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ABSTRACT

In an arbitrage-free economy, it is well-known that financial risks can be
priced using equivalent martingale measures. We establish in this paper that,
for general stochastic processes, the Wang Transform does not lead to a price
which is consistent with the arbitrage-free price. Based on these results we
must conclude that the Wang Transform cannot be a universal framework for
pricing financial and insurance risks.

1. INTRODUCTION

In two recent papers, Wang (2000) and Wang (2002), Shaun S. Wang postulates
a general framework for pricing financial and insurance risks. This framework
is based on a distortion operator which acts on the probability distribution
of the risk one seeks to price. This distortion operator is now known in the
actuarial literature as the “Wang Transform”.

In an arbitrage-free economy, it is well-known that financial risks can be
priced using equivalent martingale measures. In this paper we investigate whether
the Wang Transform is consistent with the arbitrage-free pricing approach
for pricing financial risks. Wang shows that the Wang Transform is consistent
with arbitrage-free pricing in the setting of Geometric Brownian Motion with
constant coefficients. However, this result does not hold in general. We estab-
lish in this paper that, for general stochastic processes, the Wang Transform
does not lead to a price which is consistent with the arbitrage-free price. Based
on these results we must conclude that the Wang Transform cannot be a uni-
versal framework for pricing financial and insurance risks.

A related result has also been reported in Ruhm (2003). Using a different
probabilistic setting, his paper proves the result that distribution-based pricing
formulas for European-style payoffs cannot consistently produce arbitrage-
free prices. In this paper we consider the setting of continuous-time diffusion
processes to derive our result.
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The remainder of this paper is organised as follows. In Section 2 we give a
very brief introduction to stochastic processes, stochastic calculus and the related
partial differential equations. In Section 3 we provide a brief introduction to
arbitrage-free pricing. Armed with this knowledge we then proceed in Section 4
with our main result: the analysis of the Wang Transform. First we analyse
which change of probability measure is actually implied by the Wang Transform.
Then we analyse under which conditions the “Wang change of measure” is
consistent with the change of measure required for arbitrage-free pricing.
A simple example where the Wang Transform is not consistent with arbitrage-
free pricing is provided in Section 5.

2. STOCHASTIC PROCESSES

In this section we provide a very brief introduction in stochastic processes and
stochastic calculus. We will only review those results needed for the proof of
our claim in Section 4. All theorems in this section are provided without proofs.
For a more formal introduction to this subject we refer to Karatzas & Shreve
(1991).

We begin with the premise that the evolution of traded assets’ prices in an
economy are described by stochastic differential equations. Suppose we have
a traded asset Xt in the economy whose price follows the stochastic differen-
tial equation 

dXt = m (t,Xt)dt + s(t,Xt)dWt (1)

where Wt denotes Brownian Motion. The dWt-term can be interpreted as a
“noise term” with the following properties: � [dWt ] = 0 and � [(dWt)

2 ] = dt.
Please note that a realisation of a path Wt of a Brownian Motion is a continu-
ous function in time that is nowhere differentiable. As a consequence, the normal
rules of integration and differentiation cannot applied to Brownian Motion.

As Xt is the price of a traded asset, a financial derivative (or derivative) is
an asset in the economy whose value at some time point T > t is given by a
function f (XT). Hence, the value f (XT) of the derivative at time T is derived
from the value of the underlying asset XT. The expected value at time t of the
payoff f (XT) is given by the function u(t,x) = � [ f (XT) | Xt = x] . The function
u(t,x) satisfies a partial differential equation:

Kolmogorov’s Backward Equation. Let the stochastic differential equation for
the process Xt be given by (1). Define u (t,x) = � [ f (XT) | Xt = x]. Then u (t,x) is
a solution to the partial differential equation

t2
2 u(t,x) + m(t,x) x2

2 u(t,x) + 2
1 s2(t,x)

x2

2

2

2 u(t,x) = 0 (2)

for t < T and boundary condition u(T,x) = f (x).
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A special case of a derivative is the indicator variable 1(XT # y). By taking an
expectation of this indicator function we find the distribution function F (t,x;
T,y ) of the process Xt :

F (t, x;T, y) = Pr[XT # y | Xt = x ] = � [1(XT # y) | Xt = x ] .

