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Most large insurance companies have today electronic computers 
that enable not only efficient actuarial statistics, but also research 
in applied risk theory. An important task in this latter field is the 
developing of an information system for control of the business 
as to the statistical balance between premiums and claims. The 
entire system can be separated into two parts, one descriptive and 
one analytic part. The descriptive part, that also may be called 
statistics production, is the base of the whole system and must be 
constructed in a general way to make it possible to apply mathemat- 
ical tools in risk analysis. For the analytic part and its applications 
for computers there is a growing interest among actuaries as can be 
noticed from the reports in actuarial journals. The classical models 
of collective risk theory have recently been extensively illustrated 
by numerical calculations performed by the convolution committee 
in Sweden. 

When starting to construct the analytical part of the information 
system one finds that in spite of programming for the computer 
there is firstly a hard work to find realistic mathematical models, 
especially mathematical expressions for claim distributions, and 
secondly to estimate their parameters. According to the mathemat- 
ical theory of risk, or the risk process, it is necessary to assume and 
test specific mathematical fomns of two distributions, the number 
of claims and claims amount. When dealing with practical problems 
in motor car insurance the Polya-process 

( (t) = x + h -  z (z) 
+ h/ kt + h/  

seems to give a very good approximation of the number of claims x 
for one policy during the time interval (o, t) measured on the 
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operational scale. If we assume stochastic independence among the 
N policies in a risk group, and define a random variable n as the 
sum of all claims in the group 

n = x l  + x ,  + . . . . .  + x N  (2)  

we cart get the probability distribution of n, as the N: th  convolution 
of the distribution (I). The Polya process has been investigated by 
O. Lundberg, H. Ammeter  and others. Here shall be mentioned a 
basic feature of the process that  has great importance for the appli- 
cations. 

The characteristic function of the distribution (I) is 

F ht ]--~ ~,, ( . )  = [ i  - ( ~ -  - i )  (3)  

and the characteristic function of its N: th  convolution 

f ] [ 1 t - - 2 v h  t N  (e*tt - -  I) (4) ~ . ( u )  = x -- ~ ( ~ -  -- ~) = ~ -- 

This implie~ that the total number of claims n has the following 
distribution 

n ~ i - +  Nh/ ~i  + Nh (5) 

Applications to risk problems show that  in the Polya case mathe- 
matical convenience and practical usefulness coincide. 

When the question comes to accumulated claims amount and 
risk premiums the problems are harder to solve. The classical risk 
theory starts with the distribution of the accumulated claims 
amount  as a sum of weighted convolutions. Thus the accumulated 
claims amount  

Y = Yx + Y8 + . . . . . .  + y n  (6) 
has the following distribution 

I t  

where V(y) is the distribution function of any Y,. 
We obtain well-known models if we chose as weights probabilities 

from the Poisson or negative binomial distributions, or in more 
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general terms their corresponding stochastic processes. I t  cart be 
proved (Ammeter I948 ) that  under the assumptions made above 
in the  Polya case the normalized variable 

Y - - E Y  
z = (Var y)ll~ (8) 

has a distribution that for large N can be represented by  the first 
two terms in the Charlier expansion 

vcxII(z) 
F(z) = ¢ (z) 3! (9) 

Where y is the coefficient of skewness 

Izs 
v - (Vat (Io) 

and ~t8 is the third central moment of the variable Y. It  seams very 
reasonable that  this expansion should be valid even if the moments 
appearing in the relations (8) and (9) are not exactly from a Polya 
(or Poisson) population in the general convolution (7). If N is fairly 
large we can take the empirical moments of the risk group and in 
the ease of small groups, we can use estimates from similar larger 
groups. The main problem in this way of approaching the distribu- 
tion of classical risk theory is to estimate the moments of the varia- 
ble Y. This can be done in an indirect way  without any assumptions 
on the mathematical form of the distributions Pn and dV(y) as will 
be shown below. The procedures are well adapted for programming 
and thus integration in an acturial eontrol system applied for 
a computer. 

