < m~cr and >mtc r  respectively. Then, (6a) and 
the numerator in (6b) wiLl be modified into the appropriate means 
of these expressions with respect to the joint distribution of m~, 
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and ~0. The iterated grouping without and with chance variation 
in s2, in the case, where all the sub-groups are c P p : I ,  can be 
explained in terms of iterated aco c P p : I  and modified such 
concepts. 

IO. Remarks on the application of the grouping models 

In the application of stochastic models to problems of the type 
met with in the insurance field and to similar problems in other 
fields, it is generally aimed at a classification of the statistical 
results, which ensures the relative homogeneity of the sub-groups, 
as much as this is, in practice, feasible. For life insurance rating 
the experience is, generally, grouped with regard to age, and, 
eventually, to sex and/or to duration of insurance, either after 
sorting out risks considered more dangerous than normal risks (by 
medical examination and/or declarations by the insured), or with 
neglect of the existence of such risks, on account of their small 
weight in the population. Even a finer grouping may be applied, 
such as a grouping with respect to main groups of death caubes; in 
fact, a finer grouping would, in principle, be preferable. Morbidity 
statistics is often given in finer groupings. Also for property in- 
surance, and for liability insurance, it is aimed at a homogeneity 
of the sub-groups, which, however, in practice, is feasible only to 
a very small extent; material deviations of the risks within a 
statistical group are often neglected. Further, the classification of 
the statistics is, generally, deemed to be too elaborate for the 
application to the actual table of rates, i.e. several statistical groups 
are pooled to form a single tarif group. All this affords examples 
of the application of simple grouping, where the heterogeneity of 
the sub-groups, the statistical groups, and of each main group, tarif 
group, is neglected. In practice, however, these neglected deviations 
are so large, that the method commonly used, gives a very coarse 
description of reality. In fact, the individual properties of each unit 
insured are of material influence on the risk, e.g. in motor insurance, 
the skill and experience of the ordinary driver, and the driving 
properties of the vehicle insured. Therefore, systems for the correc- 
tion of errors implied in the rating, such as the distributions of 
dividends, and systems of bonus-malus are often applied. The 
problem of finding rational systems of this kind entails, particularly, 
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for property and liability insurance, many difficulties. With regard 
to bonus-malus systems different authors have argued for quite 
different principles, and even reached different conclusions from 
the same statistical experience. A particular difficulty is implied 
in cases, where the risk premium has a steadily increasing time 
trend, as for motor insurance in most countries, which gives un- 
certain estimates of the reserves needed, so that  the rebatement 
of the premiums may often lead to larger decrease of the reserves 
than anticipated. This has in motor insurance caused heavy losses, 
in situations, where too liberal rebates have been granted. For the 
iudgement of the experience a posteriori well-known statistical 
methods have been applied. In such applications it is of utmost 
importance to apply a rational classification, with still higher 
demands on the homogeneity of the sub-groups, unless it is feasible 
to evaluate the results by using models based on more or less 
heterogeneous sub-groups. Therefore, the iteration of the simple 
grouping suitably modified with regard to the phenomenon con- 
sidered, seems to be apt for experience rating, which also applies 
to the rating a priori, to the estimation of the necessary risk reserves, 
reserves for outstanding liabilities, and for unearned premiums, and 
to the choice of reinsurance policy. In fact, head groups, main 
groups, and sub-groups must all be considered heterogeneous. Thus 
the system of amalgamation of risk processes is, in actual practice, 
at least as complicated as the model for iterated grouping defined 
in the section 7 here above, the modifications dealt with in the 
previous section, seem to be more appropriate. In principle, each 
group of several insurance treaties, is essentially heterogeneous. 
At any rate, in theory, one should associate each lowest group of 
a classification with a single point of a multi-dimensional factor 
space, the components of the coordinate vector representing all 
factors of possible influence of the risk, and each component being 
sufficiently differentiated. The number of points, thus defined, is 
naturally very high, so that  the exit and the entrance of such 
groups may be considered governed by chance, which is accounted 
for in the grouping models by allowing the exit and the entrance 
times to be random variables, which leads to the dependence of 
for the termination points ~l = ~,(o~), and to the introduction of 
probability measures for the times here concerned. The whole 



36o a N O T E  O N  SO.XIE C O M P O U N D  P O I S S O N  D I S T R I B U T I O N S  

discussion in this section leads to the conclusion, that  the grouping 
models, as defined in section 7, modified as indicated in this and 
in the previous section here above, give a very realistic description 
of reality. This applies not only to the properties dealt with in 
Theorem 3, but  also to the T-model introduced by Thyrion, and 
discussed by Arfwedson, particularly, in the case, where the model 
allows for several simultaneous events. In section 8, the conditions 
for the application of relations known from well-known models used 
earlier have been given. For the application of the grouping models 
it seems to be of interest to s tudy the conditions, under which 
these results may be transformed into other forms. To this effect 
an analysis will be made in the following sections. 

