A NOTE ON SOME COMPOUND POISSON
DISTRIBUTIONS
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Stockholm

At the Lundberg Symposium, Stockholm 1968 Jung and Lundberg
presented a report on similar problems as those treated in this
note, and to the Astin colloquium, Berlin 1968 the present author
presented a report with the same title as this note, where some of
the results in the first-mentioned report were commented upon.
Jung and Lundberg kindly discussed the topic here concerned with
the present author some time after the colloquium. On account of
this discussion, the present author withdrew his report from the
publication in its original form. The following context is a revision
and a completion of the author’s report to the colloquium.

1. Basic dcfinitions

Iet v be a parameter measured on its original, absolute scale,
and let s = §(1) (or¢ = i(x) ) be the same parameter measured
on an opcrational scale with respect to the probability distribution
[S(x)]mexp [-§(r)] /m ! (or the corresponding for ). The para-
meter will often be referred to as “time”, which does not imply
a restriction of the theory to proper time paramcters.

A random function X(s) is said to be distributed in a ¢Pd 7.10.5.
{compound Poisson distribution in the wide sense), if the distribution
function of X(s) for every fixed parameter point (s, t) in a finite
or infinite domainc of the parametric space as a function of = can
be written in the following general form

X [ervs(s)ym Wk (x,8) dy Uv, 1) [ ml, § = §(x). (1a)
where the asterisk power m*, here and throughout this note, is
taken to mean, for s > o, the s times iterated convolution of the
distribution function with itself, and, for m = o, unity. W({x, s)
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= [V(x, u) du/s, V{x,s) being the conditional distribution func-

tion of the size of one change in X(s) relative to the hypothesis
that the change has occurred at s, here abbreviated to the change
distribution. U(v, 7) is a distribution function, called the struciure
Sfunction. In the general case V(x, s) and U(v, 1) may depend on
s and t respectively. If, particularly, these functions are supposed
to be independent of the parameter, they will be denoted V(x),
U(v) respectively. In the particular case, where V(x) = e(v—=c1),
c¢1 being an arbitrary but fixed constant and e(§), here, and in
the following context, the umily distribution equal to zero for
negative values, and to unity for non-negative values of £, the
cPd is said to be elementary and, in the opposite case, non-
elementary. In the elementary case the distribution of X(s) is
defined by the integral appearing in (1a) with x ==¢;, so that
Wix, s) = W(x) = 1.

In this notc, the distribution defined by (xa), in the particular
case, where U(v, 1) = U(v) independently of =, will of reasons
given below, be called a c¢P4:1. If, in addition, U(v) = e(v—y1),
v1 being an arbitrary but fixed constant, the cPd: 1 reduces to
a Poisson probability distribution, in the general case, a non-
elementary, or, if V(x) = e(x—c¢1), an elewmentary distribution,
defined by the integral with W{(x, s) = W{x} = 1. If, on thec other

hand, U(w, ), particularly, is in the form by 6,,“ (z) U™ "),

where le(‘f) is a mnot speciticd probabilityl distribution of the
variable m; assuming only integer values, the distribution defined
by (1a) may be called an aco ¢Pd : 1 (average of convoluted cPd : 1),
(cf. section 6, here below). An aco c¢Pd: 1 can, as proved later in
this note, be interpreted as a bunch distribution, as for the element-
ary case defined by Thyrion ([1]*, p. 68), provided that this
definition is extended to include the non-elementary case (which
under certain conditions is possible, see section 7 here below), and
to allow the number of events within each bunch to depend on
a parameter.

*} Numbers within squarc brackets refer to the list of litcrature at the
end of this note.
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If the term eguivalent is uscd for two variables, for which the
distribution function of one of the variables can be transformed to
the distribution function of the other variable, by a simple transfor-
mation of the parameter or of the parameter vector, a variable with
the ck.f. (characteristic function) in the form ¢ () = 1% [0 (9) ],
where an angle over the symbol for a ch.f., here and in the
following context, is taken to mean the generating function,
defined by $(2) = ¢(-¢ log n), o(3) being a ch.f., n a real variable
and 7 the imaginary unit, is said to be eguivalent to a generalized
variable with the ch.f. |o(n) by a generalizing variable with the
ch.f. »o(7). Consider a {(v—1) times iterated generalization for which
the ch.f. can be written in the following general form

()= 1210291 [s81( -+« + v 1 ®ilyp (1))} (1b)

A variable with such a ch.{. is by Thyrion[1], said to be distributed
in bunches (v — 2), or in bunches of bunches (v > 2), provided
that ;, () arc ch.f. of variables assuming only integer values. If
assuming the conditions referred to in section 7 are fulfilled, g, (1)
may be allowed to be a ch.f. of a continuous variable, and, if the
functions 4o (v, s;) arc substituted for ;¢ (), the random function
X (8,8, = (s, sz - -.sy) will, in this note, be said to be distributed
with a bunch distribution of order v, if it is equivalent with the
variable defined by ¢,(q, §,) in this extended form of (zb). Thyrion
has proved, that, for v > 2, @ (4) can also be written in the form
@i, .1 ()], where o, | (4) is in the form of (1b). It might be
remarked, that o,(1), v > 2 can also be written {,_, [yo.(n) ] with
Wy-1(n) in the form of o,_,(n) according to (1b).

The ch.f. of an aco c¢Pd: 1 can be transformed in the form
o1lae1(n, s4), 5,1, 5,, 5, being paramcters on some operational scales
(in the non-elementary case under the conditions referred to in
section 7). Thus, an aco ¢Pd: 1 can be interpreted as a bunch
distribution (cf. section 6 here below). This bunch distribution is
of the order 2, if Q,, (s,) is not a bunch distribution, in the opposite
case the aco c¢Pd: 1 is of an order greater than 2. Thus, an aco
cPd: 1 is a particular case both of (1a) and, subject to the con-
ditions mentioned in section 7, of (1b).

The class ¢Pd: v (cPd of the order v) shall for v =1,2... be

defined, for v > 2, as a bunch distribution of the order v, where
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particularly, ;p,(n, s;) definesa cPd: 1 for each valuej = 1,2. ..,
and, for v = 1, as a distribution in the form of (1a) with U(y, 1) =
U(v) independently of =; in fact, the ch.f. in the form defining
cPd: v for v > 2, reduces to this form for v = 1.

If, and only if, the joint probabilities of X(§,) on disjoint
domaines of the parametric space are well-defined in the sense
of stochastic process theory, X(§,) constitutes a stochastic process.
For such a process, the following terms shall be used ¢Pp 7.w.s.,
aco ¢Pp: 1 and cPp: v, if the distribution of X ($) is defined by a
cPd iw.s., aco cPd: 1 and cPd: v respectively.

2. Remarks to the terminology

The terminology in the field treated in this note is rather con-
fusing.

The author’s own terminology has previously not accounted for
a differentiation between a random [unction, which for cach value
of the parameter, eventually restricted to a certain domaine of the
parametric space, has an absolute distribution in one of the forms
deflined in the previous section, and a random {unction, which, in
addition, fulfils the conditions for constituting a stochastic proccss.
This is due to the belief, that in cascs, where the existence of well-
defined joint probabilities for random functions with given such
distributions has not been established, it would later be possible
to establish the conditions for the existence of such probabilitics,
wide enough to cover all actual applications to phenomena, [or which
a priori process models scem to be rational. Later in this note, such
conditions for some of the distributions considered will be dealt
with,

As, however, the recent study by Jung and Lundberg (in the
report mentioned in the introduction here above), which will be
commented upon, later in this context, has given very negative
results with respect to the application of process models of this
type, it scems necessary to restrict the previous notation cPp o
cascs, where the conditions for the existence of well-defined joint
probabilities cither can be postulated, or deducted from other
assumptions. In all other cases the term cPd shall be used. —
Further, the terms ¢Pp in.s. (in the narrow sense) and stationary
or non-stationary ¢Pp, previously introduced by the author for a
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cPp: 1, and a cPp: 2 respectively, have, so far, been used by other
authors in quotations. They may, therefore, be replaced by cPd: 1,
cPp: 1 and cPd: 2, cPp: 2 respectively without risk for confusion.

The translation of the word “compound”, as used here above,
as distinct from the word “composed” used by Rényi et al [2],
for the composed Poisson processes, which are principally different
from cPp, into French and German, implies certain difficulties. In
French the word “composé’” has been used both for “compound”
and “composed’”; in German a cPp has often been called ein
zusammengesetzter Poisson Prozess; to the knowledge of
the present author composed Poisson processes have not been
treated by German authors. It seems also difficult to find another
German translation for ‘‘composed” than zusammengesetzt, In
French the word ““compound’’ exists, but is very seldom used, e.g.
in une compound machine & vapeur. The word “mixed”,
sometimes used for a c¢Pp, is, however, easily translated into French
and German. It remains, however, to find translations of “com-
posed’’; for this word it would not be advisable touse “‘composé”
and “zusammengesetzt”, which would lead to misunderstanding
of carlier works, where these terms have been used for “‘compound”’.
Also the term, a weighted Poisson process, in German translated
into ein gewichteter Poisson Prozess, has — though more
scldom — been used for a cPp. A translation of this term into
French could, eventually, be un processus de Poisson
ponderé. Perhaps the words “mixed” for ‘“compound” and
“weighted” for “composed” could be accepted.

TFor a non-clementary process the confusion seems to be still
greater. A non-clementary Poisson process [U(v) = e(v—y1) ] has,
thus, been called a compound Poisson process (Ge. ein zusammen-
gesctzter Poisson Prozess), which is the same term as that
commonly used for a general cPp independently of being elementary
or non-clementary. This is apt to lead to serious misunderstandings
(in fact, the definitions for a “compound’” Poisson process in the
first and second ecdition of Feller’s well-known textbook Part I
scem not to be consistent). Therefore, the use of “compound’ for
the designation of a non-elementary Poisson process, must be
avoided, which applies also to the German translation. The random
function distributed in a cPd is equivalent to the number of changes
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generalized by the size of a change. Therefore, the term “gencral-
ized”, in German ‘‘verallgemeinert”, is often used for “‘non-
elementary”, the corresponding word ‘“‘généralisé”’ in French, is
— as far as is known by the author, — always used for “non-
elementary’”’. However, even in certain elementary distributions,
e.g. a cPd: 2, the variable is often equivalent to a gencralized
variable, thus, the term ‘‘generalized’ is a wider concept than
“non-elementary’’. This last-mentioned term, quoted from Lund-
berg (3], affords a distinction between the case, where the general-
izing variable is the size of a change, from other cases of gencral-
izing variables possible. The use of the terms “‘elementary” and
“non-eclementary”’ is facilitated by the possibility of a direct
translation into French and German.

3. Some remarks on the Potsson process

In the report by Jung and Lundberg [4], which was referred to
in the introduction of this note, the conditions for the constitution
of processes by random functions, with given absolute distribution
functions in one of the forms defined in scction 1, were discussed.
In fact, these conditions, as formulated in [4], seem to be very
restrictive, and it is, further, said in [4], that, if these conditions
are not satisficd, the random functions may not constitute stochastic
processes, or, if such processes are constituted, they will not be
sufficiently specified, and may include processes with less realistic
properties. In this section the results with respect to Poisson-
distributed random functions will be commented upon, and, in
later sections, other results in the quoted paper will be discussed.

