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ABSTRACT

In this paper, we show that the delayed Sparre Andersen insurance risk model
in discrete time can be analyzed as a doubly infinite Markov chain. We then
describe how matrix analytic methods can be used to establish a computa-
tional procedure for calculating the probability distributions associated with
fundamental ruin-related quantities of interest, such as the time of ruin, the
surplus immediately prior to ruin, and the deficit at ruin. Special cases of
the model, namely the ordinary and stationary Sparre Andersen models, are
considered in several numerical examples.
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1. INTRODUCTION

In this paper, we consider the delayed Sparre Andersen insurance risk model
in discrete time. In particular, we assume that the number of claims process
{Nt : t = 0, 1, 2, …} is a modified discrete-time renewal process with indepen-
dent positive interclaim times {W1,W2,W3, …}, where W1 is the duration from
time 0 until the first claim occurs and Wi , i = 2,3,4,…, is the time between the
(i – 1)-th and i-th claims. For i = 2,3,4, …, let Wi have probability mass function
(pmf) aj = Pr{Wi = j}, j = 1, 2, 3, …, na, and corresponding survival function
Aj = Pr{Wi > j} = k 1= a1 k

j
- ! , where we adopt the usual convention that

k 1= f k 0=0! ^ h for an arbitrary function f. We assume in this paper that na <3
(i.e., the interclaim time distribution of Wi , i = 2,3,4, …, has finite support).

In the ordinary Sparre Andersen model, it is assumed that a claim has occurred
at time 0, so that W1 has the same distribution as the ordinary interclaim times
{W2,W3,W4, …}. If W1 is not a “full” interclaim time, however, it is well known
from standard renewal theory (e.g., see Karlin and Taylor (1975, pp. 192-193))
that, asymptotically in time, the limiting distribution of this forward recurrence
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time is defined by the pmf aj = Aj – 1 / k 1= Ak
n

1
a

-! , j = 1,2,3, …, na. As a result,
in the stationary Sparre Andersen model, W1 has pmf aj rather than aj. Since
the motivation for the use of aj is asymptotic in nature, it is not evident how
appropriate this assumption is for finite time. To accommodate other possible
alternatives, we assume more generally that W1 has pmf rj = Pr{W1 = j}, j = 1,
2, 3, …, nr, where nr < 3. By appropriate choice of rj, it is obvious that both
the ordinary and stationary Sparre Andersen models are special cases of this
more general risk model.

We further assume that the individual claim amounts {Y1,Y2,Y3, …} form
an independent and identically distributed (iid) sequence of positive random
variables with common pmf aj, j = 1, 2, 3, …, ma, and corresponding survival
function Lj = k 1= a1 k

j
- ! . We remark that unlike the interclaim time distribu-

tions defined above, the claim amount distribution can be of finite or infinite
support (i.e., ma ≤ 3). Premiums are collected at the rate of c ! �+ per unit time.
Beginning with an initial reserve of u ! {0,1,2, …}, the insurer’s surplus at
time t is given by Ut = u + ct – t

i 1= Yi
N! , t = 0, 1, 2, …. At any given time point,

we adopt the usual convention that premiums are collected first before any
claims are paid. Let T = min{t ! �+ : Ut < 0} be defined as the time of ruin with
T = 3 if Ut ≥ 0 ∀ t ! �+. If ruin does occur, we also define |UT | as the deficit
at ruin and UT– = UT – 1 + c as the surplus immediately prior to ruin. Clearly,
T = 3 if ma ≤ c. If ma > c, however, then |UT | ! {1,2,3, …, ma – c} and UT– !
{c, c + 1, c + 2, …, ma – 1}.

