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ABSTRACT

It has been known since Zehnwirth (1977) that a scalar credibility coefficient
is closely related to the F-statistic of an analysis of variance between and
within risk clauses. The F-statistic may also be viewed as testing a certain
regression structure, associated with credibility framework, against the null
hypothesis of a simpler structure.

This viewpoint is extended to multi-dimensional credibility frameworks in
which the credibility coefficient is a matrix (Sections 3 and 4), and to hierarchi-
cal regression credibility frameworks (Section 6). In each case the credibility
coefficient is expressed in terms of the F-statistic that tests the significance of
a defined regression structure against a simpler one.

Section 5 points out how the computation may be implemented in certain
cases by means of regression software.
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1. INTRODUCTION

A credibility estimate is a linearised Bayes estimate, consisting of a convex
combination of a prior quantity and a data-based estimate.

The credibility “coefficient” (which may be a matrix) defining the convex
combination also requires estimation from data. Historically, therefore, each
new credibility application has tended to be accompanied by an additional
analysis indicating how the credibility coefficient may be estimated (see e.g.
Bühlmann and Straub, 1970; De Vylder, 1978, 1985).

These analyses have usually been ad hoc. For complex credibility models,
such as the hierarchical regression models considered in Section 6, the deter-
mination of the form of credibility coefficient is correspondingly complex, and
possibly exceedingly tedious.

The purpose of the present paper is to construct a defined procedure by
which the estimation of a credibility coefficient may be automated. This is
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done for a general non-hierarchical credibility framework in Sections 3 and 4,
and extended to a hierarchical (regression) framework in Section 6.

Most past formulations of credibility coefficients have been of a heuristic
nature, the properties of the coefficient not being investigated. The coefficient
derived in the present paper is no different in this respect. It is constructed
according to the the same general procedure as has been found in most of
those past formulations.

Section 5 indicates how regression software may be used to carry out the
estimation.

2. BASIC CREDIBILITY FRAMEWORK

Consider the basic framework of regression credibility, as introduced by Hache-
meister (1975). Let b be a p-vector randomly drawn from a distribution with

E [ b ] = b, Var [ b ] = G (2.1)

where Var [ . ] is used here to denote the variance-covariance matrix of its argu-
ment.

Let Y be an observable n-vector satisfying 

Y = Xb + e (2.2)

with X an n ≈ p (n ≥ p) design matrix, assumed to be of full rank, and e a cen-
tred stochastic error vector, independent of b and with 

Var [e] = V (2.3)

The generalised linear regression estimate of b for model (2.2) and (2.3) is

b = (XTV –1X )–1XTV –1Y (2.4)

Note that

Var [ b ] = (XTV –1X )–1 (2.5)

Let Y denote the following linear combination of Xb (prior estimate of Y) and
Xb (linear regression fitted value for Y ) :

Y = (1 – Z )Xb + ZXb (2.6)

where Z is an as yet unspecified n ≈ n (non-stochastic) matrix, and the iden-
tity matrix is denoted here and subsequently by 1.

Define L to be the mean square loss function

L = E [(Y – Y )T V –1(Y – Y )] (2.7)
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where the expectation is taken over the joint distribution of b and Y. Choose Z
so as to minimise L.

This optimisation of Y is in fact no less general than if Y is defined as an
affine function of Y (Hachemeister, 1975; Taylor 1977).

Substitute (2.6) into Y – Y and rearrange to obtain

Y – Y = (Y – Xb ) + (1 – Z ) X (b – b) – ZX(b – b ) (2.8)

Substitute this into (2.7) and make use of the fact that the three members of
(2.8) are stochastically independent, to obtain

L = E [(Y – Xb )TV –1(Y – Xb ) + (b – b)TXT(1 – Z )TV –1(1 – Z )
(2.9)X (b – b) + (b – b )TXTZTV –1ZX(b – b )]

Note that, for any square (non-stochastic) matrix M and dimensionally com-
patible centred stochastic vector v,

E [nTMn ] = Tr{Var [n]M} (2.10)

Application of this result to each of the three members on the right side of
(2.9), with substitution of (2.1), (2.3) and (2.5) for the covariance matrices
yields

L = Tr [1 + X GXT(1 – Z )TV –1(1 – Z ) + X (XTV –1X )–1XTZTV –1Z ] (2.11)

Note that, for any n ≈ n matrices M, N,

2Tr (MZN ) / 2Zij = (NM )ji (2.12)

where the subscript denotes the relevant element of the named matrix.
Write 2/2Z to denote the matrix of derivatives 2/2Zij, so that (2.12) becomes

2Tr (MZN ) / 2Z = (NM )T (2.13)

Apply (2.13) to (2.11) and set the derivative to zero so as to minimize L, giving

– X GXT(1 – Z )T + X (XTV –1X )–1XTZT = 0. (2.14)

Transposition of this, followed by post-multiplication by V –1X yields

Z (1 + X GXTV –1) X = X GXTV –1X

which is solved by

Z = [1 + (X GXTV –1)
–1]

–1
(2.15)
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This is the classic result obtained by Hachemeister (1975). The matrix Z will
be referred to henceforth as the credibility matrix.