The formulas for this distribution free procedure are deduced 
for the risk premium R defined by  

Y 
R -- N (Ix) 

From this relation we get immediately 

I 
E R =  Sr E v  

I 
Var R = -:-:_ Var Y 

(i2) 
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To estimate the moments of R we proceed in an indirect way. 
From the implicit moment relations that can be expressed by  the 
series expansion of the characteristic function of the variable R, 
or easier the variable Y, we get the corresponding expansion of the 
variables n and Y in a functional relation that  can be solved 
successively in respect to the moments of R, after taking in this case 
the first, second and third derivative of the characteristic function 

~r(U) = E # " r  = . (  e *=r X p .  d V " *  (y) = X p. E r,(u)P' (13) 
@ 

and setting the variable u equal to zero ill each step. From the 
assumption of independence among the variables x, in the sum (2) 
we get 

Vat n = N Vat x, (14) 

Let us denote the moments of the variable x, by  0t~ and the mo- 
ments of Y, by  ~ ,  For the variable n the following relations can 
be deduced 

X n p .  = E n  = Not1 

Zn2pn = En2 = Nat2 + N(N-- I )0 t l  (15) 

X n s # .  = En* = N o ~ 8 - - 3 N ( N - -  I)o~lot~ + N ( N - - I )  ( N - - 2 ) ~  

Using the standards formulas for the central moments ~ 

~ =  E R ~ - - E * R  

~, = E R 3 -  3 E R 2 . E R + 2 E*R  (16) 

and the relations (16) and (17) we obtain afterZsimple reductions 

E R = ~1 ~1 
I 

~,. = Var R = ~ ,  [ ( ~ z -  ~,8)~1 + [3~ ( ~ -  ~)] (17) 

I 
~, = ~ [(~8--3}x~, + 2~,) E n  + (3~,~z--3~)  E n  2 + }~ En"  

- -  (3~1 ~ - -  3 ~ )  Ea n - -  ~ En En2 + 2 ~  E n n] 

The variance above was computed by Btihlmann 1964 from 
another point of view. We now have the mean, variance and third 
central moment of the risk premium expressed in the moments of 
the distributions Pe(x) and d V ( y ) ,  and we can estimate these 
latter m o m e ~ s  from the material simply by  the corresponding 
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empirical moments. If the investigation concerns a small risk 
group, the moments ~ can be estimated from a similar larger group 
to avoid the uncertainty in computing moments of a very skew 
distribution from a small material. The moments 0tk generally 
become meaningful already in a riskgroup of I,OOO policies observed 
during a calendar year. This can be theoretically verified if the 
Polya distributions (I) and (5) are assumed, since the hypothesis 
of asymptotic normality here holds, and can be used to get confi- 
dence intervals of functions of moments. Here can be referred 
to Ammeter I948 and Cram6r I945. 

For the tabulation of (9) it is necessary to use a computer, 
if several risk groups are investigated. The procedures are then 
easy to handle especially if a modern problem-orieuted language 
is used. Here will be given an example of the distribution free 
method compared to a standard mathematical model of the general 
convolution (7), in which Pn is assumed to have the form (5) arid an 
exponential polynomial as approximation for the distribution dV(y) 
of individual claims. 

dV(y) = Z A,  B, e-s tY  (18) 

The numerical evaluation of the distribution of R in the mathema- 
tical model is done by the Esscher method for the Polya case, None 
of these details will be given here. The reader is referred to Ammeter 
1948 and to Esscher-Bohman 1963. The ESscher method has also 
been systematized by the present author ill a general computer 
program, and can thus be used for large scale investigations. The 
statistical material given below is drawn from Swedish third party 
motor car insurance. 

Table I 
Number of claims 

Number Observed 
of claims distribution Polya Poisson 

o 25.356 25.355, 7 24.993,6 
1 1.521 1.524,I 2.I49,I 
2 282 276,7 92,6 
3 58 61,4 2,7 
4 t6 14, 9 o,o 
5 4 3,8 o,o 
6 I 1 ,4 O,O 

27.238 27 .238 ,0  27.238,o 
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The fit is very good for the Polya model, but as expected the 
Poisson model cannot be used even as a rough approximation. 
As the time scale is operational in the Polya case we have the 
observed mean number of claims per policy t* = 0,086. Because 
of the asymptotic normality of the mean value, an approximative 
confidence interval on the 95 percentage level can be computed 
to (0,08, 0,09). The parameter h is estimated according to the prin- 
ciple of maximum likelihood to h* = o, i9836 and Nh* = 5402,9 . 
These estimates will be used in the parametric mathematical model. 

