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Reinsurance forms can roughly be classified into proportional 
and non-proportional. The authors of this paper had planned to 
investigate the "efficiency" of two different reinsurance forms, one 
from each of these categories. Efficiency is here understood as 
reduction in the variance of the annual results of the risk business 
achieved per unit of ceded reinsurance risk premium. This investi- 
gation may  be carried out in full later. 

This note will only deal with the interplay between surplus and 
excess of loss reinsurance; more specifically the effect of changes in 
the volume of surplus cessions on the excess of loss risk premiuml 

The study came out of a practical Fire Reinsurance rating 
problem and will be carried through under very simplified assump- 
tions. Thus we will ignore the conflagration hazard and the possi- 
bility of a wrongly taxed PML. This means that  if amounts above 
a PML of M are ceded on a surplus basis the highest loss per event 
will be M, and an excess cover above a priority m will never pay  
more than M-m per event. 

The following notations will be used 

R(M) ceded risk premium volume on surplus basis, the PML 
retention being M. 

~M(m) e x c e s s  of loss risk premium if priority is m and surplus 
cessions are made above a PML of M. 

Obviously R(oo) = o and 7mE(m) = o and 

dR d~M d~M 
d--~< o ; -g -g>o ; -2~m < o. 

The volume of risk premiums ceded on surplus and excess basis is 

~rM(m) + R(M) 
XX 
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This quanti ty obviously decreases when M increases, which gives 

dz~M dR d~M 
d M  + ~  < o or o < - - ' d R  < I. 

This means that  an increase in the volume of surplus cessions by 
a certain amount will lead to a decrease in the excess risk premium 
by a smaller amount. I t  is easily seen that  - -  dxm/dR decreases when R 
increases. Starting from M = ~ (R = o) the first small volume 
of surplus cessions will have the relatively highest reducing effect on =. 

To investigate the behaviour of =M and the interplay between 
=M and R we introduce the following functions and notations 

g(s) - -  the frequency function of the PML-size of claimed risks. 

= f g(s)ds. S(M) 
M 

- - t h e  probability of a claimed amount exceeding x, 
given that  the PML-size of the claimed risk is s. 

~(s) = - - - s  x d q~s (x) = -s ~s (x )dx- -  the expected damage 

o o 

degree, given s. 
HM(X) - -  the probability of a claimed amount for own account 

exceeding x, after surplus sessions above PML M. 
H(x) = H®(x). 

To express HM(X) in terms of g(s) and q~s(X) we have to integrate the 
simultaneous density of s and x, -g(s)ds d~s(X), over the shaded 
area in figure I. 

This gives 

HM(x) = 

M 

f g(s)  ,(x)ds + f g(s) s) = 
z M 

---- H(x)-- f g(s) s)) ds (1) 
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Fig. I. 

The excess of loss risk premium ~M(m) is obtained by integrating 
H (x) (see 

M M 

m m M 

where ~(x) = ~.(x) = S H(t)dt. 
t 

The ceded surplus risk premium volume R(M) is easily found to be 
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; R(M)=--j f x I - -  do,(x ) g ( s )d s=  y(s)(s- i )g(s)ds  (3) 

M a M 

Differentiating with regard to M we get 

dR (i)  
j y(s)g(s)ds (4) 

dM 
M 

We will now consider two particular cases with regard to q~s(x), 
the uni form case and the Pareto case. In both" cases we start by 
finding general expressions for ~M(m) and drcM/dR, i.e. expressions 
valid for any choice of g(s). In order to arrive at explicit formulas 
tha t  make numerical computations possible, we then consider the 
following particular choice of g(s). 

The Pareto law 

g( s) = - , s > a 
a 

will be assumed to describe the distribution of the PML size s of 
claimed risks, for that  part of the portfolio for which s > a. This 
leaves us some freedom to assume various combinations of claims 
frequencies and distribution of portfolio according to size for 
s > a, and complete freedom in this respect for s < a. 

I. The Uni form Case 

In this case the damage degree is assumed to be uniformly 
X 

distributed in the interval [o,i], i.e. ¢ps(x) = i - - - .  
S 

I 
The expected damage degree is constant, y(s) ~ ~,  and hence 

m 

R(M) ---- ~ ( s - -  M) g(s)ds 

M 

and 

dR (M) I f g(s)ds = I 
dM -- 2 - -  ~ S(M).  