3. DECOMPOSITION OF CREDIBILITY MODELS

Consider the model described by (2.1)-(2.3), but now with X and G written as
X1 and G1. Express G1 in the following block form:

1
0=

+*
*G

G
G= G (3.1)

where G0 is of dimension p0 ≈ p0 and the stars indicate entries that are arbitrary
subject to the requirement that full matrix G1 be a genuine covariance matrix,
i.e. positive definite.

Partition X1 in a dimensionally consistent manner:

X1 = [ X0 X+] (3.2)

where X0 is of dimension n ≈ p0.
No assumption is made about V other than the standard one of positive

definiteness.
The notation here is that X0, X1 are the designs representing a regression

null hypothesis and alternative hypothesis, and X+ is the augmenting matrix
connecting the two designs.

Example 3.1. (Bühlmann-Straub)

Let

X0 = [un] X+ =
u

u

0

0

0
0n

n

h

g

j

g

h

r

2

R

T

S
S
S
S
S

V

X

W
W
W
W
W

(3.3)

where un denotes the n-dimensional column vector with all entries unity and

n ni
i

r

1

=
=

! (3.4)

where n1 is the dimension of the top left zero vector in X+.
The interpretation of this model is as follows. If the r columns of X1 are

associated with r risk classes, then the model represents ni observations on risk
class i, i = 1,…,r, which is assumed characterised by parameter b1 for i = 1,
and by b1 + bi otherwise. This is the data set-up of the model of Bühlmann and
Straub (1970).
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The model represented by the design matrix X0 treats all risk classes as
subject to the same parameter. ¡

Example 3.2. (Hachemeister regression). Consider the case in which 

X0 =
u

u

t

t

m

m

m

m

h h

R

T

S
S
SS

V

X

W
W
WW

X+ =
u t

u t

0

0

0

0

0 0

m m

m m

h h

g

j

g

R

T

S
S
S
S
S

V

X

W
W
W
W
W

(3.5)

where tm is the time trend covariate vector [1,2,…, m], n = rm, and X+ is of
dimension n ≈ 2r.

Here the 2r parameters consist of r pairs and each pair may be regarded
as defining a time trend for one of r risk classes. This corresponds to the model
of Hachemeister (1975), in which the risk classes were states of the USA.

The model represented by the design matrix X0 treats all states as subject
to the same pair of risk parameters. ¡

Example 3.3. A further example may be constructed by merging a model of
the Hachemeister type with the sort of econometric model found in the workers
compensation literature. For example, Butler (1994) found that statistically
significant explanatory variables for real indemnity costs per employee
included:

• wage replacement ratio;
• risky employment measure (proportion of workforce employed in manufac-

turing and construction);
• waiting period.

One might therefore define a model in which X0 decomposes further:

X0 = [x(1) x(2) x(3) X0
(H) ], X+ = X+

(H) (3.6)

where x (1), x (2), x (3) are the n-vectors of log (replacement ratio), log (risky
employment measure) and waiting period respectively, and X0

(H) and X+
(H) are

the Hachemeister versions of X0 and X+ defined by (3.5).
Moreover, one might choose

0
+ +

,
G

G
0

0

0
H

H
0 = =G G]

]
g

g

R

T

S
SS

V

X

W
WW

(3.7)

where the top left block of G0 corresponds to x(1), x(2), x(3) and G0
(H) ,G+

(H) are as
for the Hachemeister model.
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The credibility model (2.6) then reduces to:

b bx Z X b ZXY 1i

i

i H H H H

1

3
= + - +

=

! ] ]
^

] ] ] ]g g
h

g g g g (3.8)

where the terms with superscript (H) all relate to the Hachemeister portion of
the model, i.e. the model with the x(i) components deleted.

In this example, the regression coefficients associated with the first three
regressors, which are not state-specific (the regressors themselves may be, but
their coefficients are not), are given full credibility in (3.8). However, the state-
specific trends comprising the full extension model are credibility-weighted.