II .  A theorem on ch.f. dependent on a pararneler 

For the analysis just mentioned, the following theorem will be 
needed, for this theorem the following definitions are introduced. 

Let Z(~) be a function of -~i, -~ being a real variable, and i the 
imaginary unit, where Z(~) is bounded, and a continuous function 

=ii of "~. Let J be an operator defined by J z  z(~ - -~)  etz~'-~l d-,~d~ 
0 0 

= I(x,  A) say. The sufficient and necessary conditions for Z("~) 
being a ch.f. of a distribution are, that Z(o) = I, and, that I(x,  A) 
is real and non-negative for all real x and aU A > o (Cramer, [141, 
p. 9i). If Z('~) fulfils these conditions, it shall be said, that  Z('~) 

Let v s V  be a non-negative real parameter and X~A a transform 
of v, such that the mapping XD v being the domaine on A correspond- 
ing to D v C V, is defined by the transformation X = X(v) taking 
any point r eD  v with one-to-one correspondence to one point 
X~XDv; the mapping of A is analogously defined by the inverse 

= v(X) of X(v). If there exists a transform ~('~, v) of ~('~, v) C ~, 
which is obtained by the mapping of V onto A, such that X'(~, ~) = 
~[X(~) Z('~, v) ] /3k belongs to ~ on XDucA, it shall be said, that 
~(5, 6) C~x(XDv). Further, if a transform, p = p(v) say, fulfils 
tile conditions, p(o) = o, and, in addition, has derivatives of any 
finite order, such that (--I)~a(~+~)(v) > o, the transform shall be 
called a p-transform. 
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THEOREM 4 

Let  teT,  seS,  and u e U  be non-negative, real parameters  such 
tha t  s = s(t) = log u, and tha t  s is a p-transform of t. Let  ~ = t(s), 

and t = t(u) define the mappings of T on S and U, respectively. Let  
q~t C ~ t  (o, Go), i.e. ct is a solution of a differential equation given 
in the remarks to the Theorems I and 2 for a cPd"  I, defined by 

~t = exp {--s [t(I--q~t)]} say. Let  @t and q~t correspond to W(x, t) 
and V(x, t) respectively as defined in the remark just  quoted. 

Let  f(x, A, 7) = J q~i and Iv(x, A, ~) = J(q~ q~): here x assumes 
any  real value, and A any  positive value, and J has been defined 

before the theorem. Further ,  let L~ @~ = E -£q0 b-~ L 0q~ = E l~0i,-~ 
v ,  I v - O  

(--t)'s(">(t) 
L, = - -  k~(i, s), l v = k,,(/, s'), where k,(t, s) --  ., 

,,l s(t) 

and Q(x, A, t) = ~ [ lJ~(x, A, l) - -  l,+ ~ i , .  ~(x, A, t) ]. 
v , . O  

I t  is assumed, tha t  Q(x, A, t) is non-negative on a domaine sD t C S. 
Then, Ltqpi C~s  (sDt), and }~ C~u(uDt) .  

Proof. Let ~h, = ?Is(J) Z~ @~] /?s and J'u = ?[u(i) ~ ] / ? u  re- 
spectively. For  the calculation of these functions t is subst i tu ted 
for Z and ~ respectively in the expressions within the square brackets, 
and the expressions obtained differentiated with respect to t, and 
divided by s'(t) and u'(t) respectively, by using the expression 
t ~  = % - -  COt according to the remark ment ioned in the theorem. 
Thereinafter,  i and ~ respectively are subst i tu ted for t. Thus, the 
following relations are obtained for ~h s. 

• ~ 0 ~ , , 0  

By the second membrum Q~s = I for "~ : o (i.e. cqi ---- q0 i = I). 
If the operator J ,  defined before the theorem, is applied to the thi rd  
membrum,  using the fact, tha t  under mild regulari ty conditions 
W(x, l) satisfies a differential equation of the same form as for 
qt, with the subst i tut ion of V(x, t) for %, then, Jth ,  = Q(x, A), 
as c~ C ~  is real, and, on sD t, assumed to be non-negative. 
Thus, xhs C ~  on sD t. I t  has earlier been proved, [II-I3],  t ha t  
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.E, lq~C~ on account of the elimination of the negative term, 

obtained by the Taylor  expansion of log +i, by the mapping on 
S. Thus, it has been proved, tha t  ~hsc~ s (sDt). 

