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I. The compound Poisson process in the wide sense is defined as a 
process for which the probabi l i ty  dis tr ibut ion of the number  i of 
changes in the random function a t t ached  to the process, while the 
parameter  passes from o to a fixed value x of the parameter  measur- 
ed on a suitable scale, is given by  the Laplace-Stieltjes integral 

@ 

where U(v, x) for a fixed value of x defines the distr ibution of 
v. U(v, T) is called the risk distribution and is either T-independent or, 
dependent on x. 

2. The compound Poisson process in the narrow sense is defined 
as a process for which the probabil i ty  dis t r ibut ion of the number  
of changes can be wri t ten  in the form of (I) wi th  a T-independent 
risk distribution. 

In their  general form these processes have been analyzed by 
Ore  Lundberg  (194o) 1). For  such processes the following relation 
holds for the probabil i ty  of i changes in the interval  o to x, P i  (T) say 

i t  Pi(x) = ( - -  x)i P~)(x) ; (2) 

this relation does not  hold for processes wi th  x-dependent risk 
distribution. Hofmann  (1955) has int roduced a sub-set of the 
processes concerned in this section for which the probabil i ty  for 
non-occurrence of a change in the interval  o to x is defined as a 
solution of the differential equat ion 

y '?  = y,~ (1 + xl])-", 

*) Presented to the Colloquium 1962 in Juan-les-Pins 
1) Literature references are given at the end of the paper. 
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~, ] > o and × ~ o; the solutions may be written in the form 
¢~)~,-q, where -~ is independent of ~ and of two alternative forms 
one for × = I and one for other values of ×. The probabilities for 
i changes in the interval o to ~ in the processes defined by the 
solutions of Hofmann's  equation are derived by Leibniz's formula, 

(~)-, , 
and are designated by ~i~vJ and, in this paper, called Hofmann 
probabilities. 

For × = o the Hofmann probabilities define a Poisson process, 
with application to the risk theory of insurance treated i.a. by 
Filip Lundberg, Cram6r, Esscher, Segerdahl (for references see 
Philipson (1961) (b)). For × = I the Hofmann probabilities define 
a Polya process, where the risk distribution is defined by a Pearson 
type I I I  density with two parameters, which by normalization can 
be reduced to such a density with one parameter. Such processes 
have been treated by Ove Lundberg as applied to sickness and 
accident statistics, by Hofmann with the same scope of application, 
by Ammeter to reinsurance policy and other problems of general 
insurance, and by Campagne (1962) to conflagration between fire 
insurance risks. Delaporte has applied a modified form of the 
Polya distribution, where the risk distribution has three parameters, 
which cannot be reduced to such a distribution of I or 2 such 
parameters, to motor accident statistics [cf. Philipson (196o) (a) 
and for references (1961) (b)]. The probability distribution of a 
Polya process with a risk distribution containing two parameters 
~, / can be written 

~ t ' ~  = . .  (z + ~I])~+~' (3) 

i = o, I, 2 . . .  with mean ~-. 

The Hofmann probabilities are particular cases of a class of 
probabilities for non-occurrence of a change of the form 

l 

H ~ J ' ,  

where the ~0i,'s for all values of { are independent of qi for j = I, 2 
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• . .  and, in the general case, not necessarily in the form for ~ in the 
Hofmann probabilities for non-occurrence. I t  shall be remarked that  
the m th power of a function of this class belongs to the class with the 
exponents equal to --mq,. If all the ~i,'s are in either of the alter- 
native forms for Hofmann probabilities of non-occurrence the 
product  may be said to define a generalized Hofmann probability, 
which may be designated (~-~ .... ~')q~i(7) = qr~i(7) say. 

3- The change distribution, V(x, 7), shall be written for the 
conditioned distribution function of the size of one change in a 
random function at tached to a process, relative to the hypothesis 
tha t  one such change has occurred in parameter  interval (T, • + d~) 
for a fixed value of ~. (In the application to Life Insurance and to 
General Insurance this distribution function has been called the 
risk sum distribution and the claim distribution respectively. It  
seems to the author tha t  these terms conceal tha t  the theory has a 
much wider scope of application.) In the particular case, where 
V(x, .r)is independent of 7, we shall write V(x) for the change 
distribution. 

Esscher (I932), Cram6r (1955) and others have proved that  the 
distribution functions defining a Poisson process with the change 
distribution V(x, 7) can be written 

~ (~(t) wi*(x, t), 

where t is the parameter  measured on the operational scale, W(x, t) 
a transform of V(x, ~) and the asterisk power i* of any function 
for i > o denotes the i th convolution of the function with itself 
and for i = o is equal to unity. This formula has earlier been 
extended by the present author (Philipson, (1961) (c)) to a formula 
of a similar form for the distribution function of a random function 
at tached to a process defined by  generalized Hofmann probabilities 
for non-occurrence of at most three factors, the restriction of the 
number of factors is, however, not likely to be necessary. 1) 

1) I n  a r e p o r t  to  t he  Congress  in  L ondon ,  to  be  pub l i shed  i t  i t s  T r a n s a c -  
t ions ,  t h i s  f o r m u l a  ha s  b e e n  e x t e n d e d  for processes  def ined  b y  (2) w i t h  t h e  
same  t r a n s f o r m  W(x, t) as for  a Po i s son  process.  
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4. A stationary or non-stationary compound Poisson process is 
defined as a process for which the probability distribution of the 
number of changes is defined by (i) with U(v, 7) being in the form 
of the distribution functions defining (another) random process, 
called the primary process. Mat6rn (196o) has applied the station- 
ary compound Poisson process, i.e. a process, where U(v, 7) is 
stationary in the weak sense, to sampling problems in forestry 
statistics, Thyrion has introduced a very general class of processes 
which contains both stationary and non-stationary compound 
Poisson processes. In this paper only such processes, generated by 
primary processes with T-independent change distributions, U(v) say, 

co 

shall be dealt with. Under this assumption U(v, 7) = ~ Pro(z) Um*(v). 
m - @  

In this case the probability distribution of the number i of changes 
in the random function at tached to a process defined by (i) can, as 
was previously found by the present author, be written in the form 

~ Pro(z) (vz)i/i! dU~*(v) = P~(z) Pi(z, m), say. (4) 

m - 0  0 m-O  

The process, defined by  (4), is said to be of a type defined by 
~i(z, I). In the particular cases, where Pi(z, I) is defined by  the 
Hofmann probabilities ( ~ - ,  , ~i(z) for × = o, I, the process defined 
by (4) is of type Poisson for × = o and of type Polya for × = I. 
In these cases, using a Poisson distribution with one parameter 
and a Polya distribution with two parameters in the risk distri- 
bution, which is essential for the derivation, the functions fii(z, m) 
take the following forms. 