The distinction between the x(i) and the X0
(H) is the distinction between fixed

and random effects in the regression model (see e.g. Ohlsson and Johansson, 2006).

4. ESTIMATION OF CREDIBILITY PARAMETER

Application of the credibility formula (2.6) and (2.15) requires a knowledge,
or estimate, of some properties of G1 and V. Full estimation of these matrices
is a substantial task. Hachemeister (1975) shows how to estimate the former.

The present paper will be concerned with the restricted case in which the struc-
ture of each of the two matrices is known, i.e. each is known up to a multiplier,

V = s2W, G1 = t2G1 (4.1)

with W,G1 known and s2, t2 unknown. It should be recognised that this is a
restriction which may not be feasible in all practical situations. To this extent,
it is a limitation of the procedure suggested below for the estimation of Z.

Substitution of (4.1) in (2.15) yields

1Z G X Wn1 T
1 1

1 1 1

= +
-

-
-

Xa k= G (4.2)

with
n = t2 /s2 (4.3)

and all other terms in (4.2) known. An estimate of only the ratio (4.3), rather
than of its separate components, is required for computation of Z. The ratio n
will be referred to as the credibility parameter in view of its central role.
The following paragraphs address its estimation. They require the following
elementary results.

Result 4.1. For any conformable non-stochastic matrix A and centred stochastic
vector x,

E [xTAx] = Tr{AVar[x]} (4.4)
¡
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Result 4.2. For any matrices A,B of dimensions m ≈ n and n ≈ m respectively

Tr (AB) = Tr (BA) (4.5)

It follows that the trace of a matrix product (of any number of factors) is
invariant under cyclic permutation of the matrix factors. ¡

Consider the following two regression models:

Model 0: Y = X0 b0 + e

Model 1: Y = X1 b1 + e

subject to (2.3) and (3.2). Generally in the following a subscript 0 or 1 will be
used to indicate which of the models is under discussion.

The fitted value of Y, denoted Yi , i = 0,1, is 

Yi = PiY (4.6)

with

Pi = Xi (Xi
TW –1Xi)

–1 Xi
TW –1 (4.7)

Define the residual sum of squares for Model 1 as

RSS = (Y – Y1)TW –1(Y – Y1)

= s2Tr{W –1(1 – P1)W (1 – P1)T} [using Results 4.1 and 4.2]

which, after some minor manipulation, yields

E [RSS ] = s2Tr (1 – P1) (4.8)

where the matrices on the right are of dimension n ≈ n.

By Result 4.2, TrP1 reduces to the trace of the p1 ≈ p1 identity matrix, and so
(4.8) gives

E [RSS ] = (n – p1)s2 (4.9)

Now define the regression sum of squares

SSreg = ( Y1 – Y0)W –1( Y1 – Y0) (4.10)
= Y T(P1 – P0)T W –1(P1 – P0)Y

Consider the matrix (P1 – P0)T W –1(P1 – P0). It is elementary to check that

Pi
TW –1Pi = W –1Pi , i = 0,1 (4.11)
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Now consider the cross terms in (P1 – P0)T W –1(P1 – P0). By (3.2),

P1
TW –1P0 = W –1X1 [(X1

TW –1X1)–1 X1
TW –1X0] (X0

TW –1X0)–1X0
TW –1 (4.12)

Expand X1 according to (3.2) within the square bracket:

+ + +

0 0 0
1 1X W X W

X W

X W

X W

X W

X W

X W

1
0

T T
T

T

T

T

T

T
1 1 1

0

1
0

1
0

1

1

1 1
0

1
0

=

=

-
-

-
-

-

-
+

-
+

-
-

-
X

X

X

X

X

X

X
a k

R

T

S
S
S

R

T

S
S
S

<

V

X

W
W
W

V

X

W
W
W

F

(4.13)

Substitution of (4.13) in (4.12) yields

0 0P W P W X W X W W P1
0

T T T
1

1
0

1
0

1
0

1 1 1
0= =

- -
+

-
-

- -X X Xa k6 <@ F (4.14)

It may also be noted that

P W P P W P W PT T T T

0
1

1 1
1

0
1

0= =
- - -

a ak k [by (4.14)]
(4.15)

W P1
0=

- [by (4.7)]

Substitution of (4.11), (4.14) and (4.15) in (4.10) yields

SS Y W P P Yreg
T 1

1 0= -
-
^ h (4.16)

and then, by Result 4.1,

E SS Tr W P P Var Yreg
1

1 0= -
-
^ h7 6A @% / (4.17)