By using the Taylor  expansion of d log ~t/dt in the expression of 
2hu before the t ransformation of t, obtained according to the 
description above, by the elimination of the negative term according 
to the method  in [II-I3~, and by the mapping on U, the relation, 
where ~ = s(~), 2h u -~ ~7 lh~ is obtained. Thus, 2h u is a product  of a 
ch. f. corresponding to a cPd • I, as proved in [I2], and of lhs, proved 
above to belong to ~ on sD t. Thus, both +~ and 2hu belong to 
on uD t and, thus, it has been proved tha t  ~bi C ~u(uDt). 

Remark. I) The ch.f. +t corresponds to a c P d '  I, fulfilling the 
condition, tha t  s(t) = - -  log Po(t) is a p-transform of t. As in the 
simple grouping with s ta t ionary  main group and with all the sub- 
processes being cPp" I, the anmlgamation for fixed m~ is a cPp" I, 
it follows, that ,  if the sub-processes fulfil the condition just  
mentioned, the amalgamat ion fulfils the same condition, as s(t) = 
m 1 

E sl(t ). As Z~¢~, in this case, is a weighted average of the same 
f , 1  

functions for the sub-processes, with s~(t)/s(l) as weight functions, 

the theorem holds also for ~t = exp ? , ,  ~ ,~ - -s ,  [t(I - -  Ct) J I provided 

tha t  ~t is the same for all the sub-processes. This applies also to 
a convolution of c P d ' I  fulfilling these conditions. If the mean 
function of the change distribution is a never-decreasing function 
of t, which is often realized in most branches of insurance, it will 
often occur tha t  W'(x, t) > o for sufficiently great values of x; 
also the variance being very often a never-decreasing function of 
t. As, however, I(x, A, ~) is the mean of an essentially decreasing 
function of the variable of integration, for great values of this 
variable, the terms for low values of ,~ in Q(x, A, ~) m a y  be < o. In 
many  cases the sum is, however, positive as l~--l~÷ ~, as a rule, in- 
creases with ,J. 

2) I t  shall here be, particularly,  assumed tha t  q~ = q~ indepen- 

dent ly  of t. In this case, Q(x, .4, i) reduces to E (l~--l~+t) ]~ (x, A), 

which is non-negative, if l,÷ ~/l~ < I for all ,~. (This is a sufficient, bu t  
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not  a necessary condition).  I t  ,,viii, in addit ion,  be assumed tha t  
ra  t 

s(t) = X s~(t~), t~ = p,  t, and tha t  s~(t~) = p , ( I  + cit,)-a,, p~, at ' ci 

being posi t ive constants .  For  m 1 = i = I, s(t) and Z1 q0 fulfil the  
following relations, quoted  f rom Thyr ion  [15]. 

s(t) ~ # [ I  - -  (I+Ct) x-a] / c ( a - - I )  for a ~ I, and 

s(t) = p log (I + ct)/c for a = I, 

so tha t  s(t) is a p- transform (8a-b) 

Zxq~ = P Z (x-ca) (___qq~)~/Ec( I + ci )a- ls ( i )] for  a ~ I,  and (9 a) 
v u l  

d 
Zlq~ = p ~-,Z (qqo)"/v cs(i) for a = I ;  ¢ = I + d (9b) 

For  rn~ > I, h(t) and lE~q~ shall be defined by  the same relations 
af ter  the addit ion of the index i to the symbols s, Lt,  a, c, p and q, 
for all values of i. (If the definit ions are ex tended  to include a l = o, 
~t defines a Hof mann  probabi l i ty  dis tr ibut ion for m~ = I, and an 
ex tended  such dis tr ibut ion for m~ > I.) In  this case l~.jfl~= 
(a--I)q/(v + I) ( a - - I )q  for a @ I, and equal to q < I for a =  I, if r o t =  I ; 
for m t >  I, the same relations hold, if q, a, c, are subs t i tu ted  for q, 

a, c, respectively,  where q = E ,w~qi/ Z ,w~ = and 

m I m 1 

l~I f,,l 

and q~/M ! for a i ~ I and a i = I respectively.  

Then,  by  the theorem L~qp and ~ in this case belong to ~8(sDt) 
and ~u(uDt) respectively,  where D~ is equal to {o,oo} for d < 2, 
and, at  least, equal to {o, [c(a--I)]-~},  where, for m~ = I, the  bars  
m a y  be removed.  

