
A NOTE ON A RECENT PAPER BY ZAKS,
FROSTIG AND LEVIKSON

BY

KLAUS D. SCHMIDT

ABSTRACT

In the present paper we give a short proof of a result of Zaks, Frostig and
Levikson [2006] on the solution of an optimization problem which is related
to the problem of optimal pricing of a heterogeneous portfolio.

Following Zaks, Frostig and Levikson [2006], we consider a heterogeneous
portfolio which is composed by k risk classes such that for each j ! {1, …, k}
the risk class j contains nj risks Xj,1, …, Xj,nj

which are assumed to be i.i.d. with
finite first and second moments and non-zero variance. Then the total risk of
risk class j is defined as 
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Consider also r1, …, rk ! (0,3) and a ! (0,1), and let z1 – a denote the 1 – a
percentile of the standard normal distribution. The authors prove the follow-
ing result:

Theorem 1. The minimization problem 
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has a unique solution p1
*, …, pk

* and the identity 
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holds for all j ! {1, …, k}.

Let now S denote the random vector with coordinates S1, …, Sk and let n :=
E [S]. Let also V denote the diagonal matrix with diagonal elements r1, …, rk,
let 1 denote the vector with all coordinates being equal to one, and consider
t ! �. Using this notation, Theorem 1 can be stated in the following form,
which suggests a simple proof based on the projection theorem in Hilbert
spaces (see e.g. De Vylder [1996; Part III] or Swartz [1994; Section 6.6]):

Theorem 1’. The minimization problem

Minimize

�E S p V S p1
- -

-
^ ^h h: D

over p subject to 1�p = 1�n + t

has a unique solution p* and the solution satisfies p* = n + t (1�V1)–1V1.

Proof. Since the matrix V is symmetric and positive definite, the vector space
L2(�

k) consisting of all k-dimensional random vectors having finite second
moments is a Hilbert space under the inner product 〈 ., . 〉V given by 

〈X,Y 〉V := E [ X�V–1Y ] 

and the induced norm || . ||V given by 

|| X ||V := 〈X,X 〉V
1/2

(Here, as usual, two random vectors X,Y are identified if P [{X = Y}] = 1.)
Furthermore, the set 

A := {p ! �
k | 1�p = 1�n + t}

is a nonempty closed subset of L2(�
k). Since A is convex, it follows from the

projection theorem in Hilbert spaces that the minimization problem 

Minimize 

|| S – p ||V

over p ! A
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has a unique solution p* ! A. Since A is even affine, p* is also the unique solu-
tion to the normal equations 

〈S – p*, p – p*〉V = 0 

with p !A being arbitrary. Using the definition of the inner product 〈 ., .〉V, the
normal equations can also be written as 

(n – p*)�V –1(p – p*) = 0 

We now observe that every vector qg := n + gV1 with g ! � satisfies 

(n – qg)�V
–1(p – qg) = – g (1�p – 1�qg)

and that qg ! A if and only if g = t (1�V1)–1. We have thus shown that the vec-
tor q := n + t (1�V1)–1V1 satisfies q ! A and

(n – q)�V –1(p – q ) = 0 

for all p ! A. Therefore, we have q = p*. ¡
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