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Drs. H. Bohman and F. Esscher have reported in a recent paper 1) 
an extensive research performed in Sweden on the different methods 
of calculation of the distribution function of the total amount of 
claims. In the present paper certain methods are discussed in so 
far as they are different from those presented in the above quoted 
paper. The consideration is restricted to the generalised Poisson 
function even though some results can be easily extended. The 
author has already commented on some of the results represented 
in the sequel at a special meeting of the I7th International Congress 
of Actuaries in Edinburgh. 

I. Lemma.  Let F ( x ) =  F(x;  n, S) = e'" ~ n~Sk*(x)/k! be the 
o 

generalised Poisson function under investigation. If S(x)= 
1 

a,S,(x), where • a, = i (the functions S, need not be distribution 
functions, neither must the constants a, be real numbers of interval 
[o,i]), then 

F(x;  n, S) = F(. ; aln, $1) • . . .  * F(. ; am,  St)  (x), 

as is easily verified by the use of characteristic functions. This 
component representation is repeatedly used in the sequel. 

2. A Modif ied Esscher Method. Tl're Esscher method is based on 
an observation that  the well-known Edgeworth expansion is more 
advantageously applicable to a conveniently modified distribution 
function instead of the original generalised Poisson function. Let 

us assume that  the value of F(x) is required at a point xo > S xdF. 
o 

1) H. Bohman and F. Esscher: Studies in Risk Theory with Numerical 
illustrations Concerning Distribution Functions and Stop Loss Premiums. 
Part I.--Skandin. Aktuarietidskrift, 3-4 (I963), PP. 172-225. 
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The Esscher approximation formula is achieved by  integrating 
over the interval (x0, oo) the approximation 

dF(x) = eu-nx"~,  dx X ek ep(k) (z), (I) 

where ~ = : x ~ enxdS; x0 = n~l; co = I ;  ct = c~ = cs = o; 
| 

The approximation (I) fits best in the neighbourhood of the 
point x0. By taking this observation into account it is natural  to 
replace the equation Xo = n~l, which defines the constant h, by  
the equation x = n~l. After this modification h becomes a variable, 
and integration gives 

&j 
e - - n  

-- ( (h) (i + A  (h)--B(h))dh. 
At 

(2) 

where ~k(h) = S x~ ehx dS; A(h) = 94 (h)/8n~(h); B(h) = 5}~(h) 
o 

/24n~(h) ; xl = n~l(hl) ; x2 = n~l(h2). An example, S(x) = I - -  e - x  
is treated in the next section. 

3. Exponent polynomials. By selecting St(x) = I -  e--b: in the 
Lemma, a component representation of F(xl is gained, where each 
component is a modified first order Bessel function of imaginary 
type. If there is a device available which easily computes a strictly 
restricted number of convolutions, the usefulness of this method 
depends on how great is the required number r of components, 
and how easily each component is computable. The calculation of 
one component is essentially the same problem as calculating the 
function 

F(x;  n, I - - e  -x) = e-" + ~ f(x)dx,  
o 
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where (nx) k 
f(x) = ne--~x+m k! (k + I)!" 

o 

For small n, say l / ~  < IO, the series obtained by integration 
is easily calculated directly, but as soon as ~/~ becomes great, 
the direct calculation is very laborious. Fortunately in this case 
it is possible to use the asymptotic properties of Bessel functions 
by means of the expansion 

~ e - , V . ~ - V ~ , ' [  3 15 

zo5 1/~)_4 ] 8192 ( 1 / ~ ) _  3 4725 72765 
524288 ( 8388608 (~/~)--~ + 

+ Remainder. (3) 

It  is interesting to compare this expansion with the result 
obtained by the modified Esscher method for S(x)= I - - e  -x. 
On applying the formula (2) the calculation gives 

dF '!  e-,V~-V~)' [ 3 ] 
d x - - ~  / 2g~W~ I - - ~ ( n ~ )  -1  

or the very same as the first two terms of the expansion (3). Since 
both the remainder of the expansion (3) and the terms of higher 
order, given explicitly, are insignificant unless if ~/~ is quite small, 
the modification (2) gives, practically speaking, an exact result 
in the case S(x) = I - -  e-X. 

4. Step function approximation. If we approximate the function 
S(x) in the Lemma by a step function, F(x) becomes a multiple 
convolution of ordinary Poisson functions. The usefulness of this 
method depends on whether it is possible to rest content with a 
relatively small number ot steps. In order to test numerically how 
many  steps are required, it is possible to proceed as follows: Let 
step points of the approximation be xl < x~ < . . .  (x0 = o) and let 

x ,  = n I S ( x , +  0 - -  S(xd] 

t2-J - , + .  