In [4] it is said, that a random function known to be distributed
with a Poisson probability distribution (elementary or non-element-
ary) constitutes a Poisson process, if it is homogeneous in <, and the
intensity, which in this case is constant, may be cither an arbitrary,
but fixed constant or an cstimate from a random experiment. 1f,
however, the random function, X(r) say, is hetcrogeneous in T, with
the intensity xw(<) say, where x is constant, the random function
X (/) obtained by the transformation of = in X(t) according to the

t
relation v = I(z) = =Jw(u)du, is said Lo constitute a Poisson
(]

proces if and only if w(r) is a known, integrable function of .
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It is said that ““As soon as w (1) is unknown, or contains a random
clement, the model of a Poisson process is no longer applicable”.

If, on the other hand, the usual basic conditions for a Poisson
process, except the homogenity in time, a) homogenity in space,
that is any finite number of (i, y¢) being the time point and the
size of the ¢th change are indepcndent random variables, and that
any ¢ will have the probability density ¢ for ¢ > O, and b) rarity
of multiple events, are satisfied, the random {function concerned
constitutes a Poisson process (according to Bithlmann [5] it should
even not be necessary to include D) in the basic conditions, as
according to him, b) is a direct consequence of the homogeneity
in space and in transformed time, and of the simple propertics of
the sample functions in the restricted space; an assertion for which
a prool will later be published). It secms, therefore, admissible to
usc an cstimate of the intensity w(r), or of the mean number of
events for certain periods of absolute time =, as a function of =,
for the deflinition of a Poisson process. Should this assertion not
be true, many results reached in numerical investigations of the
theory of the insurance risk were to be rejected. The mapping of
the paramectric space, defined by ¢ == #(1), implies that ? is a never
decreasing function of =, as, cven in random experiments, #(t) is
essentially positive, with one-to-one correspondence, in both
directions, so that the estimating problem is reduced to the
estimation of a function with very simple properties. According
to the present author’s opinion, a denial of the admissibility of
using such estimates calls in question the general principles, which
arc the basis for the application of estimated statistics depending
on a parameter, to scveral problems in a wide ficld of statistic
rescarch. The reader will also be referred to Cramdér’s well-known
survey of the risk theory [6], where the Poisson process was
rigoroulsy deducted, after the transformation of the parameter,
from the basic assumptions. The author has not found any statement
in Cramér’s survey to the effect, that the theory developed by him
should not be applicable, if the parameter £ has to be cstimated.
In fact, numerical examples on the expansion of the distribution
functions (one of these examples is applied in a calculation of the
ruin probabihity) with the application of chosen values of £ have
been given.
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It is a common objection against the estimations of quantities
dependent on time, that the applications of the estimates for
prediction must be based on very uncertain extrapolations of the
estimated trend. It is very easy to construct examples of a sequence
of numbers of events for several years, in situations, where it seems
a priori quite irrational to usc a process model, and, where the
sequence may be described as a sequence of results of a Poisson
process during the observation period. In such examples the extra-
polation to future time of the observed trend seems to be meaning-
less. But for phenomena of a type for which a process model is
likely to be applicable, the state of things is different. It is, then,
necessary to apply the commonly used precautions for the estimation
of a time trend. Such a precaution is an analysis of the time
variation of all circumstances of influence on the statistic to be
estimated and extrapolated. As an example, for which such
methods are used, is the prediction of risk premiums for the
establishment of new rates for non-life insurance, e.g. motor in-
surance, where the risk premium depends on a great number of
circumstances variable in time, and which, in addition, is the result
of a more complicated process than the Poisson process. In this
connection statistical methods of the types multiple regression
analysis, and the so called factor analysis are used. The factor
analysis implies a graduation of a function of time and other factors
of influence on the risk in a form, which makes it possible to separate
the effects of the different arguments on the risk (cf. e.g. Philipson
{7]). As an example of this kind, also the development of the market
price for a commodity may be mentioned. The estimation of the
time trend of the number of events, particularly, in situations,
where the increase of the number during disjoint intervals may be
considered independent variables, is often much simpler than the
prediction of future risk premiums. This is i.a. due to the fact, that
the number of factors of influence on the number of events is
often materially less than the number of factors influencing the
risk premium. Also the ordinary statistical tests, e.g. the y2-test,
is often simpler for the number of events. Methods for the differ-
entiation between the Poisson model, and some standard models,
based on heterogeneity in space, have also been devised. In Swedish
Motor Insurance it has been possible to give safe numerical evidence

23
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for the necessity of using models of the last-mentioned type. In an
investigation of this insurance, for which the observation period
related to the calendar years from 1947 to 1954, both years inclusive,
the time trend both of the claim frequency, and of the risk premium
was estimated for a very fine classification of the risk factors
by ihe methods indicated here above, The rating table introduced.
in 1955 was based on an extrapolation of these statistics. These
were later compared with the actual experience, and the extra-
polated risk premiums were found to agree satisfactorily with the
results of this experience for three and four years after 1954; for
the claim frequency this was valid for a greater number of years.

In cases, where it can be proved with sufficient precision that the
number of events in disjoint intervals are mutually independent,
and/or that the number is Poisson-distributed, and that a process
model is likely to be applicable, by the estimation of the time trend
in the expected number of events, the Poisson process must — due
to all experience — be applicable, even for a prediction provided
that the estimation, and the extrapolation, is made by using
appropriate methods. This principle shall in this note be called
proposition G. An cxtension of this principle to cases, where the
number of changes in disjoint intervals are dependent, and where
the absolute probabilitics are of any of the types defined in section 1,
the Poisson distribution exclusive, secems also 1o be possible, as
judged from the experience of motor insurance referred to in the
previous paragraph. In fact, the proposition has been applied in
several numerical investigations, e.g. in [3].

4. The developments with respect to a cPd :1 in [3] and (4]

In his deduction of a Polya process by using the limit of a Polya-
Eggenberger distribution, Lundberg [3] introduces the notation
bpall)An(t) “for the conditional probability of an event” in the
interval (¢, t+Ax(f) ) “when 2 events have taken place up to ",
This must, tacitly, imply a postulate of the existence of such a
probability. Further, the expression obtained for p,(f) is continuous
in¢ (p. 17, l.c.). In the general theory, the starting point is a process,
so that the existence of the conditional probabilities is postulated,
which applics also to the continuity of pg(¢) with respect to ¢ (3),
p. 27, L.c.), and to the equations (29), (30) and (30%*) (L.c.), which are



A NOTE ON SOME COMPOUND POISSON DISTRIBUTIONS 337

deducted on these assumptions. In chapter 4 (l.c.) the condition 4)
(p- 27, lc.) is disregarded, so that p,(f) is no longer necessarily
uniformly bounded for all %. It is, then, proved that the forward
and backward differential equations have a unique solution,
provided that px(f) is a non-negative, continuous function of ¢ for
every fixed # (or at least integrable over a finite interval of ¢), and
that this solution satisfies all the fundamental conditions of a
generalized Markov process under the additional assumption that
[Max pnu(n) ] * from the result = in the paramecter point s, which
defines the starting point of the forward differential equation, forms
a divergent sequence in # for every finitc interval 0 < u << T. Gener-
alized is here taken to mean a process, for which the funda-
mental conditions arc disrcgarded for intervals starting in (m, s)
with zero probability. A cPp: 1, first mentioned in [3], p. 20 and
described by the words, that “‘these processes are characterized
by the’ (absolute) “probability for # events up to ¢ for each real
value ¢ > o being equal to a Laplace-Stieltjes integral” in the
form of the smth term in (1a) with V(x) = e(x—c1), Uly, 1) =
U(v) independently of =, A cPp: 1 is later (p. 70, l.c.) defined by
the words “if and only if the intensity function of an elementary
process satisfies the recurrence formula”, papalf) = pa(t) —
Pa(®)fpa(t), it will define a compound Poisson process”, cPp: 1
After the definition of the absolute probability of a cPp: 1 (p. 71,
l.c.), Lundberg seeks “an approximate expression of the probability
of an event occurring during a short interval (¢, ¢4 A¢) under the
condition that # events occurred during the preceding interval
(0, ¢)”, interpreting £ as a time parameter. This probability is, then,
denoted p,(¢) A¢, where $,(f) is said to cxpress the “‘rufensity”
The existence of such conditional probabilitics is, therefore, tacitly
understood in the words quoted (pp. 20, 71, l.c.). The expression
obtained for p,(f) is continuous in ¢ for fixed 7, and leads to the
recurrence formula quoted here above. Further, the definition
(p. 72, l.c.) contains the following sentence “‘if an elementary
random process exists with an absolute probability function’ in
the form of the Laplace-Stieltjes integral defined here above “‘the
process will be called a compound Poisson process...” (cPp: 1),
which, thus, contains an explicit statement of the postulate tacitly
understood in the quoted parts (pp. 20, 71, l.c.}). In Theocrem 6
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(p. 73, L.c.) it is stated that: “Given a function P(¢) with the prop-

ertics 1) P(f) completely monotonic for ¢ >0, 2) lim P(f) = 1,
t—-0
the function = p,(f)”", = Pm+(t) [ PM(), “‘constitutes for

#=0,I ... and for { > o0 an intensity function of an elementary
process in the generalized sense. The process defined by this
intensity function is a compound Poisson process...” (cPp: 1).
It is, then, proved that the solutions of the forward differential
equations defined by $,(#), fulfil all the fundamental conditions of
a Markov process, and that the absolute probabilities have the form
of the Laplace-Stieltjes integral referred to above, so that the
process is a cPp: 1.

The only possible interpretation of Theorem 6 (p. 73, 1.c.) is that,
if P(t) fulfils the conditions given in the theorem, there exists an
intensity function deduced from P(¢), which defines a cPp:x
constituted by a random function Y(#) say. It does not follow,
however, that every random function X (¢), for which the probability
for non-occurrence in the interval (o, #) is given by P(¢) satisfying
the conditions of the theorem, and, consequently, the probability
distribution of the number % of changes in the interval (o, ) is
given in the form of the Laplace-Stieltjes integral referred to above
in terms of P(f), necessarily constitutes a random process. If and
only if the joint probabilities of X{(¢) arec well-defined in the sense
of stochastic process theory, X(¢) is identical with Y(¢), and con-
stitutes a ¢Pp: 1 defined by $,(¢). This is consistent with the previ-
ously quoted parts from Lundberg’s book and with the last para-
graph on p. 84 (l.c.).

In (4], Theorem 6 in [3] has been quoted by saying, that a com-
pletely monotone function for ¢ > o, P(¢), with the limit for
t— o0 equal to unity “may always define a compound Poisson
process” (cPp:1). By the discussion above, py(f) deduced {rom
P(¢) always defines a cPp: 1, even if a random function, assumed
to be distributed with a cPd: 1, deduced from a function with the
assumed properties, does not constitute a stochastic process, unless
the joint probabilities are well-defined ; but, if the last condition is
fulfilled, the random function, thus defined, constitutes a cPp: 1.
The following words in ( [4], p. 8), that every process with absolute
probabilities in the form of a cPd: 1, does not necessarily be a
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cPp: 1, are — in the author’s opinion — not consistent with the
developments in [3] (cf. p. 72, lLc.), as, if and only if a random
function distributed with a ¢Pd: 1 constitutes a random process,
this process must be a cPp: 1. The degenerate counter example in
[4] for a random function with a given cPd: 1, which does not
constitutea cPp : 1, doesnot — as far as the present author can see —
constitute a stochastic process whatsoever, at least not a Markov
process. Even if the example were to lead to a stochastic process,
the example is so unrealistic, that the conditions of the example
are not likely to be salisfied for any phenomenon, for which one
chooses to apply process models.

