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The purpose of this paper is to describe a technical procedure, 
which enables one to compute values of the generalised Poisson 
distribution function, with an accuracy considered sufficient for 
insurance companies and with satisfactory speed. The procedure 
requires a fast medium sized computer. 

The computation of values of the generalised Poisson distri- 
bution function has become a timely problem in Finland, because 
of the introduction by  the Supervisory Service of more stringent 
requirements in determining limits of the so called equalisation 
reserves, which have their theoretical basis in the random fluctua- 
tions of claims amounts. The question has also been discussed in 
papers submitted by  Dr. Pentik/iinen [3] and Dr. Pesonen [4] to 
this Colloquium. Because the practical computation is a further 
problem, the Federation of Finnish Insurance Companies set up a 
committee in 1962 to gather and work up the necessary statistics 
from various branches of insurance and to develop the computa- 
tional methods ready for use in practice. The committee has almost 
completed its work, and one of the results, a procedure to compute 
values of the generalised Poisson function with a mixed method, 
is described below. The method is referred to briefly in [4]. The 
programming and further planning work has been done by  Dr. 
Loimaranta and M. Sc. PSrn. 

On the principles 

The computation is based to a partitioning of the distribution 
function of one claim, 

s (x) = pls l  (x) + / ,~s~  (x) + / ,~s3  (x) (~) 

*) Those interested in the program written in ALGOL for an Elliott 
5o3 computer should write to "Vahinkovakuutusyhti6iden Tilastokeskus", 
]Bulevardi 28, Helsinki, Finland. 
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where 

p~ = S(x~) 

p, = S(x,) - - S ( x z )  and 

The functions So(x) are 

I 
Sz(x) : ~ S(x) when x < xz, 

I elsewhere 

(2) 

s , ( ~ )  = 

o when x .~ xz 

I 
(S(x) - -  S(xz)) when xz < x ~ x, 

I elsewhere 

(3) 

o when x <~ x2 

S3(x) = I 
(S(x) - -  S(x,)) elsewhere. 

According to a lemma in/4/,  the generalised Poisson distribution 
F(x), which under certain assumptions is the distribution of total 
claims, can be represented as a convolution of three generalised 
Poisson distributions: 

e _ n  n/c 
F(~) = k---Y- sk*(~) 

Q 

where 

= Fx(x) * F=(x) * Fs(x), 

(4) 

(5) 

are separately generalised Poisson functions. The function Fz(x) 
is computed by normal approximation and the functions F2 and 
F3 by Monte-Carlo method. The final convolutions (5) are per- 
formed in the same simulations. 

e-.g/,n (p,,n)~ 
F~(x) = • S~ * (x) (6) 

k! 
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The point xl is so selected, that  F~(x) is approximated by  a 
normal approximation with sufficient accuracy. This is done by  a 
subsidiary program which prepares the input data  for the main 
program. The theory for the computation of xx is presented in 
/4/. At the same time, the mean value and standard deviation of 
F~(x) are computed. The point x, is determined so, that  only a few 
most dangerous points remain in $8, e.g. by setting p8 = I/IOO p,. 

The function F ,  is computed by  a Monte-CArlo method. For this 
purpose the distribution 

P(N,) = ~ e-~'" (P'n)k (7) 

H 

and the functions 

s~'*(x)(= s,(x)); s;'*(x); s, '*(~);... ;  s~*(x) (8) 
up to a sufficiently large k are needed. The convolutions (8) and 
the distribution (?) are determined by the main program. When a 
random number N~ is generated by the help of (7), i t  is wri t ten as 
a binary number 

N~ = X a,2 k (ak = o , I ) .  

Then, 2~ ak random numbers ~k (ak = I) between o,I Are generated 
and a sample value of x from F~(x) is reached as the sum 

~, = x x ( s ,  '~* (~) = ~k). (9) 

The function F3(x) is treated more directly. First, a random 
number N8 is determined like N~. Then, generating N8 random 
values Ok between o,I a sample value of Fs is reached as 

When a random ~1 

~ / ~  ~,), where 

the value 

~ = ~ x ( s ~ ( x )  = e , ) .  (~o) 

is taken from the distribution ~(p~n ~1, 

~ = .~ ~dS~(~), (~) 
0 
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is a sample value of x with distribution function F(x). Sufficiently 
many values 4 determine F(x), points of which can be determined 
e.g. by  computing the number of 4: s exceeding given x-values. 
The 4: s themselves are an additional output  of the program. 

The method of computing the convolutions (8) is the following, 
which the author presented to the meeting in Edinburgh in 1964 
/2/. Let the distribution function Qj(x) be given at the points 

j -  • (I3) 
ji ~ ' n 

The convolution is then, approximately, 

Q(X) • Qi (X)  * e2(x) ( I 4 )  

- £ 
~B<X 

where x2j ~ x - -  xl~ < x2, j+~. In the computation of convolutions, 
the prescribed form (13) is required as input and output ;  first an 
input is made from 5~(x) by the subsidiary program mentioned 
above, then an output  for the repetitive computation of the next 
convolution S~*(x) is prepared by  the convolution program 
itself. This is done by  an automatic interpolation system from 
certain guessed values of x, which system also accepts disconti- 
nuities. Moreover, a correction for the mean of Q(x) and its tails is 
performed. For the accuracy of the method see/2/. 