It is of considerable interest to risk practitioners to be able to calculate the
joint probability distribution (as well as associated marginal distributions) of
T, UT–, and |UT|. Surprisingly, however, there appear to be few results in the
literature for computing the joint probability distribution of these fundamental
ruin-related quantities of interest in the delayed Sparre Andersen model described
above. Most of the results in the literature tend to be specialized and mainly
concern the computation of ruin probabilities over finite- and infinite-time
horizons for the well-known compound binomial model — a discrete analogue
of the classical compound Poisson risk model in which interclaim times are geo-
metrically distributed and the ordinary and stationary variants are identical
(e.g., see Gerber (1988), Michel (1989), Shiu (1989), Dickson and Waters (1991),
Willmot (1993), Dickson (1994), De Vylder and Marceau (1996), Cheng et al.
(2000), Cardoso and Egidio dos Reis (2002), and Li and Garrido (2002)). For
the compound binomial model, however, Dickson et al. (1995) developed recur-
sive numerical procedures for calculating the joint and marginal probability
distributions of the surplus immediately prior to ruin and the deficit at ruin.
While recent papers by Pavlova and Willmot (2004), Li (2005a, 2005b), and
Cossette et al. (2006) have analyzed variants of the discrete-time Sparre Ander-
sen model described above, the emphasis in these papers has been primarily the-
oretical, focussing on bounds on ruin probabilities as well as distributional
properties and mathematical connections to other related renewal risk models
of interest via the methodology of the Gerber-Shiu discounted penalty func-
tion (e.g., see Gerber and Shiu (1998)).
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The thrust of this paper is more computational in flavour. To begin with,
we will show how the delayed Sparre Andersen model described above can be
set up as a doubly infinite Markov chain with finite blocks. Using this set-up,
we will then show how matrix analytic methods can be employed as a means
of computing the bivariate joint probabilities

wn,i (u) = Pr{T = n, UT– = i | U0 = u}, n ! �+; i = c, c + 1, c + 2, …, ma – 1

and

ƒn, j(u) = Pr{T = n, |UT | = j | U0 = u}, n ! �+; j = 1,2,3, …, ma – c,

as well as the trivariate joint probability

cn, i, j (u) = Pr{T = n, UT– = i, |UT | = j | U0 = u}, n ! �+;

i = c, c + 1, c + 2, …, ma – 1;

j = 1, 2, 3, …, ma – i.

Finally, we will demonstrate how these discrete-time probabilities can be
employed to approximate analogous quantities in the continuous-time version
of this model, where considerably more attention has been devoted in recent
years to characterizing the probability distributions of the time of ruin, the sur-
plus immediately prior to ruin, and the deficit at ruin.

2. FORMULATION OF THE MODEL

We begin by considering the interclaim time distribution defined by the pmf aj.
Letting W denote an arbitrary Wi, i = 2,3,4, …, we introduce tj = Pr{W > j |
W > j – 1} = Aj /Aj – 1, j = 1,2,3, …, na. We immediately note that t1 = A1 and
tna

= 0. If we now define the na ≈ na probability transition matrix 
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(2.1)

and the 1 ≈ na row vector e1 = (1,0,0, …, 0), Alfa and Neuts (1995) have shown
that the random variable W can be modelled as a discrete phase-type random
variable with representation (e1,S ) of order na. Alfa and Neuts (1995) refer to
this as the elapsed time representation of the discrete random variable W. We
remark that one may interpret {1,2,3, …, na} as the transient states of the
underlying Markov chain having probability transition matrix S among these
states, whereas state na + 1 is the absorbing state (i.e., the state which marks the
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end of an interclaim time and the subsequent occurrence of a claim). If we then
define the na ≈ 1 column vector of absorption probabilities

,s
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it can be shown that 

aj = e1S j – 1
s, j = 1, 2, 3, …, na.

Further details concerning this result can be found in Alfa and Neuts (1995)
as well as in Alfa (2004).

Consider now the delayed Sparre Andersen model described in Section 1.
Suppose we fix the value of W1 to be k, where k! {1,2,3, …, nr}. Assuming that
W1 = k, define Lt as the “elapsed time” (in the sense described above) at time
t, t = k, k + 1, k + 2, …, since the occurrence of the last claim. For t = k, k + 1,
k + 2, …, consider the bivariate stochastic process (Ut, Lt) which possesses the
following Markovian relationship, namely 

⎧ (Ut + c, Lt + 1) if there is no claim at time t + 1
(Ut +1, Lt +1) = ⎨ (2.2)

⎩ (Ut + c –Y, 1) if there is a claim Y at time t + 1.