It is in [4], further, asserted, that, if the risk intensity can be
written x w(t), where x may be estimated by a random experiment,
and w(t) may contain a random element, and, if N(t) is distributed
in a ¢Pd: 1, N(7) is, in general, neither a cPp: 1, nor a well-
defined random process, if the transition probabilities are not
defined. According to the interpretation given above of Theorem 6,
[3], it is always possible to deduct an intensity function p,(¢), which
defines a cPp: 1, the random function N(¢), obtained by the trans-
formation ¢ == # (1), does, however, constitute the said cPp: 1, if
and only if the transition probabilities of N(f) are well-defined, in
which case they are the solutions of the differential equations in
terms of p,(¢) derived from the given c¢Pd : 1. By this interpretation
N{(#) cannot constitute a stochastic process, which is #nof a ¢Pp: 1.
As far as an extension of these statements to the case, where #(t)
or x w(t) are estimated from random experiments, is concerned,
the reader is referred to what has been said in the previous section
(proposition G). It is, further, referred to Chapter VII of [3]
(particularly p. 137), where £ has been estimated from the experience,
and used in two process models for comparison with the reality.
Thus, proposition G seems to have been tacitly understood in this
chapter (VII, l.c.).

In [4] it has been remarked, that a general stochastic process is
not defined by the absolute probabilitics in each parameter point.
A birth processis completely defined by the conditional probabilities,
or by the intensity function. If, in addition, the recurrence relation
for pu(¢) of a cPp: 1 holds ([3], p. 68, [4] p. 7, quoted here above),
the process is a ¢Pp: 1. The definition of p,(¢) in Theorem 6 [3]
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leads to this recurrence rclation. Further, in most cases, where it
is deemed appropriate to apply stochastic process models, it must
be natural to postulate the existence of well-defined joint probabil-
ities. In cases, where it cannot be assumed, that the phenomenon
1s homogeneous in space, the simplest basic assumption, seems to
be the assumption of exchangeability of the sum total of the
changes on each interval of a sequence of an arbitrary number of
intervals of equal length, without change in the probability function
of the process. According to Bithlmann [5], a cPp : 1 can be deducted
from such an assumption, which seems to be a natural postulate
for phenomena for which a ¢Pd: 1 has been found to hold, and,
where it is deemed rational to apply stochastic process modcls.
For purposes of a further elucidation of the comments in this
section, and for obtaining direct proofs of the assertions made, the
author will in the next section give two therorems which are based
on modern process theory and which contain assertions intended
to give a clear picture of the author’s interpretation of Theorem 6,[3].

5. A short review of the theory of translator operators and two theo-
rems on the problems discussed in the previous section

The following review of the definition and certain properties of
translator operators has been drawn out from a book bv Dynkin,
[8]. The reader is for a full description referred to {8], I ch. 3.

In T 3.1 (lL.c.) a Markov process is defined. The following items
arc given: a) a function Z{w) in some space Q taking values in
[0,c0] ({ may also be an arbitrary fixed finite constant or equal to
infinity}, b) a function xy(w) for w € Q, ¢ €[0, { (w) ], taking values
in the state space (I, B), ¢) a c-algcbra M; dcfined on Q; =
{w: T (0) > t}, for cach ¢ > o, and d) a function P,(4) for each
x € £, on some c-algebra M on Q, which contains M; for all ¢ > o.
Then, if and only if certain conditions 3.1A — 3.1G arc satisfied
(if 3.1G is not satisfied, this can be achieved by a suitable elargement
of Q), the quadruple (x¢, ¢, M, F%) defines a Markov process ([8],
1 3.1). Let ¢(¢) be a function taking values on the intervalo <#¢ < 2
in E, and the siift by the amount ¢ of y(t), ¢y, be defined by ¢; d(1) =
Y(t+u) (0 <2t < 2—{f). The condition 3.1G requires that the set of
trajectories of the process is invariant under all shifts ([8], T 3.1).
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Let v be the mapping of Qo on {{(¢)}, the family of () for all
intervals (0 <¢ < }); this mapping associates each w €Q to a
trajectory xu(w), {0 < u << {(w)]. Let the transiator operators »;
be defined by the following relation

%, B = v~te¢; v B for every B € N*, (za)

where N* denotes the minimal system of subsets in Qo that
contains all the sets {w:xw) e '} (¢ >0, T C E), and is closed
under the union and the intersection of any number of sets, and

under the operation of taking complements. The translator operators
fulfil, i.a., the following relations

xt{xpel} = {xppecMforanyt >0,k >0, T CE (2b)

([8] 1 3.5). 1f »; with these properties exists, 3.1 G is fulfilled.
Let M, be a completion of M with respect to Py [by including
all sets I" such that T CT'C s, Pu(ly) = By(I's)], N the
o-algebra on p generated by the sets {x, € I'} (# > o, I' € B),
and N the intersection of N* defined under (2a) with the completion

of N, with respect to F, corresponding to all initial distributions .
Then, the following assertion holds

By(dwB) = [ P,(B) Pydw) for A e My, B ¢ N (2¢)

([8], 1 3.6). The quadruple (x, &, M,, %), where the measures P
have been extended to the o-algebra My, defines a Markov process,
as, in fact, the existence of %, with the properties givenin I 3.5 — 3.6
(l.c.) implies, that the conditions 3.1A — 3.1G, referred to in the
delinition of a Markov process, are satisfied. ([8] I 3.6, Corollary 2).

If for a random function X(¢), »; with these properties exist and
the c-algebras can be defined in such a way that (2c) holds, X()
shall in the following context be said to be admissible, and, in the
opposite case, non-adimnissible.

THEOREM I

Let a random function V(f), which assumes only integer values,
be admissible or non-adniissible in the sense of the definition just
given, and for every fixed value of a continuous real parameter
¢t e[0,C], where U may be finite or infinite, be distributed with a
given distribution £, (¢) in the following form, where the structure
function U(v) is a distribution function independent of &.
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n

P) = [ e~*(wt)" dU(w)fn!, and the functions ,(t), g (% O)
be defined by the following relations.

T, (8) = —PY )P (¢), where PM(l) = %P (t)] o™
I—7, () At+o(Atforv=o0
&n, (6, At) ={m, (/) At + 0 (Af) for v =1
?o (Af) forv >1
and for suffictently small values of Af.

Then,

1) Py(t) is a completely monotone function of ¢ for ¢ > o, equal
to1fort = o.

2) w,(f) is for fixed # a positive, continuous function of ¢ < § for
every fixed #.

3) B4A) =g, 0 A) Pt)+g,-1. (& A) B, _,(f) + o(A)
for every £ < ¢, and for all «. {3)

4) The forward differential equation, obtained by the limit passage
of (3) for A?¢—dt, substituting the conditional probabilities
for P,(t), and the corresponding backward differential equation
have a unique solution, which fulfils the fundamental conditions
of a gencralized Markov process, being a cPp : 1, defined by =, ()
and the termination point .

5) N(f) may or may not constitute a process, as defined in 4).

Proof. By assumption, F,(¢) is defined for any ¢ in the interval
o<t ¥, thus, P,(¢ -+ A is, for 0 < ¢ 4+ At <, a well-defined
probability.

By the insertion of £ + A ¢ for ¢ in F,(f), and by using an
asymptotic expression for the product of the functions ¢~ ?4* and
(t + A)™[/t*, to be deducted here below, an easy calculation leads
to (3). The asymptotic expression of the said product is obtained
by using the MacLaurin expansions for the functions concerned
and by the following calculation {1 + n[Af 4 o(A#)]/t} X
{1 — vAt 4+ o(At)} o 1 — vAL + 0(At) + n[A? + o(Af) ]/t. The as-
sertion 3) is, thus, proved. 1) is a direct consequence of the well-
known theorem given by Bernstein and Feller; 2) is a consequence
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of the definition of =,(¢) and P, (¢). For the demonstration of 4) the
reader is referred to the proof of Theorem 6[3], and to the Bernstein-
Feller theorem. 5) is a consequence of N{¢) being, not nccessarily,
an admissible random function.

THEOREM 2

Let the random function N(¢f) be defined as in Theorem 1, and,
assume, particularly, that N{¢) is admissible, as defined before the
Theorem 1.

Then, N(f) constitutes a cPp: 1 defined by the intensity function
p,(t) = m,(t), as defined in Theorem 1, and by the termination
point {. The forward differential equation of this process is in the
form of the limit, when Af tends to dt, of the difference equation (3),
with the substitution of p,(¢) and the conditional probabilities for
w,(f) and P, (t), respectively.

Proof. Let the conditional probability for an increase of v units
in N(#) on the interval (¢, ¢ + Af) relative to the hypothesis that #
events have occurred on the interval (o, #) be designated by
fut, A?). By assumption, these probabilities are well-defined in
the sense of stochastic process theory. By using (zc), which, by
assumption is applicable, in this case, the following relation is
obtained

Plt+A) = Sf (L0 B0, 8>t 400 (2)
This may also be derived from the following arguments. Let B, (f)
be the set of elements for which N(f) = »n and 4,,_,,(/, Al) the
intersection of B,,_,(t) and B, (¢ 4 A¢#). Then for § > ¢ + A¢

A2, AY)

Bt + Af) =\
2 S A, A

The probability for fixed values of » and of ¢ << T — Af of the set
in the left membrum of this relation is given by the left membrum
of (4), and the probabilities of the sets in the right membra for
n = 0, n > 0 respectively given by the right membrum of (4);
thus, (4) holds.
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By assumption, (3) of Theorem 1 also holds. For each value
of # and ¢ 4+ Af the left membra of (3) and (4) are equal, which,
thus, applies also to the right membra, for all values of »#, and of
1< {— Al so that f, (¢ Af) = g, (¢, A¢) for all v=0,1...7,
for all » and for every ¢ < § —A¢L

Thus, there exist asymptotic expressions for f, (¢, Af) in the
form given for g, (¢, Af) in Theorem 1, with the substitution of
$,(¢) for =, (f), and the asymptotic expression for P,(t 4+ A?) is in
the form given in (3) with the same substitution. Therefore, the
assertions 4) of Theorem 1 hold for N(¢), subject to the assumptions
of Theorem z. Thus, N(#) constitutes a cPp: 1, defined by the
intensity function p,(f) = =,(f} and the termination point {, with
the differential equation defined in the assertion, which, thus, has
been proved.

Remark: Consider the distribution function X P,(f) V7*(x),
noo

where P, (f) is defined in the Theorem 1. It is easily seen, that the
Theorems 1 and 2, can be extended to the case, where X(¢),
distributed with a given distribution function in this form, is sub-
stituted for NV (). The extension of a cPp: 1 with absolute distribu-
tion functions, thus defined to the case, where the change distribu-
tion is dependent on ¢, V(x, £ say, is a particular consequence of a
theorem given by Jung [g], the absolute distribution function of
X(¢) is, then, given in the form of (1a), with U(v, ) = U(v) in-
dependently of 7. Independently of Jung, this result was obtained
by the present author [10], later extended to the general case in (1a).
In [10] the starting point was the forward differential cquation of
a cPp: 1 with the change distribution V({x, #), assuming, that there
exists a modification of V(x, £), W(x,) say, such that the distribu-

tion function of X(f) is in the form X P,(f) W™ (x, ¢) for every

fixed ¢£. An casy deduction leads to a differential equation in the
form £3'(¢) = z;—%;; %, 2 being ch.f. corresponding to W(x,!) and
V(x, t) respectively; a solution of this equation leads, after con-
version, under mild regularity conditions to W(x,%) = W(x,{) as
defined under (1a) (cf. Cramér, [6], 6.1). If in Theorem 1, X (¢f) with

the change distribution V(x, ¢) is substituted for N(¢), (3) will be
obtained in the form:



A NOTE ON SOME COMPOUND POISSON DISTRIBUTIONS 345

P, (t+At) W(xt+-D8) = g, (A0 B (t) W*(x, &) +

n

+ gu-11(6AY) By (0) WE-D*(x) 5 V(x, ) + o (A2),

where W (x, £) is defined as here above. This leads, if quantities of
smaller order than the order of A¢ are neglected, to the differ-
ential equation for z; just given, which, thus, holds asymptotically
for X(¢); this gives the following corollary to Theorems 1 and 2.