To evaluate this quantity, write

Y = X1b + X1( b – b ) + (Y – X1b )

and note that covariances between all three terms on the right are zero. There-
fore, by (2.1) and (2.3),

1

1

Var Y X V

G X Wt s

T

T

1 1

2
1 1

2

= +

= +

X

X

G6 @

(4.18)

where (4.1) has been used again.
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By substitution of (4.18) into (4.17),

1E SS Tr W P P G X Wt sreg
T1

1 0
2

1 1
2

= - +
- X^ ah k7 A & 0 (4.19)

Now

pTr W P W Tr1i p
1

i
= #

-

i
a k (4.20)

by (4.7) and Result 4.2, where Xi is of dimension n ≈ pi . Thus

Tr W P P W p ps s1
1 0

2
1 0

2
- = -

-
^ ^h h% / (4.21)

Note that, by Result 4.2,

1 1Tr W P P G X Tr X W P P GT T1
1 0 1 1

1
1 0 1 1- = -

- -X X^ ^h h: :D D (4.22)

To evaluate this, consider

1 1 1X W P P X W X W PT T T1
1 0 1

1
1

1
0 1- = -

- - -X X X^ h (4.23)

by (4.7).

Now

+

+ +

0 0

0
0 0 0

0 0

0 0

1 1X W P X W X W X W

X W

X W
X W X W X W

X W

X W

X W

X W X W X W

T T T T

T

T
T T T

T

T

T

T T T

1
0 1

1
0

1
0

1 1
1

1
0

1
0

1
0

1 1
0

1

1
0

1
0

1

1
0

1
0

1 1

=

=

=

- - -
-

-

-

-

-
-

- -
+

-

-

-
+

- -
-

-
+

X X X X

X

X
X X X

X

X

X

X X X

a a a

a

a a a

k k k

k

k k k

R

T

S
S
S
R

T

S
S
SS

:

V

X

W
W
W

V

X

W
W
WW

D (4.24)

Substitute (4.24) into (4.23) and expand 1X WT 1
1

- X in a similar block form to
obtain

+
1X W P P

X W P
0
0

0
1

T
T

1
1 0 1 1

0
- =

-
-

-
+

X
X^

^
h

h

R

T

S
SS

V

X

W
WW

(4.25)

Substitution of (4.25) in (4.22) gives

+1Tr W P P G X Tr X W P G1T T1
1 0 1 1

1
0- = -

- -
+ +X X^ ^h h: :D D (4.26)
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Combining (4.19), (4.21) and (4.26)

E SS p p t Ds treg
2

1 0
2

= - +^ ^h h7 A (4.27)

where D is the regression design that recognises X0, X+, in addition to W and
G+, and

+t D tr X W P G1T 1
0= -

-
+ +X^ ^h h: D (4.28)

Combine (4.27) with (4.9) to obtain

/
/

E RSS n p
E SS p p

p p t Dn1reg

1

1 0
1 0

1

-

-
= + -

-

^

_ ^
^ ^

h

i h
h h

6 @
(4.29)

where n was defined in (4.3).
Thus, n is estimated by

, /maxn F p p t D0 1 1 0= - -^ ^ ^h h h7 A (4.30)

where F is the conventional regression F-statistic for testing Model 1 against
Model 0, i.e.

/ / /F SS p p RSS n preg 1 0 1= - -^ ^h h7 7A A (4.31)

The credibility matrix Z in (4.2) is thus estimated by replacing n with n.
The dependence of Z on the F-statistic was demonstrated by Zehnwirth

(1977) in the simple case of 1-dimensional credibility. It may also be remarked
that the estimator of Z derived here is different from Hachemeister’s (1975) esti-
mate because he did not make the reducibility assumption (3.3) and assumed
no prior knowledge of G1. He therefore estimated G1 in its entirety rather than
just the scaling parameter t2 in (4.1).

The regression whose statistics appear on the left side of (4.29) may have
a number of equivalent designs. Example 3.1, for example, might have been for-
mulated with X+ taking any of the block diagonal forms

X+ = diag (un1
, …, uns–1

, 0, uns+1
…, unr

) (4.32)

However, changing from one design D to another would not change the left
side of (4.29), and so t(D) is invariant over D ! D, were D denotes the set of
all regression designs equivalent to (and including) the one of interest.

Example 3.1. (continued). Suppose that

, , ...,Var W diag w wb t 1 n
2 1

1= =
-

^ h6 @ with .w wi
i

n

1

=
=

!