12. The Thyrion transform of the ch.f. defining a cPd : I 
Thyr ion  [I, I5~, t ransformed the ch. f. in the form of ~t, with 

s(t) being a p-transform, as defined in Theorem 4, in the par t icu lar  
case, where % = exp (i-~) independent ly  of t (the c P d :  I defined 
by  ~t is, then, said to be in the "canonical  fo rm"  to a ch.f. defining 
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a generalized Poisson distribution on the t ransformed space. 
Lundberg  ([3], P. 57), t ransformed an elementary Polya process 
to a t ime-homogeneous and space-heterogeneous, e lementary 
cPp :  I, on the t ransformed space. Ammeter  [161 transformed a 
non-elementary Polya  process, q~t = q~ independent ly  of t, in [15] 
extended to include a Hofmann  probabil i ty distribution, qh = % 
In [17] the present author  extended the t ransform to include non- 
e lementary c P p : I  or c P p : 2  with qh dependent  on t. In [12] 
Thyr ion analyzed the t ransform of a general non-elementary,  
cPd : I in the canonical form, ~t = q~ independent ly of t. Arfwedson 
remarked,  [133, tha t  in order to obtain a non-negative value for 
the probabil i ty of non-occurrence in the generalizing distribution, 
it was necessary to add the condition s(t) ~ t for t > o, but  that ,  
if this condition is not  fulfilled, the transform could be obtained by  
the elimination of the negative term through parameter  trans- 
formation,  which has been referred to in the remark to Theorem 
3 here above (if s ( t ) =  t, +t reduces wi thout  t ransformation to 
exp E--t + tq~, so tha t  the untransformed distribution is a Poisson 
probabil i ty distribution). In fact, in the case, where s(t) > t, the 
t ransform must  be given in the T-form, defined in the remark just  
mentioned. If a bunch distribution is taken in the sense of the 
T-model, it seems irrelevant to add the condition, tha t  s(t) < t. 
Arfwedson referred to Thyrion 's  al ternat ive expressions for the 
t ransformed distribution functions in the following form, where, 
however, the notat ions have been adapted so as to avoid confusion 
with the notat ions of this note. The development in [I8~ lead to 
similar al ternat ive expressions, in a more general case (cf. also (5 a) 
and (5b) here above). 

G(y, t) = E B,,(t) V'*~'(y), where B,,(t) = E e-t tmR~°(t) /m! (Ioa) 
n - o  m - o  

o o  

G(y, t) = I~ e- t tmK'~*(y, t ) /m!,where.K(y, t )  = E Rn(t ) Vn'(y)  
m , o  ~ - o  

(lOb) 

As was remarked in section 7 here above, the condition for the 
simultaneous val idi ty of (Ioa) and (lob), is tha t  B,,(t) is a bunch 
distribution, in this case a Poisson bunch distribution. Arfwedson 
has proved, tha t  this is not  a necessary condition unless, either 
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R,(t) = Rn, or V(y ) =  ~(y--cl), independent ly  of t. If, however,  
the distr ibution before the t ransformat ion  is in the canonical  form, 
the conditions for B,,(t) being a bunch dis tr ibut ion are fulfilled, 
where however,  if s(t) > t, Bn(t ) must  be given in the T-form. 
Thyr ion  has proved,  that ,  if s(t) is a p-transform, exp [ - - s ( t ) ]  
is complete ly  monotonic ,  and equal to un i ty  for t tending to zero. 
As this condit ion is not  necessary, there  might,  as r emarked  
by  Arfwedson, exist c P d : I ,  which m a y  not  be t ransformed to 
a bunch distr ibution,  even if he has proved  tha t  every  c P d : I  
leads to an expression in the form of Bn(t), which satisfies the second 
of Arfwedson's  condit ions for B,,(t) being a bunch distr ibution.  
This applies, not  necessarily, to the third condition. Arfwedson has 
not, however,  been able to find an example  of a cPd  : I, for which 
B,~(t) after  the t ransformat ion  is not  a probabi l i ty  distr ibution,  
and, thus, not  a bunch distr ibution.  

Thyr ion  has t rea ted  the par t icular  case of the t ransformat ion  
for % = q0 independent ly  of t and s(t), Llq~ in the forms of (8a-b) 
and (9a-b) respectively and with ml = I. In the remark  2) to the  
Theorem 4 the conditions, in this case for m~ > I, for Llq~ and 
+t belonging to ~s(sD,) and ~u(uDt),  respectively,  were deductcd  
by  using the theorem mentioned.  I t  might  be remarked here, t ha t  
a direct deduct ion of these condit ions for the par t icular  case 
concerned,  wi thout  using the theorem, can be made  by  an easy 
calculation, which does not  imply the . ]- t ransform, bu t  is based on 
Newton 's  binomial  formula.  