Tab le  2 
Cla ims  d i s t r i b u t i o n  

O b s e r v e d  E x p o n e n t i a l  
I n t e r v a l  n u m b e r  p o l y n o m i a l  

o- 500 1.229 1.223,12 
5o0- x.o00 578 522,42 

1.00o- 2.000 334 356,34 
2.o00- ° 3.00o 83 106, 88 
3 .ooo- 4 .ooo 36 47,45 
4.000- 5.000 25 26,78 
5.000- IO.OOO 35 38,29 

io .ooo-  15.ooo 12 6,34 
15.ooo- 20.000 4 3,05 
20.oo0- 30.ooo 3 4,93 
30.000 - 50.0oo 4 5,4 ° 
50.000 - 75.000 3 3,29 
75 .ooo- loo .ooo 2 i ,64 

> 1oo.ooo I 3,05 

2.349 2.349,00 

The fit is not exceptionally good, especially not for medium size 
claims. The estimation has been done by a graphic procedure, 
where the exponential terms have been estimated successively 
starting with the largest claims corresponding to the smallest 
value of B,. The details in this estimation will not be given here. 
The mean value in the above distribution of claims is 1.237,23. 
After the material has been normed to the mean value i,o the 
exponential polynomial has the following values of the parameters 

A1 = 0,00474 A2 = 0,01035 A3 = 0 , 2 0 2 6 0  A4 = 0 , 7 8 2 3 1  

B1 = 0,0192o B~ = 0,06380 B3 = 0,70800 B4 = o,567oo 

This material was run in the general purpose programs for the 



DISTRIBUTION YREE APPROXIMATIONS 17 

dis t r ibut ion  free m e t h o d  and  for the  Polya-exponent ia l  polynomial  
model .  The  following dis t r ibut ion  was calculated for the  risk 

premium.  

Table 3 

CalcuLsted distributions for the risk premium. The function is given at 
I9 points in the interval (o,84 R*; 1,2o R*). R* = lO5,7o. The argument is 

tabulated as factors of the estimated risk premium. 

D.f. distribution 
Argument D.f. Polya-exp-pol. free method 

0,84 0,007 O,OOI 
0,86 o,o19 0,009 
0,88 o,o44 0,o28 
0,90 0,086 o,o63 
0,92 o, I47 o,119 
0,94 0,228 o,199 
0,96 0,323 0,300 
o,98 o,427 o,414 
I,OO 0,532 o,532 
1,o2 0,631 o,64z 
I,O4 o,718 0,736 
1,o6 o,791 o,8x2 
1,o8 0,850 0,870 
I,IO 0,895 O,913 
1,12 O,928 O,944 
I,I4 O,952 O,965 
I,I6 O,969 0,979 
I,I8 O,980 O,989 
1,20 O,988 O,994 

Mean IO6,7 ° lO6,7 ° 
Standard deviation 12, 51 i i, i i 
Skewness o,484 o,474 

As expec ted  the var iance and skewness is larger in the  P o ly a  case. 
The  re la t ive  difference between the  two dis t r ibut ions is large in 
the  " ta i l s" ,  bu t  the  length  of confidence in tervals  will be a lmost  
the  same for the  two distr ibutions.  The  in te rva l  R * i o ,  I R*  
contains  in the  Po lya  case 8I percent  of the  probabi l i ty  mass and  
85 percent  in the dis t r ibut ion free case. For  pract ical  purpose  
when the  control  of p remium rates  is concerned,  it seems as if the  
two me thods  give approx ima te ly  the  same result,  if the  n u m b e r  of 
policies is fairly large. In  small risk groups we have  to  m ak e  cer ta in  
assumptions  in bo th  methods,  and  it is here  difficult to  s ta te  which 
m e thod  has the  best  meri ts  in applied research. 

2 
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