M 
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X 
Introducing ~s(x) = I - -  - in (I) we get 

s 

M 

and by  integrating 

~M(m) = re(m) - -  ~(M) 

Writing this as 

=(m) - -  - M ( ~ )  = = ( i )  + 

x H(M) (5) as = H(x) - -  

2M H(M). (6) 

M 2 - - m $  

2M H(M) 

we see that  the reduction of the excess risk premium due to surplus 
cessions above M equals the excess risk premium above M, plus 
the expected number of claims above M, multiplied by  a factor 
M 2  - -  m S 

2M 

We now differentiate =~(m) with regard to M using 

dE(m) 
dM -- - -  H(M) 

and 

We get 

d~M(m) 

dH(M) 
dM = - -  f gs(s) ds 

M 

d- - -M-  = H(M)- - -2  i + ~ H(M) + - - 2 M  s ~" 
M 

M 

But since 

- f H ( M ) =  g(s) I - -  d s = S ( M ) - - M  g(s) ds, 
S 

M M 
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the last factor reduces to S(M), and we get 

dr:M(m) I ( m 2) 
- s (M) ~ - -  dM 2 

We thus obtain 

(7) 

dR(M) 

We see that  in this case d=M/dR does not depend on the function 
g(s) but  only on the priority m and the retention M - -  in fact only 
on the ratio m/M. It  can be shown that  drcM/dR will have this property 
as soon as the distribution of the damage degree does not depend 
on s, i.e. when cps(x) can be written as a function only of x/s. The 
proof of this will be published later. 

- (s > a). To calculate 7~M(m) We now introduce g(s) = a 

we need the functions H(x) and =(x). 

We get 

(~ + i) (~--i) 

I (9) 

- ~ + 1  

H/x, f, s,[I 
x 

= J H(t)dt  = 7t(X) 
z 

Inserting this in (5) gives 

2 (~ + I) 

We also get 

R(MI = 

Adding R(M) and ~M(m) gives the following expression for the 
total volume of risk premium ceded on surplus and excess basis 

7rM(m) + R(M)= ~(m) + 2 (~.+ I) M--- ~- (IO) 
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2. The Pareto Case 

In [2] Benckert and Sternberg investigate whether the distribution 
of the damage degree can be described by  a Pareto distribution, 
modified b y  concentrating all mass above s discreetly in the point 
x = s. They come to the conclusion that  this model gives a reason- 
ably good fit to empirical data  for some classes of fire insurance, 
provided that  claims below a certain limit are excluded. 

Since most fire insurance policies in Sweden nowadays are writ ten 
with a deductible, the exclusion of the very smallest claims is not 
a serious limitation. In theory the introduction of a deductible 
should be taken into account by  reducing all claims by  the deductible 
amount and working with a Pareto distribution with a density 
of the type  

f(x) = ~(x + b)-~ "1 over the interval (0, S - -  b). But,  since we 
are mainly interested in the large claims where the influence of 
the deductible is negligible, we have decided to avoid unnecessary 
complications in the formulas by  simply excluding claims below 
a certain limit. Following Benckert and Sternberg in [2] we take 
this limit as the unit of value. We thus arrive at the following 
expression for ~s(x) 

• x-~, ~ _ < x < s  (~ > o )  
~0,(x) 

I o, x >_ s 

The expected damage degree is then 
e 

= - x ~x '~  "1 d x  + s .  s '~  y(s) s s(~ - -  ~,) 
1 

(We assume here and in the following that  ~ v~ I. The modifications 
when ~ = I are self-evident.) 

Inserting the expression for ~a(x) in (I) leads to 
m 

M 
~ m 

XzV.t l 
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where 

j g(s) s-~ ds 
M 

M 

-o  
Integrating (II) and denoting dx by I(M) 

m 

we get 
~ ( m )  - -  ~(m) - -  ~(M) - -  Z(M) (H(M) - -  C(M)) 

We now differentiate toM(m) and by noting that 
dI(M) 

dm -- I +  ~ I(M) 

and 

C(M) = 

d(H(M) --C(M)) 
aM = - -  ~ (H(M), 

we find that 

d~M(m) 
dM 

(12) 

= H ( M ) - - ( I  + -~I  (M))(H(M)--C(M))+I(M)~H(M)= 

" = C(M) I + ~ I ( M )  • (13) 