Under  the conditions of the remark  2) to Theorem 4, Dt is an 
in terval  with the lower limit zero. In the general case of the theorem. 
the in terval  defining D, may  s tar t  at a point  t 0 > o. As, however,  
a condit ional  cPp : I defined on the in terval  (to, tx) m ay  be t rans-  
formed to an absolute cPp : I, defined on the in terval  (o, t~--to), i.e. 
with s tar t ing point  at t o (cf. [3], P. 9I), it does not  restr ict  the gene- 
ra l i ty  to assume, tha t  the ch.f. corresponds to a ch.f. C ~s(sDt) 
with sD, = {o,~s} say, and uD~ = {O,~u } say, where ~s = log 
~,~ = s(tl--to). 

THEOREM 5 

Le t  X(t) and Y(t) be defined as in the r emark  to the Theorems 
I and 2 here above, i.e. bo th  functions are d is t r ibuted  with the 
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same cPd : z, and Y(t) consti tutes on (o, ~) a cPp • I defined by the 
intensi ty  function ~n(t). Let  ~,(z), and fin(r) be obtained from 
~n(t), and the distribution of the number  of events, Pn(t), by the 
t ransformation of t to the absolute scale % and let ×w(z) be the 

mean ~3 ~nP,,(T). Assume, particularly, tha t  Pn(t) is in Thyrion 's  
n 0 

canonical form, so tha t  the ch.f. of Y(t) is in the form of +t in 
Theorem 4, with s(t) being a p-transform; the notat ions Dr, lh s 
shall also be defined as in Theorem 4, and let ds/dz = ×oW('r), and 
the mapt)ing of T onto S defined as in the previous section. 

Then, this mapping transforms Y(t) into the random function 
Z(s) say, with the ch.f. cxp [-s + s L~ ~i], in the notat ions of 
Theorem 4, distr ibuted with a non-elementary Poisson bunch 
distr ibution according to (Ioa-b), with s, and the distibution 
function corresponding to L~ ~i subst i tu ted for t, and K(y,  t), 
respectively. If ffn(T)/n converges uniformly on finite intervals of z, 
Z(s) consti tutes on the domaine, (o, ~s) say, which corresponds to 
the intersection of D t and (o, ~), a generalized, non-elementary 
Poisson process, which has the intensity,  with respect to z, ×0w0(z) 
= xw(.r) [s'(t)] t h~ and the change distribution defined by jz s. 

Proof. The equivalence in the sense of section I between X(t), 
Y(t) and Z(s), and the existence of a probabili ty distribution in 
the form of B,(t) in (Ioa) is a consequence of the discussion here 
above of the Thyrion t ransform of a cPd :  I in the canonical form. 
As, by Theorem 4, L1 ~i C ~s(O, ~s), the distribution functions of 
Z(s) are on the domaine (o, ~s), according to Corollary I in section 5 
here above, in the form of the absolute distribution functions of a 
Poisson process, as defined in the assertion. On account of the 
existence of the translator  operators before the mapping, Z(s) 
constitutes,  if the assumption of convergence is satisfied, (cf. [3], 
(64)), the Poisson process defined in the assertion, which, thus, 
has been proved. 

Remark. The theorem holds for a convolution of cPd" I, which 
satisfies the conditions in the remark I) to the Theorem 4. In the 
part icular  case, dealt  with in the remark 2) to the same theorem, 
i.e. where +t defines an extended Hofmann distribution with 
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9t = % independently of t, sD t is equal (o, oo) for d < 2, (cf. [3], 
the Theorems 2 and 7 A3) ), and corresponding to D t = {o,[c(~---I)] - ~} 
for d > 2, in the notations of the remark just quoted. 

TIIEOREM 6 
Let Z(s) with the ch.f. exp [--s -q- s ~ ]  constitute a Poisson process 

on (o, ~8). If there exists a non-negative, real parameter t, such 
that Z8 can be written in the form of Li q~i according to Theorem 4, 
with s(t) being a p-transform, the mapping of S = {s} onto T = 
{t} transforms Z(s) into a random function, which, at least on the 
domaine of 2/" corresponding to (o, ~s), has the properties of Y(t) 
in Theorem 5. 

Proof. By assumption, Z8 C ffs(o,~8), then, the reversion of 
the proof in Theorem 5 is self-evident, which proves Theorem 6. 