E(m~z)i/i !~ e-m~ for × = o, i.e. for type Poisson 

p,(z,m) = ( - - m ~  (--~/~)' for × = I, i.e. for type Polya (5) 
(i + 

A random function attached to processes defined by (4) and (5) 
and with T-independent change distribution V(x) shall be designated 
by Y*(z). 

5. A random function attached to a process, where the probability 
distribution of the number m of changes is defined by the generalized 
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Hofmann probabilities qrCm('~) and where the change distribution 
depends on ,r, V(x, T) say, and is such that its transform W(x, ,:) as 
defined in section 3, can be written in the form 

W(x, .) = £ f × J - - j  
7nit-r) V+*(x), z = o, I (6) 

where ~>"#i('r) for x = o, I has one respect ively  two paramete rs  in 
the risk dis t r ibut ion and V(x) is equal  to tha t  of Y*(-~), shall be 
designated by X*(,e). 

A random function attached to a compound Poisson process with a 
,e-independent risk distribution, or such a process in the narrow sense, 
the probability distribution of the number i of changes being defined 
by (i) with U(v, ,:) = U(v) independently of 1: and the change distri- 
bution by V(x) independently of ,:, shall be designated by X*(,~). 

6. Wri t ing  q,  for the means  of bo th  Pro(*) and qr~m('r), c for the 
mean  of V(x), the  means  of Y*(,)  and X*(T) are bo th  equal  to 
cqO ,e*l] ~ for × = o,I .  If  q-r is the mean  of fii(':) defined b y  (I) wi th  
U(v, ,e) = U(v) independen t ly  of -~, the mean  of X*(-~) is equal  to 
c0-r. The  normal izat ion of the dis t r ibut ion funct ions of Y*(-~), 
X*(T) and X*(~) in order  to  render  the means  of the normal ized 
funct ions equal  to t involves the  subs t i tu t ion  of []~ tlcq~] 1/* for 
in the two first cases and of tic O for -: in the th i rd  case. After  this 
t r ans format ion  the r andom funct ions will be designated b y  Y(t), 
X(t) and X(t) respect ively  and their  d is t r ibut ion funct ions for a 
f ixed value of t by  (~F(x,t), (~F(x,t) and ~TF(x,t) respect ively.  Then,  
the  following relation holds, where 

r o = (cq0)~/*; r 1 = rol~ 1/~. 
o0 

-o/2 ~ p m (  ,0~r~i m Vi* (x) for × = o, i.e. for  t ype  
\ ro / \--ro-I Poisson 

m - O  i ~ .  

= 

~em(~lt)~(--2q ) (--~)/rl)i 
, ( +7llitr,)"m  

m - - O  g - O  

(7) 
V i* (x) for x = I, 
i.e. for t ype  Po lya  

xF(x,t) has the form of (7) with the subs t i tu t ion  of qr~m for  Pm (8) 
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¢J 

 F(x, t) = PP,(t/c ) W*(x)  (9) 
m - 0  

7. Almer (1957) has proved a theorem implying that  every 
(statistical or theoretical) change distribution may--wi th in  a finite 
interval of its argument--be approximated by upper and lower 
approximations in the form of weighted sums of exponential 
distribution functions such that  the area between the curves repre- 
senting the upper and the lower approximation can be made as 
small as we want. He has graduated data from extensive motor 
accident statistics later extended to other branches of general 
insurance (Almer, 1962 ) by such sums containing only 3 to 4 terms. 
These graduations showed a very good agreement with the data. 
His deductions (1957) lead to an expression for the distribution 
functions defining a Poisson process, with the change distribution 
defined by a weighted sum of exponential terms, in the form of a 
convolution of a limited number of Bessel functions. 

8. Esscher (1961-1962) has suggested that  the change distribution 
shall be defined as a weighted sum of at least two exponential 
distribution functions and the distribution function E(x--a),  where a 
is a constant and E(~) is the unity distribution, i.e. equal to o,I 
depending on ~ being negative or non-negative respectively. 
Further, Esscher has deduced a relation for the distribution 
functions defining a Poisson process with such a change distri- 
bution, implying that  the distribution function for a fixed value 
of t can be expressed as a convolution of a number of Bessel func- 
tions equal to the number of exponential terms in the change 
distribution with a distribution function based on the term E(x--a).  
This relation is consistent with Almer's results quoted in the pre- 
vious section, Esscher has also deduced a similar relation for the 
Polya process with a somewhat modified change distribution. 

9. In the sequel, it will always be assumed that  V(x) is of the 
following form, in agreement with Esscher's suggestion. 

m 

bVs(x;~) = BoE(x - -  b) + Z Ap(I - - e - ~ x )  ; ~ = { ~  > o, p : 

o-* = 1 , 2 . . .  s},b > o (IO) 
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o 

If b = o, so is B o. B y  defini t ion B o + Z A p = I. The  funct ion 

is assumed to be normalised so tha t  its mean  Bob + Z (AJ~p) = i. 

I t  is easily seen, t ha t  if cx is subs t i tu ted  for x in (IO) the change 
dis t r ibut ion can be wr i t ten  in the form 

# 

aVs(cx) --  B o E(cx--a) + ~ A~ (I-e-%Cx); % --  ~ ,  a = cb 
c 

with  the  mean  I. 