Corollary. 1If the random function X (¢) is distributed with a non-
elementary cPd: 1, defined by F,(¢), V(x, ¢t) and g, there exists a
random function Y(f), which constitutes a cPp: 1 defined by
7,(t), V(x, ) and g, with the absolute distribution functions given
by I PB,() Wr*(x, 1), where W(x, {) is defined as under (1a). If

ne~o0
and only if X(¢) is admissible, as defined before Theorem 1, it
constitutes such a process.

6. About the amalgamation of independent random processes

In [4] the following statements with respect to the amalgamation
of independent elementary cPp: 1 were made. For greater clarity
the term ¢Pp : 1 will be added to the term compound Poisson process,
as used in [4]. Also the statements in [4] with respect to a random
function of the operational time £, werc in some cascs formulated
by using a function of the absolute paramecter . In the following
lines, the assertion with respect to a function of ¢, shall be accord-
ingly formulated.

In the case, where Nu(v), w = I,2...m constitute independent,
elementary compound Poisson processes (¢Pp: 1) with the absolute

parameter 7, N(t) = X N,(t) constitutes a compound Poisson process
[TRESY
(cPp: 1) with a structure function equal to the convolution of the

structure functions of the components. In the case, where the
components only after the transformation / == (1) are compound

Poisson processes (cPp: 1) in operational time ¢, N{t) = £ N, (f)
-1

is a compound Poisson process (cPp: 1), if and only if f,(c) =

k, i(r), where &, are independent of t for every value of p, and if

i(r) are known functions; this case has in [4] been called a “very
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special case”. If ¢,(t) are for every value of p a known function of
= but not proportionate to #(r), N({) constitutes a cPp i.w.s.

It will be abserved here, that it seems not impossible to extend
the proposition G (see section 3 here above) to be applied also to
the amalgamated process in cases, where the components are
cPp: 1 only after the transformation of the parameters to f,(v),
and, even, where these functions, not necessarily, are proportionate,

An amalgamation of a number of independent cPp: 1 shall
later in this note be dealt with as a particular case of more general
models, to be defined in the next section.

First an extension of the term “convolution” shall be introduced.
Let £ be a discontinuous or continuous variable, random or non-
random. Let I1¥ be an operator, which, applied to a given set

of distribution(e%unctions, where the components correspond to the
ch.f. gg(n), defined for every value of &, transforms the set into a
distribution function, which corresponds to the ch.f. exp
[ [de log «e(r)] the Stieltjes integral being taken over the range of &.
If, particularly, the set is finite, or enumerable, the transform

™y

reduces to the asterisk product IT*, my < oo and, if, in addition,
i 0

all the elements of the given set are equal, to an asterisk power.

In these cases the operator defines an ordinary convolution, and,
if £ is allowed to form a non-enumerable set, the transform may
be called a convolution 1n the extended sense. 1t is scen, that, in all
cases, the transform reduces to unity for £ = o. In the following
context it will, for simplicity, be assumed that £ forms a finite or
enumerable set; the extension to non-enumerable sets is straight
forward.

If in the distribution function of an aco c¢Pp: 1, as defined in
section 1 here above, II1*:U:(v) is substituted for U"*(v), the
distribution function olght)ained defines a distribution, which may
be called an extended aco cPd: 1. If % is, at least, enumerable, the
probability distribution of § may be denoted Q,, (s;), which is a
probability distribution of the discontinuous variable #:. After the
transformation to the operational scales, si1, ss, where sz has been
defined in section 1, the mth term of (1a) can, on the particular
assumptions for an elementary, extended aco c¢Pd: 1, be written
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in one of the following alternative forms, where the second form
is obtained from the first form by an, evidently permissible,
reversion of the integration and summation, and by using the
proporties of the Laplace transform of a convolution.

my

B () = oo )™d, | £ 0,000 00|t (52

0 1 (]

By (sus) = % Qp(s) T [fe-%e(vsgwﬂ d, 2U¢<v)/mz!] (sb)

The ch.f. corresponding to (5b) can be written

"y

Z le(sl) 11 chi('fh 32)'
mp- 90 i1

where ,0,(4, ;) corresponds to the ¢th factor of theasterisk product
in (3b). In the particular case, where ,,(7, $;) = 2¢(%, S;) indepen-
dently of 7, the distribution is a bunch distribution according to
section I, in the elementary case and, under certain conditions,
in the non-elementary case (see section 7 here below). The amal-
gamation of mi elementary c¢Pp:1 for a fixed value of my, has,
by (s5b) in the general case, the following distribution function

w©

[ e % (vsy)"ed, [ ™ 2Ui(v)] [, (5¢)
o io

In fact, (5¢) is consistent with the “very special case’ referred
to in the quotation from [4], on account of the definition of sz in
section 1, which tacitly implies that the expected number of
events in the 7th component can be written v,, s,, where y,, is the
mean of ,U,(v) for each value of ¢. This can also be expressed in
terms of the intensities of the components. Supposing that this
intensity for sth component can be written ,x; w,(t), if 5%, is in-
dependent of = and w,(z) of ¢, the change of the variables of
integration leads to modified structure functions ,U,(xxvfyx;) =
U, (v) say, for every value of 7, so that the convolution is in the
form of (5¢) with ,U, instead of ,U,. The extension of the amalgama-

e
tion to cases, where the operational parameters s,, = [ ¢, (4)du,
L]

implying a dependence on ¢ for both =, and w,(t), shall be shortly
referred to later in this note.
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7. The models of grouping in general

A model called the simple grouping shall be defined as follows.
Consider a group of a population, called a main group, defined as
a finite or enumerable set of sub-groups. Each sub-group is associated
with a random function ,Y(s,;), ¢ = 1,2 ... m,, where, in the general
case, m, is a random variable. ,Y(s;,) is either equal to ,N(s,,),
the elementary case, or to +X(sz;), the non-elementary case. {N(sz)
has a probability distribution Ry, (s2;), and ;X (s24) the change
distribution ¢V (x, s,,). Each sub-group is supposed to be somogeneous,
taken to mean, that it can be arbitrarily divided into any number
of minor groups, such that all the minor groups have the same
volume, and the same probability distribution of the number of
events, and, in the non-elementary case, the same change distribu-
tion, for the contributions to ;Y(se;). It is, further, assumed that
these contributions are admissible random functions, so that
1Y (s21) constitutes for each value of + a Markov process, defined by
the intensity function ;7m,(s2s), say, and by the termination point
¢ to be defined below, and, in the non-elementary case, by the
change distribution (V' (x, s¢;). The process of a sub-group is called
a sub-process. These sub-processes are assumed to be mutually
independent, and to have non-decreasing, and right continuous
trajectories. The process associated with the main group, the main
process, is constituted by the random function Y(s1, s2) =

© my « nty
2 Qp, (s1) 2 ;Y(sy), where § = X Om,(s1) 2 sy, and the
i1

my o [ myo

term for s = o shall be equal to Qo(s1). In the particular case,
T
where for all values of 7 s,; = v., [ w(u)dz and neither = nor w(u)

depends on ¢, the main group shall be said to be stationary (if the
condition is fulfilled for an interval o < = <{ 7, the main group is
slationary on this interval). If the main group is non-stationary, it
is assumed that the <th sub-group enters only once into the
main group, at the point, ,7, say, and leaves the main group at
the point ;7; say, where ;7 ,v; may depend on w € ,Q, the
reference space of the 7th sub-process, which, therefore, must be
appropriately enlarged. In the calculation of the contributions to
the main process on the interval o << v < T it is, further, assumed
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that each subprocess with v, <7, starts at zero, and terminates
at ,7, — ;7, corresponding to §; on the operational scale for the
ith sub-process. That these assumptions with respect to the sub-
processes do not restrict the generality of the calculation of the
contributions to the main process on {0, T), can be seen from the
following arguments. If a sub-group were to enter several times,
the group can be divided into a number of new sub-groups, which
all fulfil the condition of a single entry. Further, if a sub-process
starts at a point before 4to, and, if the termination point of the
process is later than 471 < 7, the contributions on the interval
(0, T) to the random function, and to the operational time of
the main process can be written ;y, — ;yo, ;81 — ;So, Where ,y,,
15; refer to the points 477, 7 = 0,1. These contributions are cqual
to those, which are rendered by a sub-process, which starts at zero
and terminates at ;71 -—370, and such that the random function and
the operational time are equal to zero at © = o, and to ;,y; — ;¥
51— S0 respectively at ;71 —ro. For the case where ¢m1 > T, the

ith sub-process shall not be transferred to another scale.
T 470
For a non-stationary main group sei=4%; [ wi(u) du, ¢ =

1,2...my, corresponds to =, if ;11 < 7, and Wit;] the modification
of the integral to J: for ym1 > T, so that, in this case, an amalgama-
tion of #u, sub—pro‘c:zzsses in the form of c¢Pp: 1, for a fixed value of
m,, 1s a cPp with the structure function of the form T"l1 = Uq(8anfs)),

1

which depends on t so that the amalgamated process is a cPp
i.w.s.; this is consistent with the assertion for the general case
quoted from [4.. The “very special case” in this assertion implies
that ss; = #; sz, and the structure function of the amalgamation of

my cPp:1 is in the form 1 2Uy(v/ky), independently of t. Thus
-1
the “‘very special case” int [4] 1s characterized by the concept a
stationary main group, for a simple grouping, where all the sub-
processes are cPp: 1. In this case Y (ss, §2) can be reduced to the
form Y (s1, s2); in the elementary case Y (s, s2) are distributed with
distribution functions in the alternative forms of (5a) and (sb). It
may be possible, to extend these forms to include also a non-
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stationary main group, and, under certain conditions (cf. Theorem 7
below), to the non-elementary case.

By the assumptions made so far, the main group is, in general,
heterogeneous i.e. ;Y (s,;) are generally dependent of <. In the partic-
ular case, where ;Y (s,;) = Y/(s,) independentlyof s for¢ = 1,2...m,,
the main group being homogencous, Y (si, s} is, in the elementary
case, and, under certain conditions (cf. section 7 and Theorem 7
here below), in the non-elementary case distributed in a bunch
distribution.

An iterated grouping shall be defined as follows. A head group of
a population is defined as an, at least, enumerable set of main
groups, each defined as in the simple grouping. The relation between
the head group and the main groups shall be the same as the
relation between the main group and its sub-groups in the simple
grouping. As, generally, a main group is heterogeneous, the iterated
grouping could be interpreted as a simple grouping, if this were to
include heterogeneous sub-groups.

In the following theorem it will be referred to a condition defined
in the following lines.

Condition A. In a Markov process, defined by the intensity
function p_(§) for £< ¢, which is continuous in ¢ for every
fixed #n, T = {(w) being the termination point of the process,
the conditional probability, f,,, (¢, Af), for the occurrence of v
events on (¢, t++At) relative to the hypothesis that = events
have occurred on the interval (o, #) shall satisfy relations in the
form given for g,,, (¢, Af) in Theorem 1, for v =0, T and >1,
respectively, for {4Af < g, and shall be equal to zero, for
v >0, and for i4-Af > C.

A Markov process with never decreasing, right continuous
trajectories, which satisfies this condition belongs to the class of
pure birth processes.