Remark. In [4] the following statement with respect to the 
relation between Y(t) and Z(s) of the preceding theorems, in 
the particular case, where Y(t) constitutes a non-terminating 
Polya process with q~t = q0 independently of t, has been given. 
This statement purports a point of view on this relation, which is 
principally different from the interpretation in the preceding 
theorems. It is, in fact, said in [4] (P. 18) "As both the Poisson 
parameter and the generalizing distribution," in the notations of 
this note equal to s(t), and defined by L1 qi respectively, "depend 
on t, different times t correspond to different generalized Poisson 
processes." This implies that Z(s), being defined on S, is related 
to T (in this case (o, ~) and sD t are equal to T and S respectively, 
by assumption, and by the remark to the Theorem 5 above). In 
the author's opinion it is more natural to refer Z(s) to S, where it 
is defined; this leads to the following statement, which seems to 
be more elucidating. Different "times" t correspond to different 
"times" s, Z(s) constitutes on S one, and only one generalized 
Poisson process, as defined in Theorem 5 for the general case (the 
differences between w(~:) and w0('r ), and between L~ q~i and q~i seem 
not to make the interpretation of the relation in [4] preferable. For 
comparison, two simple examples of similar transformations will 
be given here below. It  will be seen that these examples were 

25 
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interpreted in principal agreement with the point of view expounded 
in this note. 

In these examples the intensi ty functions w(,r), and p~z v(t) (i.e. 
of a Polya  process, [3], Theorem Ioa), were transformed, by the 

mappings of {-:} on {t}, t =  f w(u) du, and of {t} on {s}, s = 
o 

--log P,(t), to x, and Pn/Po, respectively. The result of the first 
t ransformation was by Cramdr interpreted in terms of the trans- 
formed process oll the transformed space: "The  occurrence of the 
claims will const i tute a stochastic process of the type  known as a 
Poisson process," (I6], p. 19). I .undberg draws from the second 
example the conclusion: "Thus,  in order to reduce a process with 
the intensi ty function p,, v(t) to a t ime homogeneous process with 
the intensi ty function Pn/Po we have to take the function (66)," 
which defines s as here above, "as  independent  t ime parameter ."  
Thus, both Cram6r and O. Imndberg relate the transformed pro- 
cesses to the parametr ic  spaces upon which they  are defined, i.e. 
to T and to S respectively, and not, as in [4], to the parametric  
spaces before the mapping;  both authors  describe the transformation 
in each case in terms of one and only one process on the trans- 
formed space. The fact, tha t  by  Theorem 5 the introduction of a 
generalizing distribution into the transform of the second example 
leads to a Poisson process, does not mot ivate  the principally different 
points of view in [4] and [3]. 

For the following theorem, the remark to the Theorems I and 2, 
and the deduction of the assertion 2) of the Theorem 4 shall be 
modified. Assume, in the remark referred to, tha t  the change 
distribution is defined by the ch.f. ~v, where v = v(t) is a function 
of the parameter  l of the cPp : r. If, in this case, ~v is defined as zt 
in the remark, the differential equation for ~v can either be deducted 
from the forward differential equation of the process, as referred 
to in the remark, or by a direct t ransformation of the variable in 
the equation for Zr The differential equation for ~v, then, takes 
the form l~'vv'(l ) = ~ v -  ~v, the solution of which, after the 
t ransform of v according to v = v(t), leads, after conversion, to 
W(x, l ) in (Ia), as in the remark quoted. Let  now in Theorem 4, 
s(t) be equal to s2(l=) say, and let t~=t~(t~) be /,a as a function of 
another  parameter ,  l t say, and let v(l~) = ~(t~,), where ~1 is defined 
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in Theorem 4. Let  shy be defined by the modified equation, cor- 
responding to ofln in Theorem 4, as defined by the original equation. 
By  a deduction of ahv by the method  used for 2h u in Theorem 4, 
the elimination of the negative term leads to the relation u'(t2) = 
= u(te) s~(12) v'(t~) or I/V = s'2 [t~(tx)], were so is differentiated with 
respect to t~. Then, ahv = d//-th~, where, in this case, L 2 = t2(v), 

= s(v), and ahv C ~ on rOt .  Consequently, ~t,* C ~t, (ttDt,). 
Here vDt,, t~Dt~ " are the mappings of Dt~ C To on V =  ( v} and T1 = 
{/~} respectively. 