The  character is t ic  funct ion of bVs(x), bz,(u), u being an ent i re ly  
imag ina ry  variable,  can be wri t ten  

bZ, (u) = B o eb, + ~ A ° oh~., (u), 
f l - 1  

where we have in t roduced  bh~,p (u) = e b" (I--U/D) - p which corresponds 
to  the  dis t r ibut ion funct ion bill(x; p, ~) defined b y  a Pearson type  
I I I  dens i ty  funct ion represented  b y  a curve  beginning at  b > o. 
Let ,  fur ther ,  the  funct ion aH,(x; ll, 12 . . . l~ ,  Xl, a 2 - . - ~ )  be the 
convolu t ion  of sill(x; l 1, 0q) wi th  ( s -  I) components  in the form 
oHl(x;  lp, %) for p = 2 , 3 . . . s .  

Le t  i o be the  largest  integer  less t han  x/a and  let  A o represent  a 
modif icat ion of B o such t ha t  az~ (o) will be equal  to I. Then,  az~(u) 
for I < i < i 0 can be wr i t ten  in the following form, der ived b y  
the  i t e ra ted  use of Newton ' s  binomial  formula.  

II , t - i  

aZ~(u) = ~ ( 1 ) ( i - - l ) a ~  a~-i-tA,eU'oho, i i ,(u)oh~,,, i (u) (II)  

| - o  ~ - 0  

for i > io, az[(u) is in the  form of (II)  with t runca t ion  of the  first 
sum at  i 0. B y  definit ion the  conversion of (II)  leads to an expression 
for V i* (x) in the  same form wi th  the  subs t i tu t ion  of 

zaH~ (x; i - -  ~' - -  l, j, 0~1, ~Xa) for d au oh~l,~_i_z (u) oh~,a,i (u). 
IO. Le t  the  dis t r ibut ion funct ion of X(t), as defined b y  (9), with 

the  insert ion of (IO) be denoted  b~Fs(x, t), where the  uppe r  index 
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× shall be added,  if Pi(t), part icularly,  is defined b y  a Hofma nn  
probabi l i ty  ~ i ( t ) .  Let,  further,  Qs(t) denote  the  necessary correc- 
t ion for the t e rm for i = o, if this t e rm should differ from fi0(t). 

a~F2(x, t) can b y  (9) and (io) be expressed in the form 

{--0 | - - 0  t t - -{o+ l  ~--0 | - - 0  { - -{0+1  

B y  the int roduct ion of a new variable  of summat ion  in two 
stages, first b y  replacing i with  i + l, and, af ter  reversing the order  
of the  summat ion  over  i and j, b y  replacing i with i + ]', the  following 
expression is obta ined for a~F~(x, t), where ( - -  t/c~) i÷i+~ PoCi÷i÷~'(t/c~) 
has been inserted for (i + j + / ) !  Pi+i+l(t/c~) according to the  
iden t i ty  given in (2). 

(Aott,_i ¢ ,  (Alt~,_I ®~-~ (A#~i I (__ i),+i+ , a~V2(x, t) = Q2(t) + × 
I - O  ( - 0  7 - 0  

× (x, i, i ,  

B y  an analogous deduct ion the relation (12) is ex tended  to 
s = 3, which  leads to a quadruple  sum similar to the  triple sum 
in (12). B y  mathemat ica l  induct ion this result  is ex tended  to 
s = 4,5 . . . .  the  result in each case containing a (s + I) - -  tuple  
s u m .  

I I .  In the  par t icular  cases, where Pi(t) are defined either b y  a 
Poisson probabi l i ty  dis t r ibut ion or a Po lya  probabi l i ty  distr ibution,  
i.e. b y  Hofmann  probabil i t ies with × = o or I respectively,  the  
dis t r ibut ion functions of X(t) can be wr i t ten  in the  following 
comprehensive  form. 

*0 Z (x)~l o 
 ,x tcx, t) - ' ' Q ,  (t) + , 

l 0 - -  0 

I 0  for s = 2 

where '~'Qs (t) = ~ '~'fio(t/cq) [ I -  '~Ts~ for s > 2, 

and ~Ts will be defined here below in section 14. 
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o o  o 0  

(×)(L" fOX"  ~i ~ -s loaVS ~ , o h, ~ . . . .  Ors) : l 1! l~.T " " - ~ -  '~'}°(t]cq) (~)~ × 
l l~0 12--0 |#--0 

× ~Hs (cx; 11, 12 . . . l s ,  O~ 1 ~ 2  • • • O~s) 

~'to=Ap (t/c) (tic + q) -" for p = 1 ,2 . . .  s, × = 0,I and for p = o, if s = 2. 

,~ , to=Ao( t / c ) [ ( t / c+~)(  I - -  ~1 'l'tl 11 -~ I - -  ~2 + ~1/! , if s > 2 (of reasons to  be 
evident  later).  

•e - t l  c = e - ( A o  + A t  + . . - A , ) t l  c f o r  x = 0 

'~'P°(tlcq) = ?(I  + t/cq)-q = (I + rice) -(AO+A1 + ""a . )~  for × = I 

L = Z l o ;  (W)L - - -q (q  + I)  . . . (q + L - -  I)  f o r  L ) o, (q)o = I .  

p=tt 

A o is defined by  the assumptions  tha t ,  for  × = o, (Aot/c) z° e-aot/C/Zo! 
and, for × = I, [Ao(t/c ) (tic + ~)- ~1 t° [I + t/c~]-Ao~[lo! represent  discon- 
tinous, t runca ted  probabi l i ty  dis tr ibut ions of the integer  l o, which 
cannot  assume values greater  t han  i 0, defined in section 9 as the  
greates t  integer  less than  cx/a. 