F,(x) = e-~ ~ ~. (m, = I xdS/(S(x,+ O --  S(x d ) 
x l 

o 

Fappr = Ill*F,. 
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By replacing this approximation alternatively with functions 
F- = III*F~ and F+ _-- II*F~, where 

['] 
m,~, ;, tm~X~l ~ F ; < x ) - - e  " x, .i /k!' and 

0 

[ ']  

0 

upper and lower bounds for the approximation Fappr are obtained 
in the sense that  both the function F and Fappr are "approximately 
between" the functions F-- and F+. All of these functions have 
the same mean, and the standard deviation is greatest for F + and 
smallest for F--. Owing to the steps this error estimation is not 
exact. A part of this question is discussed also in item 7. 

5. Monte Carlo method. The idea is to obtain by simulation a 
random sample {xl, x2 . . . .  } of a random variable, the distribution 
function of which is F(x).  For that  purpose the distribution function 
of the number of claims 

2 /  

P ( N )  = e - n  -~-, 
0 

is needed, and the functions 

Se* (x) (=S(x) ) ;  S ~1. (x); S~'* (x ) ; . . .  ; S~'* (x) 

up to a sufficiently large value of k (in general no more than 
2 ~ ~ n + 4 ~/n). For the first simulation a random number N of 
claims is generated by means of the distribution P ( N )  and a random 
number generator. Then N is written as a binary number N = 
Z aI¢2 ~ (ak = 0 or I), and finally, using the formula 

SN* = Yi* $2'* 

the first member xl of the sample is obtained by means of ~ ak 
random numbers and of functions S ~** (ak ~- I). By repeating the 
procedure sufficiently often a sample of requisite size is obtained; 
this sample provides directly an estimate of the function F(x). 
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This method is suitable in practice particularly if n is small. On the 
other hand, if n is large, difficulties arise when an at tempt  is made 
to give an accurate calculation of the tails of the highest convo- 
lutions S ~**. These problems have been treated by this author in 
comments at the Edinburgh meeting quoted in item I. Further 
notes are found below. 

6. Mixed methods. By using the Lemma the function F can be 
partitioned into several components. By applying independently 
to each component a proper calculation technique, different kinds 
of mixed methods emerge. 

Fig. I. 

As an example a mixed method is reviewed, which Finnish 
insurance companies plan to use in connection with evaluation 
of the maximum and minimum amount of a so-called equalisation 
reserve. In improving this method decisive importance has been 
attached to the desire to obtain a single computer program which 
could handle all combinations of n and S occuring in practice. 
Let us assume that the function F is represented in component form 

F = F 1  , F ~  , F 3, 

where F1 consists of claims < 4, F~ claims between ~ and 0, and 
F3 of claims > -~. The intention is to use a normal approximation 
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for the function F1 and the Monte Carlo method for title others. 
I t  is worthwhile to mention that  in this approach it is not useful 
to actually calculate the functions F~, F ,  and F 3 separately, since 
the final convolution F ~ ,  F2 • F3 can also be calculated by simu- 
lation simultaneously with other simulations. 

The first problem is to find the greatest number ~ such that  F1 
can be considered to be a normal distribution. If the company is 
very small, then ~ = o so that  F~ degenerates to the elementary 
distribution func t ion ,  (x). If this is not the case, let 

oo 

Sf* 
0 

where ~ = n S ( 4 ) ;  $1 (x) = S(x)/S(~) for x < ~ .  Further let 
, a  

a, = f x*dS~. A necessary condition in order that  F1 can be 
Q 

approximated by a normal distribution is that  the second term of 
the Edgeworth expansion is small, i.e. for all x 

I0~8 (X--cXl I 
6 ~/~ ~ * (3) \ . -~ - ] [  < ¢, say, 

hence 

0t3/6 ~ / ~  0¢~* < ¢. 

This condition does not indicate, strictly speaking, that  for all x 

Fi [ x--o~ ~ 
(x )  - -  ¢ < *' 

but for practical purposes it gives a satisfactory test especially in 
applications where large values of x are the most important. For 
large values of x this condition implies in general that  the error is 
significantly less than ~; moreover the components F2 and F 3 then 
play a decisive r61e. .~ 

This test calls for calculation of integrals j" xkdS (k = i, 2, 3) 
0 

for a sequence xl < x~ < . . . ;  the greatest x, satisfying the test 
inequality gives a suitable ~ value. 