Hence, the distribution function also satisfies Kolmogorov’s Backward Equa-
tion (2) with boundary condition F (T, x;T, y ) = 1(x # y).

Let the stochastic process Yt be defined as a function Yt = g(t,Xt) of the
process Xt for all t. Then the stochastic differential equation for Yt is given
by:

Ito’s Lemma. Let the stochastic differential equation for the process Xt be given
by (1). Let the function g(t,x) be twice continuously differentiable. Define Yt =
g(t,Xt), then the stochastic differential equation for Yt is given by

dYt = [ t2
2 g(t,Xt) + m(t,Xt) x2

2 g(t,Xt) + 2
1 s2(t,Xt) x2

2

2

2 g(t,Xt)]dt

+ s(t,Xt) x2
2 g(t,Xt)dWt . (3) 

Another concept we need to introduce is a martingale. A martingale is a sto-
chastic process that stays on average at its current level. If we would track
the gains and losses from a fair game over time, then we expect on average not
to gain or loose money systematically. This is an example of a martingale.
In mathematical terms we define:

Martingale. A stochastic process is a martingale if and only if

� [XT | Xt = x] = x �T $ t.

A stochastic differential equation with a dt-term equal to zero describes a mar-
tingale process1.

Because the Wang Transform is basically a method for changing the prob-
ability distribution of a stochastic process, we want to conclude this section
with Girsanov’s Theorem. This is a fundamental result in stochastic analysis.
The Girsanov Theorem states that if we change the probability distribution of
a stochastic process, we only change the dt-coefficient of the stochastic differ-
ential equation. Hence, our mathematical analysis of the Wang Transform will
be built on the implied Girsanov transformation of the stochastic process.
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Girsanov’s Theorem. For any stochastic process Kt, such that s
2K ds

t

0
# < 3 with

probability one, consider the stochastic process Rt given by 

ss s ,expR dW K dst

tt

2
1

00
= - 2K ##) 3 (4)

where Wt is Brownian Motion under the probability measure �. Define the prob-
ability measure �* as d�* = Rtd�. Under the probability measure �* the process 

Wt
* = Wt – dss

t

0
K# (5)

is also a Brownian Motion.

The stochastic process Rt is called the Radon-Nikodym derivative and is often
denoted by Rt = *

�

�

d
d . With the help of Ito’s Lemma it is straightforward to

show that the Radon-Nikodym derivative Rt is a martingale under the proba-
bility measure � with stochastic differential equation dRt = KtRt dWt with a dt-
term is equal to 0. The stochastic process Kt is often called the Girsanov ker-
nel or Girsanov exponent.

To analyse the impact of a change of probability measure on a stochastic
process Xt we proceed as follows. A change in probability measure implies a
Radon-Nikodym derivative Rt. If we apply Ito’s Lemma to the stochastic
process Rt we obtain its stochastic differential equation and we can infer the
Girsanov kernel Kt. The stochastic differential equation for Xt under the new
probability measure �* can now be obtained by substituting dWt = dWt

* + Ktdt
(which is equation (5) rewritten in differential form). Let us consider an exam-
ple: suppose the stochastic differential equation for Xt is given by (1) under the
probability measure �. Under the new probability measure �*, the stochastic
differential equation for Xt is equal to 

dXt = m(t,Xt)dt + s(t,Xt) (dWt
* + Kt dt)

= (m(t,Xt) + s(t,Xt)Kt)dt + s(t,Xt) dWt
* (6)

and we see indeed that the change in probability measure only affects the dt-
term of the process Xt.

We can now use the Kolmogorov Backward Equation (2) to find the par-
tial differential equation that describes the probability distribution of Xt under
the new probability measure �*. This is used in Section 4 to find which change
of probability measure is actually implied by the Wang Transform.

3. ARBITRAGE-FREE PRICING

Again, in this section we provide a very brief introduction into arbitrage-free
pricing. All theorems in this section are provided without proofs. For a more
formal introduction in this subject we refer to Björk (1998).
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To calculate the prices of financial derivatives, we can use a very elegant
mathematical theory which is based on the elements of stochastic analysis out-
lined in the previous section.