For the following theorem two sequences of index vectors {Mj}
and {Sg}, will, further, be introduced. For each fixed value of m
and m,, the vector Mj {,[p.j, i =1,2...m}shall, for a fixed value
of 4, be obtained by the choice of m; values, in an arbitrary but
fixed order, of values for ;u,, such that, for the fixed value of
J» ¢ty 18, for each 4, equal to one of the components of the vector
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{0,1...my), and that ) iy = my for the fixed value of j. This
i=1
shall be iterated in every possible way including the permutations,

and X’ shall denote the summation over all possible values of 7,
)

obtained in this way. Similarly, for each fixed value of m; and v,
the vector Sy = {iog, ¢ = 1,2...m} shall for a fixed value of %,
be obtained by the choice of m, values, in an arbitrary but fixed
order, of values for ;o, such that for the fixed value of % 4o is,
for each 4, equal to one of the components of the vector (0,1), and

that X wor = v. This shall be iterated in every possible way in-

i1
cluding the permutations, and X'’ shall denote the summation over
*)

all possible values of %, thus, obtained.

THEOREM 3

Consider a simple grouping, as previously defined in this section,
on the domaine (o, s1) X (0, §2) corresponding to (o, 1) on the
absolute scale, in the elementary case, where ;Y (s2;) = iN(s2¢) =
(N say, and Y(si, $2) = N(s1, §2) = N say. Let the conditional
probabilities, as defined in Theorem 2, be denoted tfmay (S2, Asag)
and let the indices ;u, be defined as in the previous paragraph. Let
it, particularly be assumed that ,r, —,7,, defined previously, does
not depend on , which, thus, applies also to the corresponding
point ; on the operational scale.

Then,

1) N is an admissible random function with the probability distribu-
tion, Em {51, 55) say, which fulfils the following relation.

Em ( 1 s”) QO( ) + Z Qm( ) Z n iRiuJ( ) (68‘)

2) 1f each sub-process satisfies Condition A, defmed here above, the
main process satisfies also this condition, and is defined by the
intensity function 7,(s1, §2) given by the following relation.

Ty (5050 = T Qp (50 T I 4Ry, Z # a(S21) | Ron, (1, %2) (6b)

my=1 (j) {=1 -1
3) The sufficient condition for that COndltIOI'l A being satisfied for
the main group, is also a necessary condition.

24
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Proof. 1f for all values of ¢, {V are admissible, as assumed in
the model, this must also hold for the random function equal to

the sum }]1 IV for fixed mu, consequently also for N, defined as the
$01

weighted average of this sum with respect to Qs (s1), 71 = 0,T.. ..
The probability for the occurrence of ;u; events in the sth sub-
process, ¢ = 1,2 ... #u, on the interval (o,s2;) for every fixed value
of my and 4, is given, provided all the sub-groups were to belong
to the main group at T, by the product of the independent probabili-

ties in the jth term of (6a), where, by definition, > g = M.

tel
Should some of the sub-processes terminate earlier than T, the
parameters for these groups sy are, by definition, equal to g,
corresponding to ¢71 - yto and, therefore, the assumption that ¢t
for all 7 are > 7, may be removed. The event that ma events occur
on the interval for fixed 1, can be realized in several ways; thus,
by the definition of X', this sum applied to the products for each

[FY]
possible value of j, represents the probability of m. events for

fixed mi. If also #; is allowed to vary, the weighted mean of
these probabilites with respect to Qup,(s1) will be obtained, so that
(6a) holds, and, thus, the assertion 1) has been proved.

If all sub-processes satisfy Condition A, the values of ,f,,
(se2t, Asz1) are for v >1 of lower order than the order of Assy,
for sub-processes with {,—As,, corresponding to a point < T even
equal to zero. The conditional probability for the occurrence of
i events in the 7th sub-process, 7 = 1,2 ...#1, on the interval
(Soq» Sg; -+ Asy;) relative to the hypothesis that ,u, events have
occurred on the interval (o, s2;) can, for every fixed value of 1,

'"l
mz and 7, be written in the form X7 II tf:ﬁ:.l ’ f:."(i)ak) where ;o4
(k) {1

have been defined in the last paragraph before the theorem
(the arguments sg;, Asg; have been left out), and, where the pro-
babilities for more then one change on (s, sz + Asz) have
been neglected. By the insertion of the expressions for 4f,,,v=0, 1
according to Condition A, the terms of this sum, which con-
tain at least one factor ¢f,,, for a sub-process, for which
¢4 — Ass; corresponds to a point ¢ less than 7 will vanish, and other
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terms, containing more than one such factor, for any sub-process,
for which {; — Asz; corresponds to © > T will be of lower order than
the order of Ase;. Consequently, if quantities of lower order than

the order of Asg; are neglected, the sum reduces to b i 4y (S2i),
f=1

observing that for values of ¢ for which {;—Asz; corresponds to
v << T, 17,,(521) = ¢#,4,(Cs) = 0. Then, the absolute probability of
the composite event, that mz events occur on (0, $2), and ms -+ I events
on (0, 52 + A§:) in the main process, is given by the numerator, and,
by the assertion 1), the probability for the occurrence of ms events
on (0, §2) by the denumerator of (6b), which, thus, holds, The proof
implies, that, if the Condition A holds for every sub-process, it
holds also for the main process. Thus, the assertion 2) has been
proved.

If, for v > 1 and for at least one value of 7, ¢f,, v (521, As2y) and
i - Asz; corresponding to = > T, should be of the same or higher
order than the order of Asy, this should imply that the contribution
to the conditional probability for v events in the main process,
should be of this order. This leads to that, in this case, Condition
A does not hold for the main process. In fact, this affords en in-
direct proof of the assertion 3) of the theorem, for a fixed value
of T. By letting T decrecase until all the sub-processes have {;-— Asyy
corresponding to « > 7, the proof can be extended to include
anyone sub-process, which does not satisfy the Condition A. Thus,
the assertion 3) has been proved.

Remark. By a remark made here above (just before the de-
finition of the iterated grouping), a simple grouping being both
stationary and homogeneous leads in the elementary case always
to a bunch distribution according to the general definition quoted
in section 1 of this note (Thyrion (1], p. 68). Thyrion has, however,
{[11], Ch. 2) introduced a specified model of such distributions,
here called the T-model, which, in fact, is less general, than the
model based on the ch.f. in section 1. The T-model has been in-
troduced in order to allow for the occurrence of several, simultaneous
changes (cf. [11], p. 49), while by the theorem, the general model
can also be applied to cases, where only one change on a small
interval has a probability of the same order as the order of the
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length of the interval, while the probability of more than one
change is of lower order. In the T-model the number of bunches
is defined as the number of sub-processes, in which already at least
one change has occurred. This number may be designated by m,
which, by definition, is less than or equal to #»u in the theorem,
the probability distribution of 7 may be designated by (,,(s).
By a similar deduction to that used in the theorem. Thyrion
obtained for the T-model in the particular case, where Ry (s2;) =
R, independently of s,; and ¢, an expression for R, (s)) for the
main process of the T-model, in the form of (6a) with two impor-
tant modifications, one implying the elimination of all factors in the
product appearing in (6a), for which su; = 0, and the other a
truncation of the sum over #: on account of the fact that terms in
this sum for which #m1 > m2 will for the T-model vanish. In fact,
by the definition of m, the non-occurrence in m: — m sub-processes,
with fixed #m; and m has the probability 1. Therefore, one may for
the T-model substitute the conditional probability for ,u, events,
{1 = 1,2...my for every fixed value of m; and m relative to the
hypothesis that no cvents have occurred in i — m sub-processes,
for the absolute probabilities used in the proof of (6a). By the
substitution in this proof of Qm(s1) for Qm,(s1), and by the applica-
tion of the combinatorial methods, as used by Thyrion for the
case where (Rp,(s2;) = Rm,, it can be proved that Thyrion’s form
for (6a), called the T-form here below is a particular case of (6a).
Further, the T-form can be extended to cases, where ;Ru,(s,;)
depend on s,; and <.

For a stationary and homogeneous main group an extension of
the bunch distribution in the T-form to the non-elementary case
was indicated by Thyrion in [11], and, further, analyzed by him [12],
for the case, wherc (R, (s21) = Rm,(s,) I.e. dependent on the same
parameter as the parameter in Q,,(s;). In [12] he states, that the

distribution functions in this case can be written X R, (s,)V"*"(%)
if R, (s)) is an elementary bunch distribution, for the particular
case, where (),,(s,) is a Poisson distribution, and, that this con-
dition should also be a necessary condition. According to Arfwedson,
the condition is necessary for an arbitrary change distribution,

only if R,,(s1) = R, independently of si, in the opposite case, a
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function in the form of the elementary Poisson bunch distribution

©

le. afunction of theform B ,(f) = X ¢t "R™*(t)}m! shall be a

mea0

probability distribution, only if certain conditions are fulfilled.
These conditions are, Ry(f) > o, and two other, given in the form
of two inequalities for b, = B, (f)/B,(f), namely b, > bj/2 and
by = b, b,— b3[3. He adds, however, the remark, that, if Ry(¢) is
negative, it can be climinated by a transformation of the parameter.
Such an elimination leads to the T-form. Arfwedson seems in the
introduction to have based the Poisson bunch distribution on the
T-model, as the bunch is associated with insurance claims which
occur in a bunch, exemplified by an air craft accident, but his
formal developments are more gencral, as for the T-model R(?) is
always = 0. In one of the examples, earlicr introduced by Arfwedson,
Ry(¢) was assumed to be positive, and the deduction of this model
was based on the assumption, that the probability of multiple
changes on a short interval is of the same order as the order of the
length of this intcrval. Thyrion has for the same example deducted
distribution in the T-form, eliminating R(t) (1, 12]; Arfwedson has
remarked, that the two solutions arc consistent, [13]. Thus, the
distribution according to (6a) is in the T-form, if Ry{f) = o, must
be reduced to this form, if Ry{f) < o, or may be, alternatively, given
with R,(¢) > o, or, in the T-form, by the elimination of R, (). A
bunch distribution in the T-form does, thus, not necessarily, be
applicable to the T-model, as, (6a) can be given in the T-form,
even if Condition A is fulfilled. In the example just mentioned
Rup,(f) = Ry, independently of ¢ so that Condition A is not
fulfilled. Later in this note (the remark to Theorem 7). an example
will be given, where the bunch distribution function may be trans-
formed into the T-form, and where Condition A holds. Thus, it may
be said, that in a way, the T-form is more general than (6a) with
positive ,Ry(s.;), even if the grouping model is more general than
the T-model.

8. Particular results for the simple grouping

For a fixed value of 1, the amalgamation of #; sub-processes in
the form of cPp:1 for each ¢, leads to a c¢cPp:1 or a cPp
i.w.s. depending on whether the main group being stationary or
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non-stationary. In this section it will be assumed that the main
group is stationary, and that all the sub-processes are cPp: 1.
Then, the following recurrence relation similar to that, given by

Lundberg for a ¢Pp:1 ([3], (93) ), holds for the probabilities of
the main process.