A still faster though slightly more inaccurate, and for a small 
company perhaps unnecessarily severe test, is derived from the 
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one described b y  using the  following assumpt ion ,  which in tu i t ive ly  
fits p rac t ica l  cases in a sa t i s fac tory  way.  T h a t  is, if the  d is t r ibut ion  
consist ing of claims ~1 < x < ~ can  be a p p r o x i m a t e d  b y  a no rma l  
d is t r ibut ion  function,  then  the  d is t r ibut ion  consist ing of claims 
_< ~2 can also be a p p r o x i m a t e d  b y  a normal  dis t r ibut ion.  Af te r  
s imple  calculat ions one ob ta ins  for , = .oi  the following rule 1). 
a sui table  ~ value is the  g rea tes t  n u m b e r  sa t is fying the  inequa l i ty  

S(~) - -S  (-56 ~) > I 3 2 / n .  

As soon as the  n u m b e r  ~ is found, the  second l imit  ~ can  be 
chosen so t h a t  

- -  s 

I - -  S (4) - -  .oi ,  say. 

I f  ~ is defined in this way,  the  s imula t ion  of F3 requires  in 
prac t ica l  cases such small  r a n d o m  number s  N of claims t h a t  

u n c o m f o r t a b l y  high convolut ions  S~** are not  needed, and  conse- 
quen t ly  no tail difficulties arise. 

7. Majorant distributions. In  m a n y  appl ica t ions  the cumber some  
calculat ion of a general ised Poisson d is t r ibut ion  would be avoidable  
if i t  were possible to find an easily compu tab l e  d is t r ibut ion  funct ion 
more  dangerous  t han  F(x). The  following propos i t ion  and  no t ab ly  
its general isat ions would solve the  p rob lem in qui te  a sa t i s fac tory  
w a y :  

Proposi t ion.  Let S(M) = I and ~ = E {X)/M, where E {X} ---- 

i xdF. Then for all x > E {X) 
e 

F(x + M) > G(x), 

l) L e t ~ = ~  and ~ t = ~ l  ( t < I ) .  Let ~ , =  S x*dS/(S(~)--S(t~)). Then 
t~ 

~3/¢¢23/l <_ t -3, so that  if v = n(S(~) -- S(t~)), then the necessary condition 
for normal approximation gives a rule v > t--e]72~¢z. In a sense an optimal 
value of t is reached by requiring that the needed mean number of claims 
to length unit, ~1 as a measure, reaches its minimum. By differentiating the 
result t = 5/6 is obtained. 
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where 

G(x) = e~ ~ ~.  
0 

If also F(x) is an ordinary Poisson distribution, i.e. 

F(x) = e-,~ -~- (n >_ ,), 
O 

the proposition can be proved in the following manner: 
One may assume M = i. I t  has to be proved that if x > ,: then 

for all n > 

g(~) = e-,~ -~ > e - ,  ~ ~ = G(x) t = (x + I)  . 

n 0 

The function g(n) has steps at points n, = i ~ where i is an 
X -~- I '  

integer. Elsewhere g'(n) = - -  e-nnt/t! < o. Hence, it is sufficient 
to prove that g(n,--) > G(x) for all i > Ix + I]. This requirement 
is certainly fulfilled if g(n,--) > g(n,-i - - )  for all i > Ix + I], since 
~(x) _~ g(nt~ +l~ --) .  

IX + I ]  
I f x  > , , t h e n f o r a l l n >  x + I  ~ ( =  nEz+l]) 

x < [ x + I ] _ ~  [~ ( x + I ) ]  = t ;  

thus 

( x + I  + I - + 
~ < X -~-" I X "~- I X + I 

t 
+ --t. 

x + I  

Consequently for all continuity points n > nix +11 

g" (n)  = e - "  ( t - -  I ) !  - -  I < o .  

xt ~ < - - +  
x + I  
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Hence for all i > Ix + I] 
tt  i 

g(n,--) -~ g(nt-1) + S g" (n)dn > g(n,.1) + (n,--n,_l)g" (hi--) 

hi-1 -I T n~ -I 
- -  e -  n ~  - -  - -  g ( n , _ l - - )  + e - n , - ,  ( i - - I ) !  x + I ( i - - I ) !  

Since eU-~ > y for all real y, the inequality 

• = e n t  - n i t  _ i _ ~  

-- I +i--I X'JF I 

(n,-1/'-1 
~ n i  - n l - 1  - -  

\ n ~ /  

results, so that  really g(n~--) > g(m--~--). 

The author does not know whether the proposition is generally 
true. Intuit ively it seems to be correct, but  if this is the case the 
proof is probably not simple. 