THEOREM 7 

Let Y(tl ,  t~) be defined on the rectangle 1" 1 X To, where T1 = 
= (o, ~t), Te = (o, ~2) by the ch.f. t/)o[ll(I--2~t,)], where 2it is the 
ch.f. of tile random function Y2(12) with the properties of Y(t) ill 
Tlleorem 5, the functions 2~,,,('~), efim,('¢), and ×2N2(-~) being 
defined as these functions without  index ill Tlleorem 5, and where 
t/?m•(tt) is the probabil i ty distr ibution in the form of a c P d '  z, 
for a random function Mdt~) , not  necessarily, adlnissible. Let  

,h('h + PfmOl! gL,,,(t~) be defined b y - - ~ r , )  ')(t~)/ ~-o ~qj, as in Theo- 
rem I, let ~r:,,,,('v), ,P,,q('¢) be the functions obtained by the 
t ransformation of t, to ~ in ~rs,,,(t~) and tP,,,,(I~) respectively, and 
let ×~wt('r) be the mean of lr:,,,,(z) with respect to ~P,,,,(x). Finally,  let 
Dis and ahv be defined as in the modilied Theorem 4, here above. 

Then, 

I) y(l , ,  re) is admissible and consti tutes on T~ x To a c P p ' 2 ,  
the absolute probabilities being cPd • 2, and, simultaneously,  non- 
elementary,  compound Poisson bunch distributions in the 
al ternat ive forms given in (Ioa-b) with the subst i tut ion of 
t P,,,,(t~) for the Poisson expressions and =P,,.(12) for R,,(I), so 
tha t  Ro(t) > o, and the function in the form of B,(I) being a 
probabil i ty distribution. 

2) If jrzmj(X)/mj for j = I, 2 are uniformly convergent on finite 
intervals of x, t2 is a function of t,, t~ = q(t,)  say, with one-to- 
one correspondence, which defines a mapping of T.  onto 1", 
according to the definition before Theorem 5 ; this mapping trans- 
forms Y(G t2) into a random function, 2(it) say, with the ch.f. 
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Po [ t t ( I - - ~ , ) ] ,  which on the intersection of Tt with the domaine 
corresponding to the intersection of T2 and Dr. const i tutes a 
cPp:  I, defined by the in tensi ty  function ~,,,,(tL), and by a 
change distr ibution corresponding to 3hv(t,). 

P r o @  By the section 7 Y(ti, t2) is admissible, and constitutes,  
on account of its ch.f., a cPp : 2 on T 1 × T2. I t  shall first be proved, 
that ,  if ~ P,,,,(tt) is a Poisson distribution, Arfwedson's two remaining 
conditions for the function in the form of B,~(t) in (Ioa), in this case 
called B,,,(tt, t2), being a probabil i ty distribution, are satisfied. By 
using the well-known relations for the probabilities of n changes 
in a cPp" I for n > o to the derivatives for n = o (cf. [3], (7 8) ), 
and by the assumption, tha t  o. P0(t2) = exp [--s(t~)], the probabilities 
of m2 changes in the convolution of mt  2 I-~(L) are easily calculated, 
for rno = o, I, 2, 3 and for a fixed value of rn 1. B,,~,(tt, to) are, then, 
the means of the expressions obtained, and found to be functions 
or the derivatives of s2(t._), and the moments  about  zero of a Poisson 
distribution of mean ttoPo(t.~). By the transformation of these 
moments  into semi-invariants, and by the insertion of these means 
into the inequalities for b,,,: (it, l o), defined according to the remark 
in Theorem 3, which are conditions for B,,,,(ti, t2) being a probabil i ty 
distribution, these inequalities are, by an easy calculation, reduced 
to --s~ + s '2 > o, and s ~ ' - - 3 s ;  s ~ +  (s~) 3 > o, which, by the 
assumption tha t  s2(t2) is a p-transform, are satisfied. Thus, B,,,,(tt, 12) 
is a probabil i ty distribution, if lV,,,(s~) is a Poisson distribution; 
this applies to every value in the argument  of the structure function, 
if P,,.(st) is a cPd" I. Thus, for the general case, B,,:(t~, to) is the 
mean with respect to the structure function of probabili ty distribu- 
tions, so tha t  B,,,~(t~, 12) is a probabil i ty distribution, also if t t~,,(s,) 
is a cPd :  I, and, thus, the assertion I) has been proved. 