Inserting the expression for "r (s) 

ao ij .  
M 

i (C(M) 
i - - ~  

dR (M) 

dM 

d~M 
The resulting expression for 

d~M(m) (1 - -  ~) C(M) 

dR(M) 
C(M) - -  ~ f g s(S) ds 

M 

dR 
in ~ we get 

( s - ' - -  !)  g(s)ds = - -  

M 

will hence be 

M 

m 
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= I ® { {_m_~ ~ ~ i__~  ~M] 1-~] (I5) 

f g (s) ds 
I C (M) ~ s 

M 

We see that  the first factor does not depend on m whereas the 
second depends only on m/M.  The first factor is obviously always 
greater than one. If ~ < I (and according to [2] it seems reasonable 

I f g (S) to work with values of ~ inthevicini tyofo,5)  thera t io  C ~  a s ,is 

M 

will be a decreasing function of M and, since 

g (s) < g(s) , for s > M, 

tO 

I ; g (s) ds < M~-  1. we see that  C(M) _ s 
M 

This means that  the first factor in - -  
d~M . 

is bounded above by 
dR 

(s > a). 

~(x) = 

C(x) = 

We now introduce g(s) ---- - a 

We get 

H(x)  = a~ x - - ' - - "  
tO 

f H(t)dt a .  x--~'--~ +1 x H(x) 

z 

g(s) s - ~  ds = = ~ H(x) 
~ + ~  o t + $  

z 

I 

(i - -  ~ M~-' )  

and for large values of M this quant i ty  is close to one, the more so 
the smaller ~ is. We have thus shown that  ----d~M/dR will, for large M, 
be approximately independent of g(s) and depend only on m/M.  
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f g (s) aa~ M--~--i ds 
s ~+I 

M 

Inserting in (12) gives 

M ( ~¢~H(M)) toM(m) = =(m) H(M) - -  I(M) H(M) - -  = 

= ~(m) - -  MH(M) + -- ~+~--I ~ 

,.o, = =(m) - -  \ ~  + ~ - -  i + (~ + ~) (1 - -  ~) / 

Inserting in (15) gives 

d X M  (m) _ I 

I - -  M~ -1 
0 ¢ + i  

Tedious but elementary calculations yield 

R ( M )  - -  (18) 
1 ~ - ~  ( ~ + ~ - - 1 ) ( ~ + ~ )  ~(~+1) 

If we add this to ~M(m) the terms containing M1--B cancel out, and 
we get the following expression for the total ceded risk premium 
volume 

~M(m) + R(M) = n(m) + \ ~ - T ~  0t + I (19) 

The apparent lack of dimensional consistency in (18) and (19) 
is a result of our particular choice of ~s(x). All terms in toM(m) have 
the dimension I - -  ~ in m or M, but  due to the form of 7(s), R(M) 
will also contain a term which appears to be dimensionless. If we 
had called the lower limit of x b instead of chosing it as our unit, 
both ~M and R would have been of dimension one (in a or b). 

Numerical examples and conclusions 
In order to illustrate the behaviour of ~MIm) we have computed 

toM(m) numerically under the assumption that  g(s) is of the Pareto 
type with 0t = 2. The results are given in table I for the uniform 
case and in table 2a for the Pareto case with ~ = 0.5. 
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When m and M are chosen as multiples of a the computational 
work involved is very slight. After computing R ( M )  and ~(m) it 
only remains to compute the product of two factors, the first 
depending on M and the second on m (see (IO) and (19)). I t  is 
further seen from (IO) that  in the uniform case the parameter a 
simply plays the role of norming constant. In the Pareto case, 
however, this is not so, since the damage degree distribution 
depends oil s. I t  is therefore necessary to fix the value of a and in 
the tables I and 2a the value a = 400 has been used. 

Table I 
~M(m). U n i f o r m  case .  

( ~ =  2. a = 4 o o )  

M 

a 

2a 

3a  

4 a 

5a  

a 2a 3 a 4 a 5a  IOa 2 o a  5oa  lOOa Do 

200 i o o  67 5 ° 4 ° 20 i o  4 2 o 

42 69 84 94 113 123 129 131 133 

o IO 21 29 47 57 62 65 67 

o 4 9 25 35 4 ° 42 44 

o 2 14 23 29 31 33 

o 8 17 23 25 27 

One sees immediately that  the values in table I are much larger 
than the corresponding values in tables 2a. This is a natural  
consequence of the difference in expected damage degree. In the 
uniform case 7(s) is 50% whereas in the Paxeto case, with ~ = 0.5, 
7(s) is less than lO% for s > 400. To facilitate comparison of 

Table 2 
~ra(m). P a r e t o  Case .  