;m,(sl’ S5) = (mat1) l_emgu (51 82) | 2 Em._\(sl» Sg)- (7a)

In fact, by the insertion of recurrence relations according to
([3], (93) ) for each sub-process into {6b) for the case considered
here, (7a) is directly obtained. By the differentiation of R,, (s, S2)
with respect to s» the following relation (7b) is obtained, if the
dependence of s1 on sz is neglected. In fact, if also this dependence
is taken into account, it will not alter the result in (7b), provided
that Qum,(s1) is a probability distribution in a process, and satisfies
the Chapman-Kolmogoroff equation. This will first be proved on
the assumption, that also Q,, (s,) satisfies Condition A. If g,, (s,)
denotes the intensity function in this case, the derivative of
R, (s1, s5), with respect to s,, if the dependence between s, and s,
is not taken into account, can be written

m

— 0o(52) Qof8) — B @y (52) O (50) T T Ry (52) +

mye=l Nt

my—~1

+ El‘]ml_1(51) O, -1(81) EI ‘Hl 1R y(52)
for a fixed value of ma. This expression is equal to zero, which may
be seen by the insertion of the variable of summation y =m;—I
into the second term. By using Chapman-Kolmogoroff’s equation,
this may be extended to the case, where the process defined by
Qm,(s1) satisfies this equation, but not Condition A. Therefore, the
following relation holds under these conditions.

AR, (51, $5)[ 08y =
— "m,(slx $3) Em,(sl) so) + ;1112—1(31' S5) 1—2111,—1(51» S3) (7b)

2

by the following relation satisfies (7b) with the substitution of this
function for Ry,(sy, s.).

It will be proved, that the function R, ., (£, ¢ §), ;) defined
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xm,(sz) = En,, My (tlt t2r Slx 52) =

~ (B (=B Rtsr s [ B 0

e S2 S2

In fact,

X«'m,(sz) [ X (S2) =

— Mo[Sg A= (e — 1) [ (Sa—13) —;m,(sp Sa) + MyfSs,
and X, 1(S2) [ X, (S2) = (my—n5)[ [(s2—51) ;m,—l (s1, 82) ]-

From these relations (7b) is directly obtained. This is a modifica-
tion of a part of the proof of Theorem 6 in {3] (p. 73-75). By using
the remaining parts of this proof, it can be proved that the solutions
of (7¢) satisfy the fundamental conditions for the conditional pro-
babilities of a generalized (cf. section 4 here above) Markov process
with the absolute probabilities R,, (51, Sz)-

9. Remarks on the iteration of a grouping and on an extension to the
case where 4ty and yvo depend on

In the proof of Theorem 3 the homogeneity of the sub-groups,
which is assumed for the simple grouping, has not been used.
Consequently, the relations (6a), (6b) hold for a head group, if
1R (s21), 17,,(s21) are associated with the sth main group. As the
relations hold for the main group, expressions in the form of (6a),
(6b) may be inserted for the functions just mentioned, respectively.
Also the remark to the theorem, and the result of the previous
section may be modified, so that the iterated grouping will be
included. It is, further, seen that the grouping may be iterated
several times. Further, if it is assumed that s, and the operational
parameter corresponding to sto are, for 7 = 1,2...m to be con-
sidered sequences of different values of random variables, ¢ and 6o
say, the probabilities and numerator of the intensity function can
be expressed for every fixed value of my, o, 6o in the form of a
weighted mean of Z’ in (6a), (6b) with the substitution of ¢ and

)
mio — oo for sz with the weight functions equal to the probabilities

for ¢ + oo being < suo and > muc respectively. Then, (6a) and
the numerator in (6b) will be modified into the appropriate means
of these expressions with respect to the joint distribution of m,
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o and go. The iterated grouping without and with chance variation
in sg; in the case, where all the sub-groups are cPp:1, can be
explained in terms of itcrated aco cPp: 1 and modified such
concepts.

10. Remarks on the application of the grouping models

In the application of stochastic models to problems of the type
met with in the insurance field and to similar problems in other
fields, it is gencrally aimed at a classification of the statistical
results, which ensures the relative homogeneity of the sub-groups,
as much as this is, in practice, feasible. For life insurance rating
the experience is, generally, grouped with regard to age, and,
eventually, to sex and/or to duration of insurance, either after
sorting out risks considered more dangerous than normal risks (by
medical examination and/or declarations by the insured), or with
neglect of the cxistence of such risks, on account of their small
weight in the population. Even a finer grouping may be applied,
such as a grouping with respect to main groups of death causes; in
fact, a finer grouping would, in principle, be preferable. Morbidity
statistics is often given in finer groupings. Also for property in-
surance, and for liability insurance, it is aimed at a homogeneity
of the sub-groups, which, however, in practice, is feasible only to
a very small extent; material deviations of the risks within a
statistical group are often neglected. Further, the classification of
the statistics is, generally, deemed to be too elaboratc for the
application to the actual table of rates, i.e. scveral statistical groups
are pooled to form a single tarif group. All this affords examples
of the application of simple grouping, where the heterogeneity of
the sub-groups, the statistical groups, and of each main group, tarif
group, is neglected. In practice, however, these neglected deviations
are so large, that the method commonly used, gives a very coarse
description of reality. In fact, the individual properties of each unit
insured are of material influence on the risk, e.g. in motor insurance,
the skill and experience of the ordinary driver, and the driving
properties of the vehicle insured. Therefore, systems for the correc-
tion of errors implied in the rating, such as the distributions of
dividends, and systems of bonus-malus are often applied. The
problem of finding rational systems of this kind entails, particularly,
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for property and liability insurance, many difficulties. With regard
to bonus-malus systems different authors have argucd for quite
different principles, and even reached different conclusions from
the same statistical experience. A particular difficulty is implied
in cases, where the risk premium has a steadily increasing time
trend, as for motor insurance in most countries, which gives un-
certain estimates of the reserves needed, so that the rebatement
of the premiums may often lead to larger decrease of the reserves
than anticipated. This has in motor insurance caused heavy losses,
in situations, where too liberal rebates have been granted. For the
judgement of the experience a posteriori well-known statistical
methods have been applied. In such applications it is of utmost
importance to apply a rational classification, with still higher
demands on the homogeneity of the sub-groups, unless it is feasible
to evaluate the results by using models based on more or less
heterogencous sub-groups. Therefore, the iteration of the simple
grouping suitably modified with regard to the phenomenon con-
sidered, seems to be apt for cxperience rating, which also applies
to the rating a priori, to the estimation of the necessary risk reserves,
reserves for outstanding liabilities, and for unearned premiums, and
to the choice of reinsurance policy. In fact, head groups, main
groups, and sub-groups must all be considered heterogeneous. Thus
the system of amalgamation of risk processes 1s, in actual practice,
at least as complicated as the model for iterated grouping defined
in the section 7 here above, the modifications dealt with in the
previous section, scem to be more appropriate. In principle, each
group of several insurance treaties, is essentially heterogencous.
At any rate, in theory, one should associate each lowest group of
a classification with a single point of a multi-dimensional factor
space, the components of the coordinate vector representing all
factors of possible influence of the risk, and each component being
sufficiently differentiated. The number of points, thus defined, is
naturally very high, so that the exit and the entrance of such
groups may be considered governed by chance, which is accounted
for in the grouping modcls by allowing the exit and the entrance
times to be random variables, which leads to the dependence of w
for the termination points ¢; = Zij(w), and to the introduction of
probability measures for the times here conccerned. The whole
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discussion in this section leads to the conclusion, that the grouping
models, as defined in section 7, modified as indicated in this and
in the previous section here above, give a very realistic description
of reality. This applies not only to the properties dealt with in
Theorem 3, but also to the T-model introduced by Thyrion, and
discussed by Arfwedson, particularly, in the case, where the model
allows for several simultaneous events. In section 8, the conditions
for the application of relations known from well-known models used
earlier have been given. For the application of the grouping models
it seems to be of interest to study the conditions, under which
these results may be transformed into other forms. To this effect
an analysis will be made in the following sections.

1I. A theorem on ch.f. dependent on a parameter

For the analysis just mentioned, the following theorem will be
needed, for this theorem the following definitions are introduced.
Let y(n) be a function of «¢, v being a real variable, and 7 the
imaginary unit, where y(n) is bounded, and a continuous function

of . Let J be an operator defined by Jy = [[ (4 —E&)etzn-9 dndk

= I(x, A) say. The sufficient and necessary conditions for y(4)
being a ch.f. of a distribution are, that y(0) = 1, and, that I{», 4)
is real and non-ncgative for all real x and all4 > o (Cramer, [14],
p- 91). If (%) fulfils these conditions, it shall be said, that y(v)
c G

Let veV be a non-negative real parameter and AeA a transform
of v, such that the mapping AD, being the domaine on A correspond-
ing to D, C V, is defined by the transformation A = A(z) taking
any point veD, with one-to-one correspondence to onc point
rerD,; the mapping of A is analogously defined by the inverse
v = v(A) of A(v). If there exists a transform %(v, v) of X(,v) C €,
which is obtained by the mapping of ¥ onto A, such that y'(n, v) =
An(v) %(n, v)] /On belongs to € on ADuCA, it shall be said, that
(5, v) CCD,). Further, if a transform, ¢ = p(v) say, fulfils
the conditions, p(0) = 0, and, in addition, has derivatives of any
finite order, such that (—1)*p®*"(») > o, the transform shall be
called a g-transform.
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THEOREM 4

Let teT, seS, and #€U be non-negative, real parameters such
that s =s(¢) =log %, and that s is a p-transform of ¢. Let 7 = {(s),

and ¢ = f(u) define the mappings of T on S and U, respectively. Let
$e CC; (0, 00), i.e. ¢, is a solution of a differential equation given
in the remarks to the Theorems 1 and 2 for a cPd: 1, defined by
’q], = exp {—s[t{(x —3,)]} say. Let ¢ and ¢; correspond to W(x, ?)
and V(x, t) respectively as defined in the remark just quoted.

Let I(x, A,7) = J ¢; and I,(x, 4,7) = J(3; ¢;): here x assumes
any real value, and A any positive value, and J has been defined

before the theorem. Further, let L, & = X Lop, Logz= % 13}

. . ; —1)*s )¢
I, =—*RkJE s), L, = R, "), where R, 5) = (‘_)s__(_)
vl s(t)

and Q(x, 4,9 = = [LLm A, ) — by Lo(x 4,91,

It is assumed, that Q(x, 4, ?) is non-negative on a domainesD, C S,
Then, L,g; C@, (sD,), and 38, (uD,).

Proof. TLet jh, = ds(t) I, &;) [ds and o, = due(F) &3]/ du re-
spectively. For the calculation of these functions ¢ is substituted
for and f respectively in the expressions within the square brackets,
and the expressions obtained differentiated with respect to ¢, and
divided by s'(f) and #'(f) respectively, by using the expression
1§, = ¢, — &, according to the remark mentioned in the theorem.
Thereinafter, { and 7 respectively are substituted for ¢. Thus, the
following relations are obtained for ;4.

e = @iLlo & — Lo &; + I = ¢ L Lo, — % X L.

By the second membrum i, = 1 for n = 0 (ie. §; = ¢; = I).
If the operator J, defined before the theorem, is applied to the third
membrum, using the fact, that under mild regularity conditions
W(x, {) satisfies a differential equation of the same form as for
$,, with the substitution of V(x,¢) for ¢, then, Ji,= Q(x, 4),
as §; C€ is real, and, on sD, assumed to be non-negative.
Thus, 2, C€ on sD,. It has earlier been proved, [11-13], that
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L,3;C€ on account of the elimination of the negative term,

obtained by the Taylor expansion of log {;, by the mapping on
S. Thus, it has been proved, that 2, CC; (sD,).

By using the Taylor expansion of d log §,/d¢ in the expression of
oh, before the transformation of ¢, obtained according to the
description above, by the elimination of the negative term according
to the method in [11-13], and by the mapping on U, the relation,
where s = s(2), ,h, = 03 1/; is obtained. Thus, .k, is a product of a
ch. f. corresponding to a cPd : 1, as proved in [12], and of A, proved
above to belong to € on sD,. Thus, both {; and ;4, belong to €
on #D, and, thus, it has been proved that J; C €, (D).