Suppose we have a traded asset Xt in the economy whose price follows
the stochastic differential equation (1). Suppose we also have an asset Nt,
which is an asset with a strictly positive price. We can choose the asset Nt as
a numeraire, i.e. as a unit of measurement. In the remainder of the paper, we
will express the prices of all traded assets in terms of the numeraire. So, Xt is
the price of the traded asset expressed in units of Nt . The euro-value is there-
fore equal to XtNt.

The first property we want to impose on our economy is a no-arbitrage
property. An arbitrage opportunity is a trading strategy which costs no money
at time t and has a non-negative value at time T > t and a positive probability
of a strictly positive value. Such an arbitrage opportunity would be a “money-
machine” which is clearly something we would like to avoid in modeling the
economy. An economy that admits no arbitrage opportunities is called arbitrage-
free.

The second property we want to impose on an economy is the complete-
ness property. In the previous section we defined a financial derivative as a
traded asset which has a value of f (XT) at time T. Given the price processes
of the two traded assets Xt and Nt, we can ask the question whether it is pos-
sible to find a trading strategy using only Xt and Nt that replicates the value
of the derivative f (XT) at time T. The economy is called complete if for any
derivative such a replicating trading strategy exists.

If a replicating trading strategy can be found for any derivative f (XT) then,
in order to avoid arbitrage opportunities, the price at time t < T for the deriv-
ative is given by the value of the replicating trading strategy at time t. This is
known as arbitrage-free pricing.

The question whether an economy is arbitrage-free and complete can be
determined with the help of the following theorem:

Unique Martingale Measure. An economy is arbitrage-free and complete if and
only if there exists a unique probability measure such that the prices of all traded
assets divided by a numeraire are martingales.

Let us investigate the economy with Xt and Nt we have defined above. To estab-
lish that our economy is arbitrage-free and complete we must find a unique prob-
ability measure such that the process Xt is a martingale. Suppose the process Xt

follows (1). If we apply a Girsanov transformation to the process Xt with Gir-
sanov kernel Kt, then the process follows (6) under the new measure �*.

There is only one possible choice for the Girsanov kernel that nullifies the
dt-coefficient and turns the process Xt into a martingale:

s
m

t
t

t= -
t
t
,
,

K
X
X

^

^

h

h
(7)
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and this expression is known as the market price of risk. This establishes that
our economy is arbitrage-free and complete if and only if s(t,Xt) ! 0 �t.

Now that we have established that our economy is arbitrage-free and com-
plete, we also know that the prices divided by Nt for all traded assets will be
martingales under the probability measure �*. In particular, the price of a
financial derivative divided by the numeraire f (XT) / NT is also martingale under
�*. Let us denote this price process by ft /Nt for t < T. From the martingale
definition we obtain that the price ft /Nt at time t < T is given by 

*
t

t t

T
t�N

f f
= N

X
X

^ h
> H

(8)

where �*[ . | Xt ] denotes an expectation under the measure �* conditional on
observing the price of the asset Xt. This expectation can be evaluated using the
probability distribution F*(t,x;T,y) for the process Xt under the measure �*.

4. WANG TRANSFORM

In two recent papers, Wang (2000) and Wang (2002), an alternative framework
for pricing financial risks is postulated. This framework is based on a distor-
tion operator which acts directly on the probability distribution of the asset
one seeks to price.

For the economy we have defined in the previous section, the distortion
operator is defined as follows. Given the probability distribution F ( t,x;T, y)
for the traded asset Xt, the Wang Transform constructs a new distribution
FW( t,x;T, y) via the distortion operator 

FW( t,x;T, y) = F(F–1(F ( t,x;T, y)) – l(t,T )) (9)

where l(t,T ) is a deterministic function. The function F( .) denotes the stan-
dard normal distribution function.

The function l(t,T) is determined by adjusting the distribution FW(t,x;T, y)
in such a way that the martingale condition �*[XT | Xt = x] = x is fitted for all T.
Hence, l(t,T) is obtained by solving (numerically) the equation:

�W [XT | Xt = x] = t
3

3

-
X# dFW(t,x;T,XT) =

t
3

3

-
X# dF(F–1(F(t,x;T, XT)) – l(t,T)) = �*[XT | Xt = x] = x �T > t (10)

As FW(.) is a monotonic function in l(t,T) this equation will always have a
unique solution for all T > t with initial condition l(t, t) = 0.