The computing program 
The program to compute F(x) is written in Algol for an Elliott 

503 computer. A subsidiary program prepares the data needed 
as an input for the main program, which computes sample values 
of F(x). In this subsidiary program, the original input S(x) is 
assumed to be given at the points x, -~ a. b ~. How to get the function 
5(x) for a given company or situation is another problem which 
falls outside the scope of this paper. The main program is divided 
in six parts, which have their own function in computation. 

In part i the numbers n, pl and pl + p2 are read in, universal 
integers and reals are defined and the necessary storage space for 
PIN2) and P(N3) is determined by  the procedure "store". 
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In part 2, besides the necessary definitions, procedures "sum",  
"poisson", "norm" and " te ta"  are defined. With the aid of "pois- 
son", the distributions P(N,)  (see (7)) and P(Ns) are determined 
and stored. If pen> ioo, P(N,)  is computed from the approxi- 
mation 

P(N,)  = e-V,n v! m • 2 N2 ~ - -  • (15) 
e - o  

The necessary storage space for the convolution iunctions (8) is 
determined and ~1, ~2, S2(x) etc. are read in. The procedure "sum" 

computes ~ f ,  and the procedure "poisson" computes values of 

the Poisson distribution. Random numbers with a normal distri- 
bution are computed by "norm",  the method being developed by 
Dr. Loimaranta in AB Atomenergi in Sweden. Random numbers 
rectangularly distributed over (o,I) are generated by the multi- 
plicative congruential method in procedure " teta" .  

The convolutions (8) are computed and stored in part  3. The 
main part  of convolution program serves for the organisational 
interpolation work. 

The function S(x), x > x2 is read in and the mean values in 
convolutions of S2(x) are corrected in part 4. 

Part  5 comprises the principal work: it computes 4 according to 
(12). 

The output is performed in part  6, either the number of 4' s 
exceeding 23 prefixed values of x or, additionally, all values of 4. 

Some general remarks 

In the testing phase of programming the results were compared 
with some values obtained by Bohman and Esscher /I/ with S(x) 
from non-industrial business in /I/. The results, for a sample of 
IO.OOO from F(x), were found to agree with the Swedish results. 
The computation took c. 8 minutes for a given distribution F(x) 
(sample of io.ooo) with the Elliott 503 computer. 

The procedure to compute F(x) seems to meet sufficiently well 
the necessary requirements of accuracy and computational speed. 
As a computer program it is easy to use and quite general, in practice 
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no information is required concerning the shape and location of the 
function S(x) and the value of n. Moreover, the program can be 
modified in many directions to meet different needs. One such need 
is to compute the upper limit of the equalisation reserve presented 
in/5[. For that  purpose, a sample value ~1 is computed for the first 
year, conclusions concerning the situation can then be made by  a 
further program, then a second year in the life of the company 
can be simulated perhaps taking into account the result of the 
preceding year and so on. The situation ~ after n years can thus 
be reached by  simulating the n years in sequence (a single ~ is 
determined for the v' th year). When this simulation series of n 
years is repeatedly performed sufficiently many times, the distri- 
bution of ~ is obtained. The process is fast in practice if S(kvx) 
can be assumed to be the same in all years (kv = constant for each 
year, k ~  the amount of one claim in v' th year) and n can be fixed. 
As additional arguments e.g. a stop loss treaty, an assumed dividend, 
funding, rating and reinsurance policy can be at tached to the 
computations. The possibility of examination and comparison of 
quite complex situations is offered. However, such investigations 
(management games) are probably sufficiently realistic with a simple 
normal approximation. 

Another generalisation 
p2 = i, by  using another 

of the program is reached if we can set 
functions in (4) instead of 

e-n nk  

P(N) --  k! 

Many ways to improve the procedure can also be seen. One such 
way, if the possibility for further simulation can be removed, would 
be the following. Let the point 

be computed by  a Monte Carlo method as in the procedure described 
(cf. 12). We can write 

F(x) = Fl(x) * F'(x) 

= i ¢ ( x - -  B)dF'(~). (16) 
@ 

With sufficient accuracy, if the simulation is repeated N times, 
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the increments dF'('~) can be regarded to lie at  points ~ ,  with the 
I 

amounts ~ .  Thus 

I 
F(x) = ~ ~ ¢ (~ - -  0,) 

by which F(x) is directly computed at the points x. The variance of 
the computed value of FF(x) arising from the nature of the Monte 
Carlo method is less by this method than by the described program, 
and the accuracy of the result can be controlled by sequential 
checking during computation. The variance 

a '  ( F ( x ) )  - -  N -  I 

I 
~ N--x-- F(x) (I--F(x)),  (x8) 

where the latter expression stands for the variance for non-improved 
Monte Carlo procedure. 

Similarly 

~, (I-F (x)) 

I 
~ N - - x ~  V(x) (~ - -  V(x)). (~9) 

The inequalities (i8) and (I9) reveal the improvement particularly 
for the tails of F(x). 
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