12. The principal  solution of K u m m e r ' s  differential  equa t ion  is 
called K u m m e r ' s  function,  here  designated b y  C(q, p + q; x) for 
all real and complex values of p, q, x, excluding p + q equal  to  
zero or to a negat ive  integer;  it belongs to the class of conf luent  
hypergeomet r ic  funct ions defined as the general  solution of K u m -  
mer ' s  equat ion.  This funct ion can be expressed by  an absolu te ly  
convergent  series given in (I4a) below (cf. Slater,  196o, 1.1.8). 
I t  is connected  wi th  several well-known funct ions such as the I st 
kind Bessel funct ion of the order  of q - - 1 / 2 ,  here designated b y  
Iq_x/2(x), by  K u m m e r ' s  2 na theorem,  and as the general  incom- 
plete gamma-funct ion ,  here designated b y  y(q,x), the  relat ions to  
these funct ions are given in (i4b), (I4C) respect ively  here  below 
(Slater, 1 . 8 . 1 . -  1.8. 3, 5.6.2 and 5.6.4). A relation, implying a 
t r ans format ion  of C(q, p + q; x), which will be used in the sequel, 
is asserted in K u m m e r ' s  i ~t theorem and  is given in (I4d) here  
below (Slater, 1.4.1 ). If  the real par t s  of q and of p + q bo th  are 
> o, the K u m m e r  funct ion m a y  be expressed in terms of cer ta in  
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integrals given in (I4e), (I4f) here below (Slater, 5.6. 9 and 3.1.2). 
The notat ion (q), has been defined under  (13). 

( q , p + q ; x )  = C (p+q)~v ! (I4a) 

(x/4)~+q_m e-X1* (x/4)q- z/' 
Iq-112 (x/2) = P ( q + I / 2 + ' ~ ) ' ~ t =  F ( q + I / 2 )  C(q; 2q ;x )  

_. " (14b) 

V x ~÷q _ X q C ( q , i + q ; _ _ x )  (I4C) 
(q+ 1)----~ q 

"o-o 

ex C( p, p + q; - -  x) (I4d) 

e - X  
¥ (q, x ) -  

c (q, p + q;x) = 

C (q, l + q; - -  x) = q x -  q f v q- ~ e - v  dv, R l q  > o 

o 

1 

C (q, p + q; x) = F(p + q) f g,.,_,(i_.)p_,du, Rzp > o, 
r(p) r(q) RZq > o 

o 

(I4e) 

(I4f) 

13. In the deduction of expressions for aHs(cX), it is assumed 
tha t  0~ 1 ( 0 ~ 2 . . .  0~$. If this assumption should not be true the 
definition of ~Hs(x) is such tha t  (oh, 11), (o~, l~) . . . (~Xs, ls) may be 
permutated,  without  change of ~Hs(x); this implies that  the 
assumption does not restrict the generality of our deductions. 

By definition we have 
¢ X  ¢~ - -  a 

~ ~ dv 2 *-1 az (15) ~ n  a (cx; p, q, ~1, as) = P(p) F(q) 
a o 

By introducing the new variables of integration u, ~ by the 
substi tut ion of u~ for z and of ~ for v - - a ,  the inner integral of (15) 
becomes equal to 

1 

j " g -~ teu  U q - 1  ( I  - - U )  p - I  du,  81 = - -  0~ 2 ~1,  

o 
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which b y  (I4f) can be expressed  in t e rms  of C(q, p + q , -  81~ ). 
B y  the t r a n s f o r m a t i o n  of the  K u m m e r  funct ion b y  ( I 4 d ) - - e q u i v a -  
lent  to the  aforesaid p e r m u t a t i o n  of the  p a r a m e t e r s - - t h e  double  
in tegra l  can b y  (I4a) be  wr i t t en  in the  following form, where,  on 
accoun t  of the  absolute  convergency  of (I4a) and  of the  in tegra l  
over  the  Pearson  t y p e  I I I  densi ty ,  the  order  of s u m m a t i o n  and  
in tegra t ion  has  been  rever ted .  

e x - a  

r(p) ~ ,+:  08 ! r(p + q + p~) 
PZ - 0  0 

e - ' :  d~, (16) 

which, wi th  respect  to the  defini t ion of ,H2(x ), is def ined for real  
values  of the  var iab le  and  of the  p a r a m e t e r s  wi th  x > o, a > o, 
p > o, q > o, ~1 > o, ~¢~ > o. In  fact ,  (16) is an expression for 
(I5),  also if (15) should h a v e  been defined for complex  va lued  
var iab le  and  pa ramete r s ,  p rov ided  t h a t  the i r  real  pa r t s  fulfil the  
same  inequalit ies.  

B y  the  subs t i tu t ion  of 0H~ (cx - -  a; p + q + p~, r, o~, ~3) for  
the  in tegra l  in (16) and  b y  an analogous  deduct ion  for the  inser ted  
fo rm of oH2 (cx - -  a) an  expression for  , H  3 (cx, p, q, r, oq, ~2, ~3) is 
obta ined ,  which is in the  fo rm of a we igh ted  s u m  of (16) wi th  
s imilar  weight  funct ions  as those  appea r ing  in (16). B y  m a t h e m a t i c a l  
induct ion  the  expression can be ex t ended  to s = 4 , 5 . . - w h i c h  
leads to  the  following T h e o r e m  I.  