(a= 2, a----4oo. ~ = o , 5 )  
a.  A b s o l u t e  v a l u e s .  

M) 

a 

2a 

3a 

4a 

5a 

a 2a 3a 4 a 5a lOa 2oa 5oa looa Oo 

21.o 7.46 4.o7 2.65 1.9o o.671 o.238 o.o6o o.oo2 o 

7.8 IO.I  I I . I  11. 7 12. 7 13.1 13.3 13.3 13.3 

O 1.87 2.75 3 .26  4 .15  4 .50  4 .66  4.71 4 .71  

O O.77 1.21 2.O 3 2 .36  2 .51  2 .57  2 .57  

O O.4O 1.15 X.47 1.61 1.67 1.67 

O O.TO 1.OO 1.I  4 1 .19 1.19 
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b. Normed values. 

\ M 

12. 

2 a  

3 a 

4 a 
5 a 

a 2a 3 a 4 a 5 a Ioa 2oa 5oa iooa Oo 

2oo 71 39 25 18 6 2 0.6 0.02 o 

74 96 lO6 112 121 125 126 127 127 

o 18 26 31 4 ° 43 44 45 45 
o 7 12 19 22 24 24 24 

o 4 i i  14 15 16 1 6  

0 7 IO II II I1 

r e l a t i v e  s izes  we  h a v e  t h e r e f o r e  n o r m e d  t h e  v a l u e s  fo r  t h e  P a r e t o  

case ,  b y  p u t t i n g  R(a)= 20o a n d  c h a n g i n g  a l l  o t h e r  v a l u e s  in  

t a b l e  2a  in  p r o p o r t i o n ,  T h e  r e s u l t s  a r e  g i v e n  in  t a b l e  2b. 

A c o m p a r i s o n  of t a b l e  I w i t h  2b c a n  n o w  be  s a i d  t o  s h o w  t h e  

e f fec t  of t h e  " d e c r e a s i n g  d a m a g e  d e g r e e "  in  t h e  P a r e t o  case.  

R(M) a n d  re(m) d e c r e a s e  m o r e  r a p i d l y  t h a n  in  t h e  u n i f o r m  case  

a n d  tOM(m) a p p r o a c h e s  i t s  l i m i t  re(m) qu i cke r .  

Table 3 
d~M 
dR 

m Pareto Case 
~ r  Uniform Case (~ = 0.5; M = 0o) 

0.005 
O.OI 

o.o5 
O.I  
0 . 2  

0 . 3  
0 . 4  
0 . 5  
0 . 6  

0 . 7  
0 . 8  

0 . 9  
1.O 

I .OOO 
I .OOO 

0.998 
0.990 
0.960 
o.91o 
o.84o 
0.750 
0.640 
O . 5 1 0  
o.36o 
o.19o 
0.000 

0.965 
0.95 ° 
0.888 
0.842 
0.776 
0.726 
0.684 
0.646 
o.613 
0.582 
0.553 
0.526 
0 . 5 0 0  

T h e  b e h a v i o u r  o f -  drcM/dR is i l l u s t r a t e d  in  t a b l e  3 a n d  f igu re  2. 

T a b l e  3 g ives  v a l u e s  of - -  d~M/dR in  t h e  u n i f o r m  case  a n d  a s y m p t o t i c  

v a l u e s  of - -  drcM/dR (i.e. t h e  s e c o n d  f a c t o r  in  (I5)) in  t h e  P a r e t o  case  
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with  ~ = 0.5. The  same  funct ions  are shown in graphic  fo rm in 

figure 2. 

I.O 

o.5 

I 

\ 

I I I I I I I 
o.5 x.o 

Figure 2. 
I. Uniform Case II. Pareto Case (6 ~ ° - 5 ;  M ~0o) 

Table  4, finally, gives values  of the  "cor rec t ion  fac tor  for finite 
M", i.e. the  first  fac tor  in (I7) c o m p u t e d  for ~¢ -~ 2 and  ~ = o. 5. 
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Table 4 

Paxeto Case. Correction factor for finite M. 
(~ = 2,  ~ = 0 .5)  

M 

I 0 0  1.043 
2oo 1.o3o 
300 1.025 
400 1.021 

M 

800 1.Ol 5 
I2OO I.OI2 

1600 I.OIO 
2000 I.O09 

M 

4000 I.OO 7 
8000 1.oo 5 

20000 I.O0 3 

40000 I.OO2 
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