Remark. 1) The chf. |, corresponds to a cPd: 1, fulfilling the
condition, that s(f) = -— log P,(¢) is a p-transform of £ As in the
simple grouping with stationary main group and with all the sub-
processes being cPp: 1, the amalgamation for fixed m, is a ¢Pp: 1,
it follows, that, if the sub-processes fulfil the condition just
mentioned, the amalgamation fulfils the same condition, as s(f) =
N s,(). As 1,@;, in this case, is a weighted average of the same
t 1
functions for the sub-processes, with s,(f)/s() as weight functions,
the theorem holds also for ), = exp ; p —s, [T — &) ] i provided
that ¢, is the same for all the sub-processes. This applics also to
a convolution of cPd: 1 fulfilling these conditions. If the mean
function of the change distribution is a never-decreasing function
of ¢, which is often realized in most branches of insurance, it will
often occur that W'(x, ) > o for sufficiently great values of x;
also the variance being very olten a ncver-decreasing function of
t. As, however, I(x, 4, %) is the mean of an essentially decreasing
function of the variable of integration, for grcat values of this
variable, the terms for low values of v in Q(x, 4, 7) may be < 0. In
many cascs the sum is, however, positive as/—I, ,,, as a rule, in-
creases with v.

2) It shall here be, particularly, assumed that ¢, = ¢ indepen-

©

dently of . In this case, Q(x, 4, {) reduces to ¥ ({,—4,,,) 1, (x, 4),

veo

which is non-negative, if 1, /I, <{ 1 for all v. (This is a sufficient, but
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not a necessary condition). It will, in addition, be assumed that

s(t) = Ts,(t,), t; = py¢, and that s;(¢,) = p,(x + ¢f)) ™%, Py, a4 ¢4

being p(—)sitive constants. For m, = 7 = 1, s(f) and L, ¢ fulfil the
following relations, quoted from Thyrion [15].

s(f) = p[x — (x+ct)'"% | c(a—1) for a £ 1, and
s(t) = p log (1 + cf)fc for a = 1,
so that s(t) is a e-transform (8a-b)

Tio =7 5 (7% (—g9)*/[c(x + cB)2~"s() ] fora #1,and  (ga)

Lo=p LgahoBiora=rg=_" (o)
vel I-+ct
For my > 1, s,(t) and ,L,p shall be defined by the same relations
after the addition of the index 7 to the symbols s, T, 4, ¢, p and g,
for all values of 4. (If the definitions are extended to include a, = o,
{, defines a Hofmann probability distribution for m, = 1, and an
extended such distribution for m;, >1x1.) In this case [, ,,/l,=
(a—1)g/(v+1) (a—T1)gfora %1, andequaltog < 1 fora=r1, if m =1;
for m, > 1, the same relations hold, if ¢, a, ¢, are substituted for g,
. - 't m ct
a, ¢, respectively, where ¢ = t%‘iqui/ ‘%‘ 0, = - and

my

my m

a = Xa, w, 9, /9 % 2. 0, = (13%) (—qy)"
'

[

and gj/v! for a; 1 and a; = 1 respectively.

Then, by the theorem L, and {; in this case belong to €,(sD,)
and €,(u#D,) respectively, where D, is equal to {0,00} for 4 < 2,
and, at least, equal to {o, [c(a—1)] '}, where, for m, = 1, the bars
may be removed.

12. The Thyrion transform of the ch.f. defining a cPd : 1

Thyrion [1, 15), transformed the ch. f. in the form of {,, with
s(¢) being a p-transform, as defined in Theorem 4, in the particular
case, where @, = exp (i) independently of ¢ (the cPd: 1 defined
by {, is, then, said to be in the “canonical form’’) to a ch.f. defining
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a generalized Poisson distribution on the transformed space.
Lundberg ([3], p- 57), transformed an elementary Polya process
to a time-homogeneous and space-heterogeneous, elementary
¢Pp: 1, on the transformed space. Ammeter [16] transiormed a
non-elementary Polya process, ¢, = ¢ independently of ¢, in [15]
extended to include a Hofmann probability distribution, ¢, = o.
In [17] the present author extended the transform to include non-
elementary cPp:1 or ¢Pp:2 with ¢, dependent on ¢ In [12]
Thyrion analyzed the transform of a genecral non-elementary,
cPd: 1 in the canonical form, ¢; = ¢ independently of £. Arfwedson
remarked, [13], that in order to obtain a non-negative value for
the probability of non-occurrence in the generalizing distribution,
it was necessary to add the condition s(t) < ¢ for ¢ > o, but that,
if this condition is not fulfilled, the transform could be obtained by
the elimination of the negative term through parameter trans-
formation, which has been referred to in the remark to Theorem
3 here above (if s(t) = ¢, ¢, reduces without transformation to
exp [—t + #o], so that the untransformed distribution is a Poisson
probability distribution). In fact, in the case, where s(f) >, the
transform must be given in the T-form, defined in the remark just
mentioned. If a bunch distribution is taken in the sensc of the
T-model, it seems irrelevant to add the condition, that s() <.
Arfwedson referred to Thyrion’s alternative expressions for the
transformed distribution functions in the following form, where,
however, the notations have been adapted so as to avoid confusion
with the notations of this note. The development in [18] lead to
similar alternative expressions, in a more general case (cf. also (5a)

and (5b) here above).

Gy, )) = B B(f) V™(y), where B,(f) = e t"R™ ()jm! (10a)
(= o]

Gy, 8) = X e t#mK™(y,8)]m!, where K(y,t) = I R,(t) V™"(y)
(10b)
As was remarked in section 7 here above, the condition for the
simultaneous validity of (roa) and (1ob), is that B,(f) is a bunch

distribution, in this case a Poisson bunch distribution. Arfwedson
has proved, that this is not a necessary condition unless, either

n=90
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R, () =R, or V(y) =¢(y—r,), independently of ¢ If, however,
the distribution before the transformation is in the canonical form,
the conditions for B,(f) being a bunch distribution are fulfilled,
where however, if s(f) >¢, B,(f) must be given in the T-form.
Thyrion has proved, that, if s{f) is a p-transform, exp [—s(¢)]
is completely monotonic, and equal to unity for ¢ tending to zero.
As this condition is not necessary, there might, as remarked
by Arfwedson, exist cPd: 1, which may not be transformed to
a bunch distribution, even if he has proved that every cPd:1
leads to an expression in the form of B, (f), which satisfics the second
of Arfwedson’s conditions for B,(¢) being a bunch distribution.
This applies, not necessarily, to the third condition. Arfwedson has
not, however, been able to find an example of a cPd: 1, for which
B, (¢) after the transformation is not a probability distribution,
and, thus, not a bunch distribution,

Thyrion has treated the particular case of the transformation
for ¢, = ¢ independently of ¢ and s(f}, L, in the forms of (8a-b)
and (9a-b) respectively and with #2, = 1. In the remark 2) to the
Theorem 4 the conditions, in this case for m, > 1, for [,¢; and
{, belonging to € (sD,) and €,(«D,), respectively, werc deductcd
by using the theorem mentioned. It might be remarked here, that
a direct deduction of these conditions for the particular case
concerned, without using the theorem, can be made by an easy
calculation, which docs not imply the J-transform, but is based on
Newton’s binomial formula.

Under the conditions of the remark 2) to Theorem 4, D; is an
interval with the lower limit zero. In the general case of the theorem.
the interval defining D, may start at a point ¢, > 0. As, however,
a conditional c¢Pp: 1 defined on the interval (¢, ¢,) may be trans-
formed to an absolute cPp: 1, defined on the interval (o, £,—%,), i.e.
with starting point at £, (cf. {3], p. 91), it does not restrict the gene-
rality to assume, that the ch.f. corresponds to a ch.f. C €, (sD,)
with sD, = {0,{;} say, and uD, = {0,{,} say, where {, = log
Cu = S{ti—1t).

THEOREM §5

Let X(f) and Y(¢) be defined as in the remark to the Theorems
1 and 2 here above, i.e. both functions are distributed with the
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samecPd : 1, and Y (¢) constitutes on (o, {) a cPp: 1 defined by the
intensity function =,(¢). Let =,(r), and P,(r) be obtained from
=, (f), and the distribution of the number of events, P, (¢}, by the
transformation of ¢ to the absolute scale t, and let »w(<) be the

mean ¥ =, P,(r). Assume, particularly, that P, (¢) is in Thyrion’s

n 0

canonical form, so that the ch.f. of Y{f) is in the form of {, in
Theorem 4, with s(f) being a p-transform; the notations D,, A,
shall also be defined as in Theorem 4, and let ds/dr = »yw(x), and
the mapping of T onto S defined as in the previous section.

Then, this mapping transforms Y (¢) into the random function
Z(s) say, with the ch.f. exp [-s + s L, @], in the notations of
Theorem 4, distributed with a non-clementary Poisson bunch
distribution according to (roa-b), with s, and the distibution
function corresponding to L; §; substituted for ¢, and K(y, ¢),
respectively. If =, (t)/n converges uniformly on finite intervals of <,
Z(s) constitutes on the domaine, (0, ;) say, which corresponds to
the intersection of D, and (o0, %), a gcneralized, non-clementary
Poisson process, which has the intensity, with respect to 7, xqw@y(7)
= ww(7) [$'(!)], i and the change distribution defined by A,.

Proof. The equivalence in the sense of section 1 between X({¢),
Y (¢) and Z(s), and the existence of a probability distribution in
the form of B,{¢) in (10a) is a consequence of the discussion here
above of the Thyrion transform of a ¢Pd: 1 in the canonical form.
As, by Theorem 4, L, ; C €(0, ;), the distribution functions of
Z(s) are on the domaine (0, ,), according to Corollary T in section 5
here above, in the form of the absolute distribution functions of a
Poisson process, as defined in the assertion. On account of the
existence of the translator operators before the mapping, Z(s)
constitutes, if the assumption of convergence is satisfied, (cf. [3],
(64) ), the Poisson process defined in the assertion, which, thus,
has been proved.

Remark. The theorem holds for a convolution of ¢Pd : 1, which
satisfies the conditions in the remark 1) to the Theorem 4. In the
particular case, dealt with in the remark 2) to the same theorem,
i.e. where H_'J; defines an extended Hofmann distribution with
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¢, = ¢, independently of ¢, sD, is equal (0,0) for & <2, (cf. [3],
the Theoremszand 7 A3) ), and corresponding to D, = {o,[¢(d—1)] ™'}
for 4 > 2, in the notations of the remark just quoted.

THEOREM 6

Let Z(s) with thech.f. exp[—s - s ] constitute a Poisson process
on (0,L,). If there exists a non-negative, real parameter £, such
that y, can be written in the form of I, §; according to Theorem 4,
with s(#) being a p-transform, the mapping of S = {s} onto T" =
{¢} transforms Z(s) into a random function, which, at least on the
domaine of 1 corresponding to (0, §,), has the properties of Y()
in Theorem 5.

Proof. By assumption, 3, C &,(0,Z,), then, the reversion of
the proof in Theorem 3 is self-evident, which proves Theorem 6.