Figure 1 depicts a simple transition scheme of the process assuming that u = 6,
c = 1, k = 3, and U3 = 5. An important observation is that Lk = 1, since we are
assuming that a claim has occurred at time k. Let D = {(Ut, Lt) : Ut ! � ; Lt =
1,2,3, …, na} denote the state space for this Markov chain. We refer to the Ut

component as the level of the process and the Lt component as the phase of
the process. Since the delayed process reverts to the ordinary process (having
interclaim time distribution defined by the pmf aj ) upon occurrence of the first
claim, the probability transition matrix P associated with this Markov chain
for t = k, k + 1, k + 2, … is given as

296 A.S. ALFA AND S. DREKIC

f – 3 – 2 – 1 0 1 2 f c c + 1 c + 2 c + 3 f

h ⎧ j j j j ⎫
–3 ⎪ j Bc Bc – 1 Bc – 2 Bc – 3 ⎪
–2 ⎪ j Bc + 1 Bc Bc – 1 Bc – 2 Bc – 3 ⎪
–1 ⎪ j Bc + 2 Bc + 1 Bc Bc – 1 Bc – 2 Bc – 3 ⎪

P = 0 ⎪ j Bc + 3 Bc + 2 Bc + 1 Bc Bc – 1 Bc – 2 f B0 ⎪ ,
1 ⎪ j Bc + 4 Bc + 3 Bc + 2 Bc + 1 Bc Bc – 1 f B1 B0 ⎪
2 ⎪ j Bc + 5 Bc + 4 Bc + 3 Bc + 2 Bc + 1 Bc f B2 B1 B0 ⎪
3 ⎪ j Bc + 6 Bc + 5 Bc + 4 Bc + 3 Bc + 2 Bc + 1 f B3 B2 B1 B0 ⎪
h ⎩ j j j j j j j j j j j j j ⎭
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298 A.S. ALFA AND S. DREKIC

where 

⎧ S if i = 0,
Bi = ⎨ (2.3)

⎩ (se1) ai if i = 1, 2, 3, ….

For c = 1, we note that this is a doubly infinite, right skip-free Markov chain,
with finite blocks of size na. Moreover, since ai = 0 ∀ i > ma, Bi becomes an
na ≈ na matrix of zeros if i > ma.

We now partition the state space D into two state spaces, namely

D1 = {(i, j ) : i = 0, 1, 2, …; j = 1, 2, …, na}

and

D2 = {(i, j ) : i = –1, –2, –3, …; j = 1, 2, …, na}.

Note that D1 comprises the “non-ruined” states of the system whereas D2 com-
prises the “ruined” states of the system, so that D = D1 � D2. Moreover, we
define two matrices C and D such that C : D1 " D1 and D : D1 " D2. Therefore,
the matrix C has block elements Cv,w containing transition probabilities which
map Ut = v ! {0,1,2, …} into Ut + 1 = w ! {0,1,2, …}. Clearly, the non-zero
block elements are given as Cv,w = Bv – w + c, w = 0,1, …, v + c. In a similar fash-
ion, the matrix D has block elements Dv,w = Bv – w + c, which contain the transi-
tion probabilities mapping Ut = v ! {0,1,2, …} into Ut + 1 = w ! {–1, –2, –3, …}.
As a result, the two matrices C and D look as follows:

0 1 2 f c c + 1 c + 2 f

0 ⎧ Bc Bc – 1 Bc – 2 f B0 ⎫
1 ⎪ Bc +1 Bc Bc – 1 f B1 B0 ⎪

C = ⎪ ⎪ (2.4)
2 ⎪ Bc +2 Bc + 1 Bc f B2 B1 B0 ⎪
h ⎩ h j j j j j j j ⎭

and 
– 1 – 2 – 3 f

0 ⎧ Bc + 1 Bc + 2 Bc + 3 f ⎫
1 ⎪ Bc +2 Bc + 3 Bc + 4 f ⎪

D = ⎪ ⎪. (2.5)
2 ⎪ Bc + 3 Bc + 4 Bc + 5 f ⎪
h ⎩ h h h ⎭

We remark that the matrix C is the lower right quadrant of P and the matrix D
is the lower left quadrant of P horizontally reversed.