Theorem I.  Le t  o < Xl < ~ e .  • • < cos be an increasing sequence  
of real  pa rame te r s ,  X 1, X 2 . . . .  k, be a sequence of pos i t ive  number s ,  
b 1 = a > o and  b~ for v ~ I equal  to  zero. Le t  x 1, x 2 . . . x~, x~ ÷ 1 • • • Xs 
be a sequence of r a n d o m  variables ,  each of which being d i s t r ibu ted  
wi th  a d is t r ibut ion  funct ion in the  fo rm 

b~H1 (x; %, ~ )  - -  

z 

r(~) (~-- bO~-' e-~'~-b~ ' d~, 
b~ 

and  let the  funct ions  fp,  for each value  of v = 2,3 • . • s be  defined b y  

f~  = r(A~_, + R,_,) p~! ~ ~- / (-~--/ 
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A~ = \'7 Xr, R, = ~7 P,, where 

Then, the distribution function of x = x I + x ~ . . .  + xs is 
given by  the ( s -  I)-tuple sum 

~ o o  

2:o, Z':, ; , , +  As, sl. 
~ - 0  O a - o  Os - o  

I4. The following expression for ,~//l(x; p, [~) in (I7a) is obtained 
by  using the relations (I4C), (I4e). A particular case of this expres- 
sion is the expansion of the distribution function of x-square, as 
commonly used in statistical tables (cf. e.g. Fisher and Yates 
(x938) p. I ]  Pearson and Hartley (I954), pp. i8-2o). It  has also 
been used with ~ = I and t - - x  substituted for x - - a  for the 
deduction of the distribution functions defining a Poisson process 
with the change distribution defined by a single exponential term 
by Cram6r (I955, P- 4I). The function ,Hs (x; ll, 12 • • • ls, ~1, o%...as) 
shall be defined by the integral 

( v - - a )  dv arts (v; l 1 , l s . . .  ls, ~1, ~ . . .  as). 

An expression for aH 1 (x; p, ~) similar to (I7a) is easily obtained 
by this definition. 

~(~ - ~) ® , f  aH~(x ;p ,~ ) - -  r(p) vP-~e-~dv=e-~(*-~' Z [~(x-a)l~÷pP(~+-p-~ (I7a) 
o v - o  

- -  I ( vp e_v dv P e-~Cz-a) 3 ( 7b) 
o v - o  

By definition, x > o, a > o, p > o, ~ > o are real-valued. The 
deduction holds even, if these magnitudes are allowed to be complex 
provided that  the same inequalities hold for the real parts. It  shall 
be observed, however, that  if the 3 rd membrum of (I7a) is taken as 
definition for aH 1 (x) we may  extend the definition to p = o, in 
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which case this m e m b r u m  reduces to  uni ty .  Also a~r:(x) m a y  be 
def ined by  the 3 rd m e m b r u m  of (I7b), for  p = o inclusive, in which 
case this m e m b r u m  vanishes. By  insert ing the relat ion (I7a) in 
~0>~a~l (x, Xl) according to its definit ion under  (13) this funct ion can 
be wr i t ten  in the form 

o0 

e -~'~ ~ ( l ' / ~ t  ~ I~ (2 I / ~ ) ,  
it1 / 

where w I = e iAl t ;  ~ = x - -  a and L (x) the  I st k ind Bessel funct ion 
defined in (I4b). If  (I7b) is inser ted for ~H 1 (x) in the relat ion 
defining ~G 1 (x), the funct ion obta ined  being deno ted  with a 
bar,  a similar expression for this funct ion is obtained,  namely,  

I 
t ~ l  I,,+, (2 1/~). 

v - o  

These relat ions lead to  simple numerical  calculat ion for × = o, 
s = I ;  as, however,  the corresponding expressions for × = I and  
for s > I are more  complicated,  the au tho r  refrains f rom following 
this line any  further .  

15. If  the  expression for aHz (cx; i, 7"; el, ~z) for i, 7' being posit ive 
integers according to Theorem I is inser ted in the relat ion defining 
~G 2 (x), under  (I3), and if the new variables of summat ion  ~2, r 
are in t roduced  by  the subs t i tu t ion  of ~ 2 -  i for pz and of r -  bt2 
for ~" the funct ion c°l'c~2 (cx; ~1, ~ )  can be wr i t ten  as follows 

,o,~ (cx; ~:, o~) = i % t, aH 1 (cx; r, o~2), 
, ~ 2  . i! ( r - -  ~2)! (18) 

where ~ = ~ + 1 - -  ~ ;  ~% = ~ <×~t~. 

B y  (I7a), (18) can be expressed in the form of a quadruple  sum. 
I f  in this sum the variable 7" is re in t roduced b y  subst i tuing 7. + ~2 
for r, the  sum will be of the  form 

o0 ~ Qo ¢o 

£££2- 
t - o  ~ l - i  ~ - o  r - J + ~ 2  
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As, independen t ly  of c, all the  summat ions  refer  to an absolute ly  
convergent  series of terms,  which follows f rom the  definit ions under  
(13) and  under  (I8), the order  of summat ions  m a y  be reversed b y  
the identi t ies 

Z2=22anaZZ=£2, 
t=O p,~-~ ~2-o  t=O ~ - o  r - ] + ~  z V-V,~  Y-O 

this  leads to an expression for (°~r: (cx), where c can be chosen a ' J 2  

equal  to uni ty ,  in a form which is consis tent  wi th  the  general  
re la t ions given here below. The  relat ion is easily ex tended  to  
(l)(= au2 (x) by  its definit ion under  (13). 

If  in (18) ~H,(cx; r, k, a,, a3) is subs t i tu ted  for aH 1 (cx; r, as) and 
if the expression obta ined  is mult ipl ied by  (°ItS~k! and summed  
over  k f rom k = o to k = c~, an expression for ,o,~a~3 (cx; oq, o~,, ~3) 
is obtained.  Inser t ing in this expression the expression for 
all2 (cx; r, k, o:~, ~3) in accordance wi th  the deduct ion  of (18) and by  
using (I7a) a 6-tuple sum is obtained.  If  in this sum the variables 
j, [z~ and k are re int roduced,  an expression is obtained,  which can 
be wr i t t en  as a p roduc t  of a double sum and a quadruple  sum in the 
form of (o,~a,~ (cx). B y  the applicat ion of the same deduct ion  to 
<~G a (cx), it is found  t ha t  a similar double sum appears  in each 
t e rm of the  quadruple  sum. For  × = o,I  the double sum just  
ment ioned  can be wri t ten  

- -  X = O,I 
i! % p,! ' 