526 G. TAYLOR

0345-07_Astin37/2_15  28-11-2007  16:26  Pagina 526



Note that, since the parameter vector for Model 1 is represented in the form
( b1, b1 + b2,…, b1 + br)

T instead of just ( b1,…, br), it is necessary for the former
vector to have covariance matrix t21. That is 

Var [Mb ] = t21

with

M u
1 0

1r 1
=

-

= G

It may be checked that, in this representation,

Var M M
u

u

u u
b t t

1

1

T

r

r
T

r r
T

2 1 1 2

1

1

1 1

= =
-

-

+

- -

-

-

- -

a k

R

T

S
S
S

6

V

X

W
W
W

@

and so

G u u1 r r
T

1 1= ++ - -
(4.33)

Now

0 nX W u W u wT T
n

1
0

1
= =

- -X (4.34)

nP w u u Wn
T

0
1 1

=
- - (4.35)

+

n

n

X W
u W u

u W u

T
n

r n

1
2

1

1

2

j=
-

+

-

-

T

T
r r

2

X
]

]

g

g

R

T

S
S
S
SS

V

X

W
W
W
WW

(4.36)

where W –1 is written in block diagonal form W –1 = diag(W(1)
–1,…,W(r)

–1) with
blocks corresponding to those in X1.

Thus

++ , ...,X W X diag w wT
r

1
2=

-

] ]` g gj

where w( j ) = TrW( j )
–1, and so

+ ...Tr X W G w w w w2 2T
r

1
2 1= + + = -

-
+ +Xa ] ]` ]`k g gj gj (4.37)

Also

+ + +X W P G w X W u X W u GT T
n

T
n

T1
0

1 1 1
=

-
+ +

- - -
+X a ak k (4.38)
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and

+X W u
w

w

T
n

r

1
2

=
-

h

]

]

g

g

R

T

S
S
SS

V

X

W
W
WW

(4.39)

Therefore, by substitution of (4.39) in (4.38) and use of (4.33) and Result 4.2,

+ + +

( )

( )

j

j

( )j

r 1-

2

Tr X W P G w Tr X W u u u X W u

w w w

w w w w w

1T T
n

T

r
T T

n

j

r

j

r

j

r

1
0

1 1
1

1

1 2

2 2

2

1 2

1
1

2
1

= +

= +

= - + -

-
+ +

- -
-

-

-

= =

-

=

X

! !

!

a a a a

] ]`

k k k k

g gj

R

T

S
SS

R

T

S
SS

=

V

X

W
WW

V

X

W
WW

G

* 4 (4.40)

It then follows from (4.27) and (4.28) that

( )

( )

j

j

E SS r w w w w w w w w

r w w w

s t

s t

1 2

1

reg
j

r

j

r

2 2 1
1 1

2

1
2 2

1

2 2 1 2

1

= - + - - - + -

= - + -

-

=

-

=

!

!

^ ]` ]`
]

^

h gj gj g

h

R

T

S
SS

R

T

S
SS

7

V

X

W
WW

V

X

W
WW

A

(4.41)

Comparison with (4.27) indicates that

( )jt D w w w
j

r
1 2

1

= -
-

=

!^ h (4.42)

Note that t (D) is indeed independent of D, as predicted earlier.
The estimator (4.30) now takes the explicit form

( )j, /maxn F r w w w0 1 1
j

r
1 2

1

= - - -
-

=

!^ ^h h

R

T

S
SS

V

X

W
WW

* 4 (4.43)

with

/ / /F SS r RSS n r1reg= - -^ ^h h7 7A A (4.44)

Here

( ) ( )j j

2
SS w Y Yreg

j

r

1

= -
=

! a k (4.45)
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where ( )jY is the weighted mean of Y over the j-th risk class with weight vec-
tor w( j ) and Y is the grand weighted mean.

The estimator (4.43) is the same as that obtained by Bühlmann and Straub
(1970). It is emphasised, however, that, despite its algebraic development for
illustrative purposes here, it could have been derived numerically (with no algebra)
as described in Section 5 below.

5. NUMERICAL EVALUATION OF CREDIBILITY PARAMETER

Suppose one is faced with the credibility regression design represented by (2.2),
(3.3) and (4.1). One wishes to apply the credibility formulas (2.6) and (4.2), and
needs an estimate of n in order to do so.

One may proceed by means of the following steps.