Assuming that W1 = k, it readily follows that

Pr{Uk = v | W1 = k, U0 = u} = au + ck – v, v = u + ck – 1, u + ck – 2, u + ck – 3, ….
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Therefore, the initial (i.e., starting at time k) probability row vector correspon-
ding to the states in D1 is given by 

b(k) = (au + cke1, au + ck – 1e1, au + ck – 2e1, …, a2e1, a1e1,0, 0, …), (2.6)

where 0 denotes the 1 ≈ na row vector of zeros. Note that the i-th level of b(k) is
given by the 1 ≈ na row vector au + ck – i e1 for each i ! Wk = {0, 1, 2, …, u + ck – 1}.
Moreover, b(k) contains zeros from level u + ck onward.

We now define two additional row vectors, namely 

gn
(k) = (g (k)

n,0, g (k)
n,1, g (k)

n,2 , …) = b(k)Cn, n = 0,1,2, … (2.7)

and 

hn
(k) = (h(k)

n,–1, h(k)
n,–2, h(k)

n,–3, …) = g(k)
n – 1D = b(k)Cn – 1D, n = 1,2,3, …. (2.8)

Note that gn
(k) contains the probabilities of being in the various “non-ruined”

states at time k + n without having visited a “ruined” state during the previous
n – 1 transitions, given that Uk ! Wk according to the probability vector b(k).
In a similar fashion, hn

(k) contains the probabilities of being in the various
“ruined” states for the first time at time k + n, given that Uk ! Wk according to
the probability vector b(k). Since ruin can only occur at claim instants (thereby
resulting in the phase component being reset to 1 with probability 1 at such
instants), it immediately follows that the structure of the 1 ≈ na row vector
h(k)

n, –j is simply given by h(k)
n, –j = (ƒ(k)

n, j (u),0,0, … , 0), where ƒ(k)
n, j (u) = Pr{T = k + n,

|UT | = j |Uk ! Wk}. Hence, we simply obtain 

ƒ(k)
n, j (u) = h(k)

n, – j e1�, (2.9)

where e1� denotes the transpose of e1.
We can also apply similar probabilistic reasoning to obtain a representation

for c(k)
n, i, j (u) = Pr{T = k + n, UT– = i, |UT | = j |Uk ! Wk}. In order for ruin to

occur at time k + n with a surplus prior to ruin equal to i, we observe that:
(i) none of the previous n – 1 transitions must have included a visit to any state
in D2, and (ii) the surplus at time k + n – 1 must be equal to i – c. The quantity
corresponding to points (i) and (ii) is the 1 ≈ na row vector g

(k)
n – 1, i – c. At the

next time unit (i.e., time k + n), a claim must necessarily occur but not before
a premium of c is first collected, thereby raising the surplus level to i. Since s
contains the absorption (to claim occurrence) probabilities from the na possi-
ble phase states, and the claim causing ruin must be of size i + j in order to
ensure that the deficit at ruin is equal to j, it immediately follows that 

c(k)
n, i, j (u) = ( g

(k)
n – 1, i – c s)ai + j. (2.10)

Our analysis up to this point has assumed that W1 = k, where k ! {1,2,3, …, nr}.
Therefore, conditioning on the value of W1 yields, by the Law of Total Probability,
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ƒn, j (u) = rk
k

n

1

r

=

! ƒ(k)
n – k, j (u), n = nr + 1, nr + 2, nr + 3, … (2.11)

and

cn, i, j (u) = rk
k

n

1

r

=

! c(k)
n – k, i, j (u), n = nr + 1, nr + 2, nr + 3, …. (2.12)

However, in order for T = n where n = 1,2,3, …, nr, it must be that either: (i) time
n is the time of the first claim which happens to cause ruin, or (ii) the first claim
occurs at some time k ! {1,2,3, …, n – 1} which does not cause ruin, but ruin
subsequently occurs n – k time units later. Mathematically, this translates to 

ƒn, j (u) = rk
k

n

1

1

=

-

! ƒ(k)
n – k, j (u) + rnau + cn + j , n = 1,2,3, …, nr (2.13)

and

cn, i, j (u) = rk
k

n

1

1

=

-

! c(k)
n – k, i, j (u) + di,u + cn rn au + cn + j , n = 1,2,3, …, nr, (2.14)

where di,u + cn denotes the Kronecker delta of i and u + cn. Since rn = 0 ∀ n > nr,
equations (2.11) and (2.13) (as well as equations (2.12) and (2.14)) can be com-
bined to give 