I f  ~ - - - - ~ , -  ~ > o is < z, the inner  sum of this expression 
converges to  ( I -  81) -i  for each value of i, and, for × = o, the 
double sum reduces to exp [(°'=1/(I - -  81)]. If, in addition, al/(I  ~ ~1) 
< I, the  double sum for × = I converges,  as b y  definit ion (1~*1 < I, 
to [1 --(~),1/(1 - -  ~1)] -~- i -k- l .  If  the  change dis t r ibut ion bVs (x) has 
paramete rs  ~p such tha t  these condit ions are not  fulfilled for c = I, 
i t  is a lways possible to choose c as a constant ,  for × = o, > 
Max ( ~ + ~ -  ~p), and, for x = I, > Max ( ~ o ÷ x -  ~ ,  ~) .  B y  this choice 
8p < I for p = 1 , 2 . . .  s independen t ly  of × and, for x = I, ~q/(I--8x) 
< I. Choosing c in this way,  the expression for (o~:a~a (cx) reduces 
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to  (0~F_a,~ (cx; ~2, ~a) mult ipl ied b y  an exponent ia l  factor  and  (~G3(cx) 
to a funct ion in the same form, with the subs t i tu t ion  of a power of 
I -  (1)~1/ ( i -  81) for the exponent ia l  factor  and of a0p = 
(l~-:p/[I --(1)-:1/(I - -  81)] for (°)to, O = 2,3 respectively.  For  × = o the  resul t  
m a y  in an analogous way  be ex tended  to an expression for (~G 4 (cx), 
and, by  ma themat i ca l  induct ion,  to  ~0)F_~ (cx), s > 4. And as (x)(:~,~3 (cx) 
is in the form of (~Ga (cx) the  extension to (~'G~ s (cx), s > 3 immedia te ly  
follows. By  (I7b) similar relat ions for ~x)r-~,~ (cx), defined at  the end 
of the previous section, are obtained.  The  deduct ions  given here  
above  in this section lead to  the following theorem.  

Theorem 2. Le t  for × -=  o,I  and  

f o r  s = 1 , 2  ; 

(x)iq = 

9 

,~, r ; = Y '  ,0~ 

J - D  

and for s > 2 
(X)~ = 

, ~  ~o A~ (t/c) ~ 

[(t/c + q) ( I  - - ( ' J 0 , [ ( I  - -  8 1 ) ) ] - × ;  

p = 1 , 2 . . . s ,  
Y 

(X'rT = Z ,0{ . 

(X)T = I $ ~  
(X) (1) ~ - X  ~T=[(1--  10~/(I--~)) e ''~°~/̀ ~-8~] × 

¢ - - 2  
(x)F) 

X exp. svP ; 

p = l  

S ~ S  - 1  S - 1  

V.=O 

(~)P°(t) = I e- i t  for x = o 
( I + t )  -~ for × = I 

and ~ = x - - b ,  then  

the funct ion aGs (cx) appear ing in (i3) , which defines the  normal ized 
dis t r ibut ion funct ions of X(t), for × ~ -o ,  a t t ached  to a Poisson 
process with the change dis t r ibut ion aVs (cx) as defined under  (Io) 
and, for × = I, to a Po lya  process with the same change dis t r ibut ion 
can be wr i t ten  in the following form for s > I, × = o,I .  
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p.J 

,*,r_ (cx; ~,  v~.. ~,) = '*'Po (t/c~) e -~'~ ,,,'r V ~ Ss_, r(~,) , , ,¢  × 

~ (~c~)~ ,~,r~ 

and the funct ion age (cx) defined at  the end of the previous section 
for s > I , × = o , I .  

~ '  r~' ' ~ , ( ~ x ; ~ , ~ . . . ~ , )  =<~'PPo(t/~) e-~'~ '~>T , - 1  ~ x 
0is 0¢ s 

to 

(u + ~)! 
V - -  ~a 

tO 

If  in (I9a), (I9b) X is replaced b y  its t e rm for ~ = o the 

relations hold for s = I. 

Wi th  the purpose of giving (iga), (I9b) in forms apt  for the 
numerical  calculat ion with an electronic computer ,  the  relations 
are t ransformed to the  following expressions for s > 2 and for s = i. 

Star t ing with the simpler case, we denote  the  vih ternl of the  
sums appearing in the expression (I9a) and (I9b) for s = I b y  
~ K ~ ,  ~x~Wl.~ respectively.  Then, 

M 

"%c~ (~+ '~+g--~)" .  ,<"'N~-i---- 
~(~-- ~) 

--'~g,, '*)AT say. (2oa) 

v + I L 1-~-1--  1-,~J, 1-,~ v(v-----~) (q+v+ / ° - -2 )* ' (~N*- I  = 

Denote  the Fth term of the  sums appearing in the expressions 
(I9a) and (I9b) for s > I b y  ")S~ f~'Ls_~ and ~'S~ ,("°Ys~ + ~'~Ts ~ 
respectively.  Then, for a fixed value of s > 2, we have, simplifying 

(~'0 respectively,  the following the notat ions b y  writing F, 0p for F,, ~_~ 
recurrence relations for (~)[ ~*~L and (~>-~ S ~ I Z  ~ SS tl. S ~ x ~ "  
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~s 

s - , - ~  - ,s ~ - * +  " ' " "  ' - " - m s ( ~ - - 1 )  s - - ~ - , .  