5.1 Choose a regression design D and evaluate t(D) according to (4.28). This
may be done algebraically or numerically.

5.2 Evaluate the F-statistic for testing the regression Model 1 against the
Model 0 null hypothesis. This may be done by applying regression software
to the data, or by direct calculation. The latter would amount to a re-creation
of the regression software.

5.3 Assemble the result into the estimator n given by (4.30), and hence an
estimator of Z.

Step 5.2 provides a quick and systematic way of evaluating the credibility
matrix in cases of complicated design. An example is given in the next section.

In the case of diagonal V, it is usually a straightforward matter to express dif-
ferent models, corresponding to null and alternative hypotheses, in the standard
regression software packages (e.g. SAS, Emblem). Calculation of the F statistic
comparing them may then come as an option or, if not, there will usually be
an option to output RSS statistics from which the F statistic may be calculated.

This is particularly simple for some of the interactive packages (e.g. Emblem),
where the inclusion or exclusion of a set of defined variates (the difference between
null and alternative hypotheses) may be achieved with a single keystroke per vari-
ate, and the model comparison F statistic obtained with another single keystroke.

On the other hand, these packages generally do not accommodate the case
of non-diagonal V, and so the above software procedure for calculation of F
is not available.

6. HIERARCHICAL CREDIBILITY

6.1. Definition of hierarchical model

A general hierarchical credibility model (Taylor 1979, Sundt 1979, 1980) can be
extensive, and the procedure set out in Section 5 may be helpful in the evalua-
tion of the various credibility matrices.
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The standard hierarchical credibility framework, as defined by Taylor, is one
in which risk classes consist of sub-classes, and sub-sub-classes, and so on.

If a risk class is labelled j1, it will be composed of sub-classes j11, j12, …,
and generally j1 j2. This will consist of sub-sub-classes j1 j2 j3, and ultimately 
j1 j2 … jq.

The nodes ( j1… jk), k = 1,2,…,q form a tree. A regression structure may
be placed at each node.

This sort of structure is studied in full generality by Sundt (1979, 1980) who
sets up a framework involving an observable vector Y = [Y1

T,…,Yq
T]T, in which

the q components represent the q levels of the hierarchy. Latent parameters
q1,…, qq are associated with the different levels of the hierarchy.

A slightly simplified version of Sundt’s assumptions, sufficient for present
purposes, is as follows:

(i) Yj and qk are conditionally independent given q1,…, qj if k > j.

(ii) (Y1
T,…,Yj

T )T and (YT
j+1,…,Yq

T)T are conditionally independent given q1,…,
qj, j = 1,…,q – 1.

(iii) E [Yj | q1,…, qj ] = Xj bj (q1,…, qj), j = 1,2,…,q (6.1)
for non-stochastic matrix Xj and vector function bj (.),

(iv) E [ bj (q1,…, qj) | q1,…, qj –1 ] = bj –1(q1,…, qj –1), j = 2,…,q (6.2)

and

E [ b1(q1)] = b0 (6.3)

Condition (i) is actually stronger than Sundt, who assumed only that Yj and
qk were unconditionally independent.

Let

Gj = EVar [ bj (q1,…, qj) | q1,…, qj –1 ], j = 2,…,q

= Var [ b1(q1)] for j = 1
(6.4)

where the expectation operator is tacitly assumed taken over all conditioning
variables of its operand.

Similarly, let

Wj = EVar [Yj | q1,…, qj ], j = 1,…, q (6.5)

Define

Y( j ) = [Yj
T, …,Yq

T ]T, j = 1,…, q (6.6)

X( j ) = [Xj
T, …, Xq

T ]T, j = 1,…, q (6.7)

W( j ) = EVar [Y( j ) | q1,…, qj ], j = 1,…, q (6.8)
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N( j ) = EVar [Y( j ) | q1,…, qj –1 ], j = 2,…, q (6.9)

= Var [Y(1) ]  for j = 1

Then W( j ) and N( j ) may be calculated recursively as follows (Sundt, 1980):

W( j ) = Wj for j = q

=
j

N

W

0

0

j 1+] g

R

T

S
SS

V

X

W
WW
, j = q – 1, q – 2,…,1 (6.10)

N( j ) = W( j ) + X( j )Gj XT
( j ), j = q, q – 1,…,1 (6.11)

Finally the credibility estimator of E [ bj (q1,…, qj) | q1,…, qj –1] based on data Y
(i.e. least squares estimator, linear in Y ), denoted bj , is calculated recursively
as follows (Sundt, 1980).