ƒn, j (u) = r
,min

k
k

n n

1

1 r

=

-

!
! +

ƒ(k)
n – k, j (u) + rnau + cn + j , n ! �

+ (2.15)

and 

cn, i, j (u) = r
,min

k
k

n n

1

1 r

=

-

!
! +

c(k)
n – k, i, j (u) + di,u + cn rn au + cn + j , n ! �

+. (2.16)

For fixed j ! {1,2,3, …, ma – c}, we simply note that summing (2.16) from i = c
to ma – j yields (2.15), as required. Similarly, for fixed i ! {c,c + 1, c + 2, …,
ma – 1}, summing (2.16) from j = 1 to ma – i yields 

r

r

n

n

r

r ,

,

g s
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w c d
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(2.17)

where (2.10) was used to establish the last equality. Clearly, Lu + cn + ma – i = 0 in
(2.17) if ma = 3.
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3. COMPUTATIONAL PROCEDURE

In order to calculate the probability distributions of the ruin-related quantities
of interest, it is clear from (2.9) and (2.10) that we need to be able to compute
the row vectors gn

(k) and hn
(k), quantities which essentially characterize a matrix-

based means of sample path enumeration via (2.7) and (2.8) respectively. At first
glance, however, this is not entirely straightforward since C and D are both
infinite-dimensional matrices defined by (2.4) and (2.5) respectively. In what
follows, we capitalize on the structure of these matrices to develop an efficient
and stable computational procedure which ultimately enables one to calculate
quantities (2.15), (2.16), and (2.17).

We begin by observing that in the computation of g1
(k) given by (2.7), we

pre-multiply C by the row vector b(k) given by (2.6). Since b(k) contains zeros
from level u + ck onward, we obtain that g1

(k) is of the form

g1
(k) = (g (k)

1,0, g (k)
1,1, g (k)

1,2, …, g (k)
1,u + c (k + 1) – 2, g (k)

1,u + c (k + 1) – 1, 0, 0, …),

where

g (k)
1, i = au ck j

j

u ck

0

1

+ -

=

+ -

! e1Bj – i + c, i = 0,1,2, …, c – 1,

and

g (k)
1, i = au ck j

j i c

u ck 1

+ -

= -

+ -

! e1Bj – i + c, i = c, c + 1, c + 2, …, u + c (k + 1) – 1.

Note that g1
(k) contains zeros from level u + c (k + 1) onward, which is c levels

further than that in g0
(k) = b(k). Since (2.7) infers gn

(k) = g (k)
n – 1C for n ! �

+, we can
continue this process inductively to establish that gn

(k) contains zeros from level
u + c (k + n) onward, so that

gn
(k) = (g (k)

n,0, g (k)
n,1, g (k)

n,2, …, g (k)
n,u + c (k + n) – 2, g (k)

n,u + c (k + n) – 1, 0, 0, …),

where 

⎧ g ,n j
k

j

u c k n

10

1 1

-=

+ + - -
! ]] gg Bj – i + c if i = 0,1,2,…, c – 1,⎪

g (k)
n, i = ⎨ (3.1)

⎪
⎩ g ,n j

k

j i c

u c k n

1

1 1

-= -

+ + - -
! ]] gg Bj – i + c if i = c, c + 1, c + 2, …, u + c(k + n) – 1.