(×) r _ _  a s - i ( ~ L - - I ) ( × , f ~  (x)• . 
S ~  S I t - * - -  S ,U,, 

~S 

s - . - ,  ~ , ~  ~ - . - - ~  , I .  s , ms(W--2) s ~Z-I '  

s t~ - -  s t ~ - I  - -  m s  s - , ~ t ~  • 
m s  

For  the calculation of c"~S~ we write ~ ~ , - i  ~"~Z~ for (×)S~ and, 

~-0 

0S -I I 
then,  ~"'Zi -- ~s-~ i(i-- I)~"~Zi-~; q~x = -~ q~x-t. (2IC) 

16. The main part  of the calculation for s = I of (I9a), (I9b) 
consists in the successive computa t ion  of (2oa), (2ob) from the 
init ial  values, ~ -~ I, and  the successive accumulat ion of the results. 
Provided tha t  these calculations are performed s imul taneously  for 
(2oa), (2ob) and for × = o,I,  this implies, for each given vector 
ml~, ~1~ and for each value of v, 13 "mul t ip l ica t ions"  (the word 
here taken  to mean mult ipl icat ion or division) and 16 additions. 
The number  of values of ~ needed for the computa t ion  depends 
on the precision wanted  and  on the order of magni tude  of m~, 
,t~. In order to obtain a basis of comparison for the computa t ion  
of (I9a), (I9b) for higher values of s of the t ime required on an 
electronic computer  available, a , ,computat ional  un i t "  shall be 
defined as the t ime needed for the calculation of (2oa), (2oh) for 
s = I, for each given vector ~ ,  , ~  and for each value of ~. Thus,  
the calculation of a sum of n terms will require n computa t ional  
units,  if s = I. 

If  (2~c) has been precalculated, (2Ia), (2Ib) imply  for x = 0 
and  i ,  24 "mul t ip l ica t ions"  and  22 additions, which corresponds 
to about  2 computa t ional  units for a given vector, c~, ~*~t~, ~"~t~, 
ms, ~s-, and for each value of ~. The computa t ion  of (2IC) can be 
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per fo rmed  as follows, let m be the  highest  value  of i needed for 
the precision wanted ,  thus, m depends on Os_l/Ss_ 1. ~*~Xi is, then,  
calculated for each value of 2 , 3 . . .  m a x  (m) and  each t e rm  is 
stored,  wi thou t  accumula t ion ,  then,  the  a rguments  of the  values 
ob ta ined  are changed by  the subs t i tu t ion  of X for m-- i .  ~x is calculated 
b y  (2ic) for each value of X and each t e rm stored,  wi thou t  accumu-  
lation. There inaf ter ,  ~*~Xm-x ~x is calculated for each value of X 
and  m wi th  successive accumula t ion  of the  results, so t h a t  ~*~S~ 
is ob ta ined  for different  values of ~. The  num b er  m of t e rms  needed 
does not  depend on 4; a rough evaluat ion  has shown tha t  we might  
expec t  m for a given value of 0 s_I/Ss_x to be of the order  of n/2, 
where n is the  number  of te rms needed for calculat ing (2ia), (2Ib). 

Suppose tha t  we wan t  to calculate (i9a),  (I9b) for a f ixed value 
of s > 2, for × = o,I ,  for a f ixed vector  of the  paramete rs  in 
bVs (x), and  for t = IOO combined wi th  5 values of c~, for t = 500 
combined with 12 values of c~, and for t = IOOO combined wi th  
13 values  of c~. Le t  us, further ,  assume tha t  for each t the n u m b e r  
of values needed for the calculat ion of (2Ia), (2Ib), i.e. n, is on an 
average  equal  to 1.6 t. The  calculat ion of ~*~S~ for each fixed 
vec tor  of ~x'0 t~ = s-airs-i ,  × o and  I, will, t hen  require i~ (m~ + 
m*2 + m~ + 4m3), where ml, m2, m3 are values of rn de te rmined  b y  
t = IOO, 500, and  I ooo respectively.  B y  the  assumptions  made,  
this corresponds to about  227 ~, where ~ = ~-~ (i ooo + 500 + 
ioo) = 820. The  computa t ion  of (2Ia), (2Ib) requires for  the 3 ° 
values of the vec tor  (t, c 4) and for a given vec to r  of ~ ,  ~_~, A~, 
As_ x about  60 ~ computa t iona l  units. If, fur ther ,  4 ° ooo compu-  
ta t ional  units  are al lowed for the  adminis t ra t ion  of the calculat ion 
of (2Ia) - -  (2IC) we should reach a to ta l  t ime for the  calculat ion of 
(I9a), (I9b) for s > 2 of 275 ooo computa t iona l  uni ts  which, if 
5 ° ooo such units  should correspond to one hour,  should be equiva-  
lent  to 5 1/2 hours  for the  series assumed. The  corresponding figure 
for s = I should be 25 minutes  on similar assumptions.  

The  corresponding relat ions for s = 2, × = I lead to  mater ia l ly  
more  computa t ion  work because of the implications in '~U~. 
These implicat ions have  for s > 2 been e l iminated  by  the l imit  
passage for the double sum discussed in the deduct ion  of ~G3 (cx). 
This l imit passage reduces, namely,  (q)lo÷~÷l,÷... to  a p roduc t  
of several  factors,  each depending on only  one of the variables of 
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summation. For s = 2, × = o similar relations hold as those derived 
for s > 2 ,  × = o , I .  

The numerical experience shows, that  the number of terms in the 
sum appearing in the expressions for a ~ F ,  (cx, t) according to (13) 
is very restricted. The computation work implied in (I3), if the 
functions toa,~s~x~r- (cx; oq, o~ • , • ~s) have been precalculated, is, there- 
fore, negligible. The series of calculations suggested here above, will 
give a fairly good mapping of the distribution functions defined by  
(13). The corresponding stop loss risk premiums are obtained, with 
negligible extra work, from ~"~ (cx; ~1, as es) as determined in l o a t _ r s  • . . 

the same series, by  using the following formula 

Co 

t)] - ~ - -  '''tt°~ '"'G (cx" oq, ~ ~,) (22) t - -  ( c x  - -  a )  [I - -  a~e'~F't c x ,  _ _  lo  ! toa s . . . .  

l o - O  

where '~t 0 for s > 2 have been defined under (13). 