Define

Mj = Gj XT
( j )W( j )

–1X( j ) (6.12)

Zj = Mj (1 + Mj)
–1 (6.13)

bj = [XT
( j ) N( j )

–1X( j )]
–1 XT

( j ) N( j )
–1Y( j ) (6.14)

which may be recognized as a generalised least squares regression estimator of
E [ bj (q1,…, qj) | q1,…, qj –1].

Then

bj = (1 – Zj ) bj –1 + Zj bj , j = 1,2,…,q (6.15)

with b0 = b0.

It is of interest to consider the special case in which the covariance matrices
Gj and Wj are independent of q1,…, qj and are known up to scaling constants,
and the relation between the different Wj also known:

Gj = tj
2G” j , Wj = s2W” j (6.16)

where G” j and W” j are known and tj
2 and s2 are to be estimated from data.

Define

W” ( j ) = W( j ) / s2, N” ( j ) = N( j ) / s2 (6.17)

It may be checked from (6.10) and (6.11) that 
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W” ( j) = W” j , j = q

=
jW

N0

0

j 1+] g

R

T

S
SS

V

X

W
WW
, j = q – 1, q – 2,…,1 (6.18)

N” ( j ) = W” ( j) + nj X( j )G” j XT
( j ), j = q, q – 1,…,1 (6.19)

where

nj = tj
2 / s2 (6.20)

By (6.12), (6.17) and (6.20),

Mj = nj G” j XT
( j )W” ( j)

–1 X( j ) (6.21)

and (6.13) then yields Zj in a form parallel to (4.2) with the nj now referred to
as the credibility parameters in parallel with n in (4.3).

6.2. Estimation of the credibility parameters

The credibility parameters of the hierarchical regression model may be esti-
mated by the approach established in Sections 4 and 5. The details of the appli-
cation will depend on the parametric details of the model. An example follows.

Begin with the regression

Yj = Xj bj (q1,…, qj) + ej (6.22)

where, by (6.1),

E [ ej ] = 0 (6.23)

Example 6.1. Consider the model defined in Section 6.1, and note that, for
j = fixed k, the required credibility parameter nk arises from t2

k and s2. If the
former is set to zero, then (6.4) and (6.16) imply that

Var [ bk(q1,…, qk) | q1,…, qk–1] = 0 (6.24)

and so, by (6.2),

bk(q1,…, qk) = bk–1(q1,…, qk–1) (6.25)

By (6.1), (6.2), (6.6) and (6.7),

E [Y( j ) | q1,…, qj ] = X( j ) bj (q1,…, qj ), j = 1,2,…,q (6.26)
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By (6.1) with j = k – 1 and (6.26) with j = k,

, ...,
, ...,

, ...,
, ...,

, ...,

E
q
q

q
q

q
j0

k k

k k

k k k

k k k

k

k

k k k

k

1 1 1

1

1 1 1 1

1

1 1 1

1

=

=
-

- - - - -

- -

-

Y
Y

q
q

b q
b q

b q

X
X

X
X

X

]

^

] ^

]

^

g

h

g h

g

h

> >

= =

H H

G G

(6.27)

where

jk–1 = bk(q1,…, qk) – bk–1(q1,…, qk–1) (6.28)

Let Model 1 denote (6.27), and Model 0 denote the same subject to (6.25), i.e.
with jk–1 = 0. The situation is now parallel to Example 3.2, with 

,
0

k

k
k

k
0

1
1

1= = =
--

- +
-

X
X

X XX X
]

]
g

g= <G F (6.29)

Then nk = t2
k / s2 is estimated by (4.30). The detail is as follows. First note that,

by condition (i) of the hierarchical regression model, Yk–1 and qk are condi-
tionally independent given q1,…, qk–1, and it then follows that Yk–1 | q1,…, qk–1

and Yk–1 | q1,…, qk are equal in distribution. Then (6.27) becomes

, ...,
, ...,

E q
q
j0

k

k
k

k

k

k k

k

1
1

1 1 1

1
=

-- - -

-

Y
Y q

b qX
X

X

] ]

^

g g

h
= = =G G G (6.30)

In the notation associated with (4.30),

, ..., , ..., , ...,G Var Varj q b q qk k k k k1 1 1 1 1 1= =+ - - -q q q^ h6 7@ A (6.31)

, ...,W Var qk

k
k

1
1= -Y

Y q
] g

= G (6.32)

Now consider the special case in which the covariance matrices in (6.31) and
(6.32) do not depend on the conditioning parameters shown. Then they may
be written as

, ..., , ...,G EVar Gq qk k k k1 1 1 1= =+ - -b q q^ h7 A (6.33)