Before we proceed, let us briefly introduce the line of reasoning we will use.
First we analyse which change of probability measure (i.e. which Girsanov
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Transformation) is actually implied by the Wang Transform. Then we analyse
under which conditions the “Wang change of measure” is consistent with the
change of measure required for arbitrage-free pricing.

To investigate which Girsanov Transformation is implied by the Wang
Transform we have to deduce which stochastic differential equation gives rise
to the distribution FW( .). We know that a Girsanov Transformation only affects
the dt-coefficient of the stochastic process. Hence, using (6), the Girsanov
Transformation implied by the Wang Transform will lead to the following sto-
chastic differential equation for the process Xt :

dXt = (m(t,Xt) + s(t,Xt)Kt
W)dt + s(t,Xt) dWt

W (11)

where Wt
W denotes Brownian Motion under the “Wang probability measure”

�W and Kt
W denotes the Girsanov kernel associated with the Wang Transform.

We also know that the distribution function FW( t,x;T, y) satisfies Kolmo-
gorov’s Backward Equation (2):

t2
2 FW(t, x;T, y) + (m(t,x) + s(t,x)Kt

W) x2
2 FW(t, x;T, y)

+ 2
1 s2(t,x)

x2

2

2

2 FW(t, x;T, y) = 0 . (12)

Hence, we obtain the following expression for m(t,x) + s(t,x) Kt
W:

(m(t,x) + s(t,x)Kt
W) =

,

, ,x2

, ;

, ; , , ;
.

t x T y

t x T y t x t x T y

x
W

t
W W

2
1 2

2

2

-

+

2
2

2
2 2

F

F Fs

^

^ ^ ^

h

h h h
(13)

Given the expression (9) for the Wang Transform, we obtain the following
expressions for the partial derivatives (note that we will suppress the argu-
ments of F(t,x;T, y) and l(t,T ) hereafter to lighten the notation):

2

,

,

,

, ;

, ;

, ; .

f

f
f

f

f

f

f

f

t x T y
F

F
F F

t x T y
F

F
F

t x T y
F

F

F
F F

l
l

l

l l

F

F
F

F

F

F

F

F

t
W

t t

x
W

x

x
W

x x

1

1

1

1

1

1

1

12

2

2

2

=
-

-

=
-

=
-

+

2
2

2
2

2
2

2
2

2
2

2

2
2
2

2

2

-

-

-

-

-

-

-

-

F

F

F
J

L

K
KK

^
^a

^a

^aa

^
^a

^a

^
^a

^a

^a
a

N

P

O
OO

h
hk

h k

hk k

h
hk

h k

h
hk

h k

hk
k

Substituting these expressions into (13) and simplifying yields:
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s(t,x) Kt
W = , .

f

fF

F
t x

F

F
l l

F

Fx
t

x

1

2
1 2

1
-

2
2 2

2 2
2-

-
s

J

L

K
K
K

J

L

K
KK

J

L

K
K
K

^a

^
^a

N

P

O
O
O

N

P

O
OO

N

P

O
O
O

hk

h
hk

(14)

If we want to establish under which conditions the Wang Transform is consis-
tent with arbitrage-free pricing, we can substitute the market price of risk (7)
for Kt

W and we obtain s(t,x) Kt
W = –m(t,x) and we can rewrite (14) as a diffe-

rential equation in l(t,T ):

, , , , .
f f

t T t x
F

F
t x

F

F
t Tl m s l

F F
t

x x
1 2

1

1

2

= - +2
2 2

2
2
2

- -

J

L

K
KK

J

L

K
KK

^ ^
^a

^
^a

^

N

P

O
OO

N

P

O
OO

h h
hk

h
hk

h (15)

This differential equation can be solved by l(t,T) if and only if the coefficients
in the equation are functions of time only. We summarise this result in the fol-
lowing corollary:

Validity of Wang Transform. The Wang Transform is consistent with arbitrage-
free pricing if and only if the following conditions on m(t,x) and s(t,x) are satisfied 

,

,
,

, ;

, ;

f
t x

t x T y

t x T y
m

F
0x

x
1

=2
2 2

2

- F

F
J

L

K
KK

^
^_a

^
N

P

O
OO

h
hik

h
(16)

and

,

,
,

, ;

, ;
.

f
t x

t x T y

t x T y
s

F
0x

x
1

=2
2 2

2

- F

F
J

L

K
KK

^
^_a

^
N

P

O
OO

h
hik

h
(17)

Note that these conditions are very restrictive. For example, a necessary con-
dition for the coefficients in (15) to be functions of time only, is that the ratio
m(t,x) / s(t,x) is a function of time only.

We must therefore conclude that the Wang Transform is, in general, not con-
sistent with arbitrage-free pricing and can therefore not constitute a universal
framework for pricing financial and insurance risks.

5. COUNTER-EXAMPLE FOR WANG TRANSFORM

Suppose we have an economy where the stock price process St follows the sto-
chastic differential equation:

dSt = (m + a(mt – lnSt)) Stdt + sSt dWt (18)
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where m, a and s are constants. Such a specification is consistent with a model
for stock prices where the return on stock prices is mean reverting towards the
level m. The speed of mean reversion of the returns is governed by the para-
meter a. Note that for a = 0 the model is equal to the standard Black-Scholes
model. Furthermore, let the bond price Bt be given by 

dBt = rBt dt (19)

where the rate of interest r is a constant. The bond has a strictly positive
price and can be used as a numeraire. Hence, if we set Xt = St / Bt then we
have 

dXt = (m – r + a((m – r) t – lnXt)) Xt dt + sXt dWt . (20)

Note that this specification for the Xt process does not satisfy the necessary con-
dition for validity of the Wang Transform.

The distribution function F(t, x;T, y) is a solution of Kolmogorov’s Back-
ward Equation (2). If we consider the logarithm of the process Xt defined here,
the distribution function of lnXt can be expressed in closed form as 

,, ;
, ;

, ;

t x T y
e

y m t x

m t x e x e r a r s dsm m

F
1a

a T t

a T t a T s

t

T

s
2

2

2
1 2

2=
-

-

= + - - + -

- -

- - - -

F
T

T s#

J

L

K
KK

^
]`

^

^ ] ] ^a

N

P

O
OO

h
gj

h

h g g h k

(21)

and we see that lnXT has a normal distribution with mean m(t,x;T ) and vari-

ance equal to e1a
a T ts

2
22

- - -]` gj. Note that for T "3 the variance is bounded
by s2 / 2a.

The economy we have defined here is arbitrage-free and complete if and
only if there is a unique probability measure �* such that the process Xt is a
martingale. It is easy to see that the process Xt is a martingale only for the prob-
ability measure �* defined by the Girsanov kernel 

.
lnr a r t X

s
m m

t
t

= -
- + - -

K
^_ h i

(22)

Under the martingale measure �* the price process Xt follows the stochastic dif-
ferential equation 

dXt = sXt dWt
*. (23)
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Under the measure �* the process ln Xt therefore has a distribution function
given by 

F*(t, x;T, y) = .
T t

y x
F 2 -

-

s ^
e

h
o (24)

In particular we see that the variance of ln XT under the arbitrage-free pricing
measure �* is given by s2(T – t ) which is not bounded for T "3.

If we apply the Wang Transform we have to solve l(t,T) from equation (10).
For the distribution function(21) we find the following solution for l(t,T):

l(t,T) =
, ;

e

x m t x

1a
a T ts

2
22

-

-

- -

T
]a

^

gk

h
(25)

and we obtain the following distribution function for the process Xt under the
Wang Transform 

,, ; .t x T y
e

y x
F

1
W

a
a T ts

2
22=

-

-
- -

F

J

L

K
KK

^
]a

N

P

O
OO

h
gk

(26)

Note that under the Wang Transform, the variance of the process Xt is differ-
ent than the correct variance under the arbitrage-free pricing measure which
may lead to considerable mispricing of financial risks based on the Wang
Transform. This concludes our counter-example.
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