17. Esscher has made a remark with respect to the relation (I) 
as a definition for the wide sense compound Poisson process, 
implying that  the Poisson expression in the integrand of (I) ought 
to be dependent not only on time but  also on the magnitude of 
the population for which the compound process is studied, while 
U(v, t) ought to be independent of this magnitude. On the other 
hand, it is possible that  U (v, t), at least in certain applications, 
depends not only on time but  also on another parameter, which 
determines the distribution of v . -  By choosing U (v, t) in a 
suitable form to account for such circumstances, the approach in 
(I) will be valid also with regard to Esscher's remark. In the 
particular cases introduced in the deduction of (7), (8) the generality 
has been restricted by  the assumption that the means of the two 
processes involved in (7), (8) before normalization are equal to 
q,, ~ respectively for each given value of 7. This implies, in fact, 
that  the magnitude of the population involved in each of the pro- 
cesses is independent of time. The generalization of (7), (8) to 
include also non-stationary populations may be easily made on 
particular assumptions with respect to their variation with time. 
This will, however, not be done in the present paper. 

18. If in (7) bVs (x) is inserted for V (x), and by using, for × = I, 
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(cx, t) = (I/ i / to)  s cx,  (23a)  
aY--~ ro / 

m - o  

~o 

2~)Fs (cx, t) = tF-~ (Vt/r,) ax"~'. (cx, ~/t/r~) ~ tFm~ (V~/r~) Pm(V~/r~) , 
~.0 s > 2, (23b) 

f( + t/ w h e r e . ( t )  = I I - -  ~1] 

If, fur ther ,  it is assumed t ha t  P~(t),  qn,~(t) are defined b y  Poisson 
and  Po lya  probabil i t ies and observing, t ha t  b y  assumption in the 
deduct ion  of (7), (8) it  has been assumed t ha t  the i r  means  shall 
be equal  to q., we obta in  in these cases 

Pm(Vilro) = ~ m  (Vtlro) = (q Vtlro) m e- q lil.olm I in the  ist case (24a) 

(-~q) (--~/}/rl)m in the  2nd case P~(l/ t lr l)  = qn~ (l/tit1) = (I + VilrlW+q (24b) 

B y  combining each of (23a) and (23b) with  bo th  (24a) and (24b) we 
have  to deal with 4 different  dis tr ibut ion funct ions of Y (t). 

The  numer ica l  calculat ion of (23a) with the insert ion of (24a), 

(24b) implies the calculat ion of ~.~ cx, - -  for each value of 
r0 / 

m = o , x . . ,  to  mt say, where mt shall be de te rmined  b y  the precision 
wan ted  and  by  the order  of magni tude  of the mth t e rm of the sum 
appear ing  in (23a). A numerical  es t imat ion of this order  for  the 
case where (24a) is inser ted in (23a) has been made  in the  following 
way.  The  probabi l i ty  of i changes in Y(t),  while the pa rame te r  
passes f rom o to  a f ixed value t can be wri t ten  

o0  

, °  

r = l  

where  X = q l/te-i~'ilrOlro. The max imal  values of the r th te rms 
in this sum for different  values of the constants  q, q, r o have  been 
calculated for i = I. 5 ~/t and for V } = 20 and 30. I t  was found  tha t  
the  n th t e rm was of the  order  of IO -le for Vt = 20 and  of IO - a  
for  1/t = 30. It ,  is, thus,  to  be expec ted  tha t  the  n u m b er  of terms 
needed  for the  calculat ion of the  sum appear ing in (23a), at  least 
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when (24a) has been inserted, is at most of the order of 2o, say, 

for t =  IOO, 500 and IOOO. The calculation of ~0~.-( mVt ]-- a X ~ S  CX, - -  \ ro / 

can be performed by the formulae (2Ia)--(2IC). I t  shall be remarked, 
that  the number of terms needed for this calculation for a fixed 
value of m must, on an average, be much lower than the numbers 
used in the numerical example of section 15 . In this calculation we 
shall, namely, multiply ~0,% appearing in (2Ia)--(2IC) by the factor 

ro~/---~' which on an average is less than I for t : IOO, less than 1/2 

for t : 5 o o  and less than 1/2o for t :  IOOO. If the number of 
terms needed for the calculation by (2Ia)--(2Ib), on this reason, 
should, on an average for each value of m be reduced to 25 % of 
the numbers used in the example of section 15, the number of 
multiplications in the calculation of (2IC) would be reduced to 
about 2 % for each value of m. This should lead to a computation 
time for the calculation of (23a), with the insertion of (24 a) of 
about the time required for the calculation by (2Ia) - -  (2IC) according 
to section 15. Should the same assumption hold also, if (24 b) is 
inserted in (23a), we should, thus, be able to perform the compu- 
tation of (23 a) for both cases in nearly the same time of computation. 

If in (23b), (24a) and (24b) are inserted, the sum appearing in 
(23b) reduces to closed expressions, for (24a) in the form of an 
exponential function and for (24 b) in the form of a power of a 

(cx, binomial. In this case we have only to calculate aR--s 
by the formulae ( 2 I a ) -  (2IC), which according to the discussion 
in the last paragraph, requires about 5 % of the time required 
according to section 15 . 

The stop loss risk premium can in the 4 cases considered in this 
section be computed with negligible additional work from the 

~G the calculation of which has been included in the functions ~x , 
estimations given above, by using similar expressions to that  
given in (22). 

19 . The calculation of the distribution functions defined by 
(7), (8), (9) and the corresponding stop loss risk premiums based on 
processes, where all probability distributions of the number of 
changes involved are defined either by Poisson or by Polya distri- 
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butions and where the change distribution for (7) and (9) is defined 
by bVs(x) and where the transform of the change distribution for 
(8) is defined as a weighted average of this function, can, thus, 
be performed on an electronic computer. For (9) it has been proved 
that for a given vector of the parameters in bVs (x) the calculations 
can be carried out in c: a 5 1/2 hours for s > 2, if the calculations 
for s -- I will require 25 minutes. The same assertion is likely to 
hold for (7) for the compound Poisson process of type Poisson and 
in the corresponding case for (8). For the determination to what 
extent this is true, it seems easy to devise suitable experiments 
on the computer. For the compound process of type Polya and 
for the corresponding case of (8) the computation time required is 
materially less than that required in the other cases. 
(based on a lecture read to the ASTIN Colloquium 1962, Juan-les- 
Pins) 
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