, ...,W EVar q 0
0k

k
k

k

k

1
1

1= =- -

W
Y
Y q

W

] ]g g
= =G G (6.34)
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where the entries in the matrix are justified as follows. The bottom right entry fol-
lows directly from (6.8). The top left follows from (6.5) and the fact that Yk–1 |
q1,…, qk–1 and Yk–1 | q1,…, qk are equal in distribution. The off-diagonal zeros
are justified by observing that Yk–1 | q1,…, qk–1 and Y(k) | q1,…, qk–1 are inde-
pendent, by condition (ii) of the model. Also Yk–1 | q1,…, qk–1 and qk | q1,…,
qk–1 are independent, from condition (i). It follows that Yk–1 | q1,…, qk and
Y(k) | q1,…, qk are independent. This is just an application of the general result
that independence of U |A and V |A, and of U |A and B |A, implies indepen-
dence of U |AB and V |AB, whose proof is left to the reader.

The credibility parameter nk is now estimated by nk given by (4.30).

7. CONCLUSION

Traditionally, credibility coefficients have been estimated by manipulation of
squared error terms of some sort. The manipulations have been ad hoc, and
each new credibility model has required a new exercise in estimation.

This paper has developed an estimate of a credibility coefficient on the
basis of an analysis of variance for the testing of one regression model against
another. The credibility coefficient is expressed in terms of the F test statistic.

Sections 4 and 6 give examples of the procedure’s application. Some of
these, especially Example 6.1, are complex, and the ad hoc algebra involved
in manipulating squared error terms in order to arrive at estimators for the
credibility coefficients would be laborious and possibly error-prone.

The suggested procedure reduces this to an algorithm once null and alter-
native hypotheses have been formulated, though it should be noted that the pro-
cedure is limited to the case in which each of the two covariance matrices
underlying the credibility model is known up to a multiplying constant.

Further, as pointed out in Section 5, the reduction of the estimation to
hypothesis testing of regression models means that the required F-statistic may
be computed by standard regression software in the case of diagonal V.

REFERENCES

BÜHLMANN, H. and STRAUB, E. (1970) Glaubwürdigkeit für Schadensätze. Mitteilungen der Verei-
nigung Schweizerischer Versicherungsmathematiker, 70.

BUTLER, R.J. (1994) Economic determinants of workers’ compensation trends. Journal of Risk
and Insurance, 61, 383-401.

DE VYLDER, F. (1978) Parameter estimation in credibility theory. Astin Bulletin, 10, 99-112.
DE VYLDER, F. (1985) Non-linear regression in credibility theory. Insurance: mathematics and eco-

nomics, 4, 163-172.
HACHEMEISTER, C.A. (1975) Credibility for regression with application to trend. Appears in Kahn

(1975).
KAHN, P.M. (ed.) (1975) Credibility: theory and applications. Academic Press, New York, NY.
OHLSSON, E. and JOHANSSON, B. (2006) Exact credibility and Tweedie models. Astin Bulletin, 36,

121-133.

534 G. TAYLOR

0345-07_Astin37/2_15  28-11-2007  16:29  Pagina 534



SUNDT, B. (1979) A hierarchical credibility regression model. Scandinavian Actuarial Journal,
107-114.

SUNDT, B. (1980) A multi-level hierarchical credibility regression model. Scandinavian Actuarial
Journal, 25-32.

TAYLOR, G.C. (1977) Abstract credibility. Scandinavian Actuarial Journal, 149-168.
TAYLOR, G.C. (1979) Credibility analysis of a general hierarchical model. Scandinavian Actuarial

Journal, 1-12.
ZEHNWIRTH, B. (1977) The credible distribution function is an admissible Bayes rule. Scandina-

vian Actuarial Journal, 121-127.

GREG TAYLOR

Taylor Fry Consulting Actuaries
Level 8, 30 Clarence Street
Sydney NSW 2000
Australia

Professorial Associate
Centre for Actuarial Studies
Faculty of Economics and Commerce
University of Melbourne
Parkville VIC 3052
Australia

Adjunct Professor in Actuarial Studies
Faculty of Commerce and Economics
University of New South Wales
Kensington NSW 2033
Australia

Phone: 61 2 9249 2901
Fax: 61 2 9249 2999
E-mail: greg.taylor@taylorfry.com.au

CREDIBILITY, HYPOTHESIS TESTING AND REGRESSION SOFTWARE 535

0345-07_Astin37/2_15  28-11-2007  16:29  Pagina 535