Remark. 1In [4] the following statement with respect to the
relation between Y(f) and Z(s) of the preceding theorems, in
the particular case, where Y(f) constitutes a non-terminating
Polya process with ¢, = ¢ independently of ¢, has been given.
This statement purports a point of view on this relation, which is
principally different from the interpretation in the preceding
theorems. It is, in fact, said in [4] (p. 18) “As both the Poisson
parameter and the generalizing distribution,” in the notations of
this note equal to s(¢), and defined by I, §; respectively, “depend
on ¢, different times ¢ correspond to different generalized Poisson
processes.” This implies that Z(s), being defined on S, is related
to T (in this case (0, {) and sD, arc equal to 7" and S respectively,
by assumption, and by the remark to the Theorem 5 above). In
the author’s opinion it is more natural to refer Z(s) to S, where it
is defined; this leads to the following statement, which seems to
be more elucidating. Different ““times” ¢ correspond to different
“times’’ s, Z(s) constitutes on S one, and only onc generalized
Poisson process, as defined in Theorem 5 for the general case (the
differences between w(t) and wy(t), and between L, ; and §; seem
not to make the interpretation of the relation in [4] preferable. For
comparison, two simple examples of similar transformations will
be given here below. It will be scen that these examples were

25
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interpreted in principal agreement with the point of view expounded
in this note.

In these examples the intensity functions w(t), and p, v(#) (i.c.
of a Polya process, [3], Theorem 10a}, werc transformed, by the

mappings of {r} on {t}, t = [w(u) du, and of {{} on {s}, s =

— log P,(#), to %, and p,/p,, respectively. The result of the first
transformation was by Cramér interpreted in terms of the trans-
formed process on the transformed space: “The occurrence of the
claims will constitute a stochastic process of the type known as a
Poisson process,” ([6], p. 19). L.undberg draws from the second
example the conclusion: “Thus, in order to reduce a process with
the intensity function p, v(¢) to a time homogeneous process with
the intensity function p [, we have to take the function (66),”
which defines s as here above, “as independent time parameter.’
Thus, both Cramér and O. T.undberg relate the transformed pro-
cesses to the parametric spaces upon which they are defined, i.c.
to T and to S respectively, and not, as in [4], to the parametric
spaces before the mapping; both authors describe the transformation
in each case in terms of onc and only one process on the trans-
formed space. The fact, that by Theorem 5 the introduction of a
generalizing distribution into the transform of the second example
leads to a Poisson process, does not motivate the principally different
points of view in [4] and [3].

Tor the following theorem, the remark to the Theorems 1 and 2,
and the deduction of the assertion 2) of the Theorem 4 shall be
modified. Assume, in the remark referred to, that the change
distribution is defined by the ch.f. {,, where v = () is a function
of the parameter ¢ of the cPp: 1. If, in this case, ﬁv is defined as El
in the remark, the differential equation for ¢, can cither be deducted
from the forward differential equation of the process, as referred
to in the remark, or by a direct transformation of the variable in
the equation for z,. The differcntial equation for ¢, then, takes
the form . v'(¢) = ¢, — 1, the solution of which, after the
transform of v according to v = u(f), leads, after conversion, to
Wi(x, t) in (1a), as in the remark quoted. I.et now in Thcorem 4,
s(¢) be equal to s,(7,) say, and let 13==1¢5(¢) be £, as a function of
another parameter, £, say, and let »(¢,) = #(¢3), where 7 is defined

)
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in Theorem 4. Let i, be defined by the modified equation, cor-
responding to .4, in Theorem 4, as defined by the original equation.
By a deduction of 4, by the method used for .4, in Theorem 4,
the elimination of the negative term lcads to the relation #'(f;) =
= u(ly) sa(ts) v'(8) or Ijv = s, [t4(t,)], were s, is differentiated with
respect to ¢,. Then, 4k, = ;,h;, where, in this case, I, = ,(v),
s = s(v), and 44, © € on vD,. Consequently, §, . € G, (D, )
HerevD, , ¢,D, are the nnppmgs of D, CT,on V= '”} and T,

{t.} respectlve]y

THEOREM 7

Let Y(t, ¢,) be defined on the rectangle 7, x T, where T, =
=(0,8), To=(0, %) by the ch.f. Pyt (1—yy,,)], where ;¢ is the
ch.f. of the random function ¥,(¢,) with the propertics of Y (¢) in
Theorem 5, the functions g, (1), oP, (1), and x,@(t) being
delined as these functions without index in Theorem 5, and where
P, (¢,) is the probability distribution in the form of a cPd: 1,
for a random function M 1(¢), not necessarily, admissible. Let
7, (f) Dbe defined by — PN ) | PYE), as in Theo-
rem 1, let ym, (7), P, (r) be the functions obtained by the
transformation of { to v in =, (¢,) and P, (£,) respectively, and
let %, (7) be the mean of 170, (7) with respect to lel(T). Finally, let
D,, and 44, be defined as in the modificd Theorem 4, herc above.

Then,

I) Y(,, t;) is admissible and constitutes on T, x T, a cPp: 2,
the absolute probabilities being ¢Pd : 2, and, simultaneously, non-
elementary, compound Poisson bunch distributions in the
alternative forms given in (Ioa-b) with the substitution of

B, (4) for the Poisson expressions and , B, () for R,(#), so

that R,(#) > o, and the function in the form of B,({) being a
probability distribution.

2) If jrp,(z)/m; for j = 1, 2 arc uniformly convergent on finite
intervals of =, ¢, is a function of ¢,, £J = #3(¢,) say, with one-to-
onc correspondence, which defines a mapping of T, onto T,
according to the definition before Theorem 5; this mapping trans-
forms Y (£, ¢,) into a random function, Z(¢,) say, with the ch.f.
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B [tl(I—Ez"‘)], which on the intersection of 7', with the domaine
corresponding to the intersection of T, and D, constitutes a
cPp: 1, defined by the intensity function =, (¢,), and by a
change distribution corresponding to sl -

Proof. By the section 7 Y(¢,, ¢,) is admissible, and constitutes,
on account of its ch.f., a cPp:2on T, X T,. It shall first be proved,
that, if ; B, (¢,) is a Poisson distribution, Arfwedson’s two remaining
conditions for the function in the form of B, (¢) in (10a), in this case
called B,, (¢, t,), being a probability distribution, are satisfied. By
using the well-known relations for the probabilities of # changes
in a ¢Pp:1 for » > o to the derivatives for » = o (cf. [3], (78) ),
and by the assumption, that , F(¢,) = exp [—s(¢,)], the probabilitics
of m, changes in the convolution of m, , Fy(¢,) arc casily calculated,
for m, = o, 1, 2, 3 and for a fixed value of m,. B, (¢,, ¢,) are, then,
the means of the expressions obtained, and found to be functions
or the derivatives of s,(Z,), and the moments about zero of a Poisson
distribution of mean ¢, ,Fy(). By the transformation of these
moments into semi-invariants, and by the insertion of these means
into the inequalities for b,, (¢, {,), defined according to the remark
in Theorem 3, which are conditions for B,, (t,, ¢,) being a probability
distribution, these inequalities are, by an easy calculation, reduced
to —s; + s% > 0, and s, — 35, S, + (s5)® > 0, which, by the
assumption that s,(¢,) is a p-transform, arc satisficd. Thus, B,, (¢, £)
is a probability distribution, if , B, (s,) is a Poisson distribution;
this applies to every value in the argument of the structure function,
if P, (s,) is a cPd:1. Thus, for the general case, B,, (i, £,) is the
mean with respect to the structure function of probabifity distribu-
tions, so that B,, (£, £;) is a probability distribution, also if ; B, (s))
is a ¢Pd: 1, and, thus, the assertion 1) has been proved.

As by Theorem 1, =, (4) is the intensity function of a cPp: 1,
even if M (¢,) is not admissible, the absolute distribution functions
of this cPp: 1 are equal to , B, (4,), so that the means of these
functions are equal to the means of M ,(¢,). Thus, the theorem for
the expected number of changes in a cPp: 1 ([3], (63)), may be

applied both to M ,(¢,) and Y (), so that ¢, = Zj('r) = % fﬁj(u) du for

j = 1, 2, if the condition of convergence in the assertion 2) is
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satisfied. Therefore, ¢, is a function of ¢, with one-to-one correspond-
ence, which defines the mapping of T, onto T,. The equivalence
between Y (4, £) and Z(¢,) in the sense of section 1, follows from
the discussion before Theorem 5. On account of the modifications
of the remark to the Theorems 1 and 2, and of Theorem 4, the
distribution functions of Z(¢,), are, on the domaine defined in the
assertion z), in the form of the absolute distribution functions of
a cPp: 1. As Z(¢,) is admissible on account of the existence of the
translator operators before the mapping, Z(f,) constitutes the
cPp: 1 defined in the assertion 2), which, thus, has been proved.

Remark. By the remark to the Theorem 3 here above, a bunch
distribution with Ry() > o0 may be transformed into the
T-form by the elimination of R(¢); in fact, by the mapping of T,
onto ® = {0}, where 0 = 1 — P/}, the bunch distribution of
assertion 1) in the theorem is transformed into the T-form. The
distribution obtained, satisfies, by Theorem 3, Condition A, so
that the probability of multiple changes in Y (¢, ¢,) on an interval
of small length, Af,, is of lower order than the order of Af,.

THEOREM 8

Let the random function Z{¢,) with the ch.l. P, [¢(x — %) ]
on the domaine (o, ;) constitute a ¢Pp: 1. If there exist a non-
negative real parameter £,, which is a function of ¢, t; = {3(¢,),
such that ,y, can be written in the form of ., , as defined in
Theorem 4, the transformation of ,, into y,,, transforms Z(¢,)
into a random function with the propertics of Y (¢,, £,) in Theorem 4,
at Icast on the domaine corresponding to (o, g;).

Proof. By assumption yy, C @, (0,%,) the remainder of the
proof is a consequence of a reversion of the proof of Theorem 7.

Remark. If in a homogeneous main group of a simple grouping
both @,,(s;) and R, (s;) are cPd: 1, and if, in addition, R,, (s,)
is in Thyrion’s canonical form, the Theorem 7 holds for the
main group. By" the additional assumption, that also @, (s,)
is in the canonical form, the c¢Pp: I[of assertion 2) in Theorem 7
satisfies the conditions of the process constituted by Y,(¢,). If these
conditions are satisfied for all the main groups in an iterated
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grouping, where the number of such groups is distributed with a
cPd: 1, a modified version of Theorem 7 holds for the head group.
This modification implies, that the assumption of convergence shall
be extended to the function in the form of =, (f) of Theorem 1,
associated with the distribution of the number of main groups, and
that the bunch distribution and the cPp of the assertion 1) are of
the order 3, and a cPp: 2 is substituted for a ¢cPp: r in the asser-
tion 2).

Let the distribution functions of Y (¢) and Z(¢), of the Theorem 5
and 6 be denoted F(y, f) and G(z, s) respectively, then, G(y, s) =
F(y, t) for corresponding values of s and ¢, where one and only one
value of s corresponds to a given value of £, and one and only one
value of / to a given value of s. This coincides with Thyrion’s
definition for the equivalence bectween two random functions [1],
which was quoted in section 1, and used in the preceding theorems.
This does not, however, imply that the processes constituted by
Y(¢) and Z(s) arc equivalent, one being a ¢cPp: 1, and the other a
Poisson process, cven in the clementary case generalized, by a
variable with the ch.f. L, exp (/4); in the non-elementary case also
the change distributions are different. This applies also to Y(¢,, £,)
and Z(,) of Theorem 7, being equivalent in the sense of section 1,
and one constituting a cPp: 2, the other a ¢Pp: 1, which also is
generalized even in the elementary case, and the change distribu-
tions, in the non-elementary casc, are defined by ¢, and .73
respectively. Similar view-points may be expounded with respect
to the extension in the remark herc above, and were earlier indi-
cated in a heuristic deduction of a particular casc of assertion 2)

in Theorem 7 by the present author ( [18], p. 62).
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