As by Theorem I, Lr:,,,,(t~) is the intensi ty function of a cPp" I, 
even if Mt(tt) is not admissible, the absolute distribution functions 
of this c P p ' I  are equal to t P,,,,(tt), so tha t  the means of these 
functions are equal to the means of M~(t~). Thus, the theorem for 
the expected number  of changes in a cPp : I ([3], (63)), may  be 

"r 

applied both to M~(t~) and Y2(t2), so tha t  tj = tj(-r) = ×~ J '~(u)  du for 
0 

j = I, 2, if the condition of convergence in the assertion 2) is 
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satisfied. Therefore, t 2 is a function of tz with one-to-one correspond- 
ence, which defines the mapping of T, onto Tt. The equivalence 
between ~7(t t, to) and Z(tt) in the sense of section I, follows from 
the discussion before Theorem 5- On account of the modifications 
of the remark to the Theorems I and 2, and of Theorem 4, the 
distribution functions of 2(l~), are, on the domaine defined in the 
assertion 2), in the form of the absolute distribution functions of 
a cPp:  i. As Z(tt) is admissible on account of the existence of the 
translator operators before the mapping, Z(t~) constitutes the 
cPp" I defined in the assertion 2), which, thus, has been proved. 

Remark. By the remark to the Theorem 3 here above, a bunch 
distribution with Ro(t ) > o  may be transformed into the 
T-form by the elimination of Ro(t)" in fact, by the mapping of T2 
onto ® = {0}, where 0 = I - -  .-Po(~), the bunch distribution of 
assertion I) in the theorem is transformed into the T-form. The 
distribution obtained, satisfies, by Theorem 3, Condition A, so 
that the probability of multiple changes in y(l~, to) on an interval 
of small length, Ate, is of lower order than the order of AL. 

THEOREM 8 

Let the random function Z(/t) with the ch.f. LPo [tt(I - -  1~,) ] 
on the domaine (o, ~t,) constitute a cPp: I. If there exist a non- 
negative real parameter to, which is a function of t~, t~ = t~(tl), 
such that 1Zt, can be written in the form of 0~,, as defined in 
Theorem 4, the transformation of ~t~, into ~¢,, transforms ~(t~) 
into a random function with the properties of ~(t~, t2) in Theorem 7, 
at least on the domaine corresponding to (o, ~tl). 

Proof. By assumption ~Zt~ C ~t, (0, ~t,) the remainder of the 
proof is a consequence of a reversion of the proof of Theorem 7. 

Remark. If in a homogeneous main group of a simple grouping 
both Qm,(Sj) and R,,,,(s2) are cPd:  I, and if, in addition, R,,,,(s~) 
is in Thyrion's canonical form, the Theorem 7 holds for the 
main group. By ~ the additional assumption, that also Q,,,,(sl) 
is in the canonical form, the cPp:  I[Of assertion 2) in Theorem 7 
satisfies the conditions of the process constituted by Y2(t2). If these 
conditions are satisfied for all the main groups in an iterated 



372 A NOTE ON SOME COMPOUND POISSON DISTllIBUTIONS 

grouping, where the number  of such groups is distr ibuted with a 
cPd : I, a modified version of Theorem 7 holds for the head group. 
This modification implies, tha t  the assumption of convergence shall 
be extended to the flmction in the form of n,(t) of Theorem I, 
associated with the distribution of the number  of main groups, and 
tha t  the bunch distribution and the cPp of the assertion I) are of 
the order 3, and a cPp : 2 is subst i tuted for a cPp : I in the asser- 
tion 2). 

Let  the distribution functions of Y(t) and Z(t), of the Theorem 5 
and 6 be denoted F(y, t) and G(z, s) respectively, then, G(y, s) = 
F(y,  t) for corresponding values of s and l, where one and only one 
value of s corresponds to a given value of t, and one and only one 
value of t to a given vahle of s. This coincides with Thyrion 's  
definition for the equivalence between two random functions [I], 
which was quoted in section I, and used in the preceding theorems. 
This does not, however, imply that  the processes const i tuted by 
Y(t) and Z(s) are equivalent,  one being a cPp:  I, and the other a 
Poisson process, even in the elementary case generalized, by a 
variable with the ch.f . /7,  exp (i-,~) ; in the non-elementary case also 
the change distributions are different. This applies also to ~tz(tt, l,) 
and 2(t~) of Theorem 7, being equivalent in the sense of section I, 
and one const i tut ing a cPp : 2, the other a cPp : I, which also is 
generalized even in the elementary case, and the change distribu- 
tions, in the non-elementary case, are defined by qot, and 2+t~ 
respectively. Similar view-points may  be expounded with respect 
to the extension in the remark here above, and were earlier indi- 
cated in a heuristic deduction of a particular case of assertion 2) 
in Theorem 7 by the present author  ( [I8], p. 62). 
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