Substituting (2.3) into (3.1), the following recursive procedure for computing
the 1 ≈ na row vector gn

(k), n ! �
+, can then be constructed:

g (k)
n, i = , , , ..., ,g s 0 0 0,j i c n j

k

j

u c k n

1
0

1 1

- + -
=

+ + - -

a!
J

L

K
K

]
] N

P

O
O

g
g

i = 0,1, 2,…, c – 1, (3.2)
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and 

g (k)
n, i = g (k)

n – 1, i – c S + , , , ..., ,g s 0 0 0,j i c n j
k

j i c

u c k n

1
1

1 1

- + -
= - +

+ + - -

a!
J

L

K
K

]
] N

P

O
O

g
g

(3.3)

i = c, c + 1, c + 2, …, u + c (k + n) – 1,

starting with g (k)
0, j = au + ck – j e1, j = 0,1,2, …, u + ck – 1. We remark that further

simplifications are possible. In particular, we first note that g (k)
n,u + c (k + n) – 1 =

g (k)
n – 1, u + c (k + n – 1) – 1S from (3.3). If we repeatedly apply (3.3) to each resulting

equation, we eventually obtain that g (k)
n, u + c (k + n) – 1 = g (k)

0,u + ck – 1S
n. However, S is

of the form (2.1), and one can readily verify that Sn becomes an na ≈ na matrix
of zeros if n ≥ na. Hence, it immediately follows that g (k)

n,u + c (k + n) – 1 = 0 if n ≥ na.
Moreover, it is a straightforward exercise to prove by induction that g (k)

n,u + c(k + n) – j =
0 if n ≥ jna, j ! �

+. The verification of this result is left to the reader.
With the above basic recursive procedure for gn

(k) in place, other recursive
procedures can readily be established. For example, noting that e1s = 1 – t1 =
a1, (2.10) reduces to give c(k)

1, i, j(u) = a1ai + j au + c(k + 1) – i, and for n = 2,3,4, …,

, , ..., , ,

, , ..., .

min

g s

g s g s

a a

a a a

u

a

i c c c m j

S a

i c c m j

if

if

c
1 2 1

2 2 1

, ,

,

, ,

a

a

n i j
k

i j i c
u c k n

n
k

i j n i c
k

i j i ci c

u c k n

n
k

1 20

2 1

2

2 2 1 21 2

2 1

2

=
= + - -

+

= + -

,, ,

,, ,

+ - +=

+ + - -

-

+ - - + - += + -

+ + - -

-

!

!

]
^

] ]

] ] ]

g
h

g g

g g g

Z

[

\

]
]
]

]
]
]

" ,

In addition, we observe that since g (k)
n,u + ck +  = 0 ∀  = cn,cn + 1, cn + 2, …, it

follows from (2.3), (2.5), and (2.8) that 
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(3.4)

Hence, substituting (3.4) into (2.9) immediately yields 

ƒ (k)
n, j (u) = .g s,j n c

k

c

u c k n

1

1

, ,
,

+ - -
=

+ + -

a! ]
]

g
g

(3.5)

4. NUMERICAL EXAMPLES

In this section, we illustrate the application of our proposed algorithm with
several numerical examples. All calculations in this section were carried out on
an IBM Pentium IV clone with a 3 Ghz CPU and 4 GB of RAM.
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• Example 1

Our first example is intended to demonstrate the well-known result that the ordi-
nary and stationary models are identical when interclaim times are geometrically
distributed. Specifically, suppose that ordinary interclaim times have pmf

j

n

1

1

-

-

. . , , , ..., ,

. .

j n

j n

if

if

0 075 0 925 1 2 3 1

0 925
j

a

a
a

=
= -

=
a

^ ^

^

h h

h

* (4.1)

In other words, the pmf (4.1) is that of a truncated geometric distribution with
all the probability mass on {na, na + 1, na + 2, …} assigned to the support value
na. Clearly, j 1= 1j

na
=a! . Moreover, as na becomes larger, the closer {aj}

na
j = 1

approximates this particular geometric distribution having mean 40/3 - 13.333.
Let the individual claim amount distribution be given by the pmf

aj = G ( j – 1) – G ( j ), j ! �
+, (4.2)

where G (x) = (1 + x/30)– 4, x ≥ 0, is the survival function of a Pareto distribu-
tion having mean 10. Note that ma = 3, which implies that both |UT| and UT–

are distributed on �+ if c = 1.
Table 1 displays the values (rounded to 5 decimal places) of

Cn,x,y(u) = Pr{T < n, UT– ≤ x, |UT | ≤ y | U0 = u} = uc , ,i j
j

y

i c

xn

11

1

,
, ===

-

!!! ^ h (4.3)

for a discrete-time risk process with u = 50 and c = 1 having the above interclaim
time and claim amount distributions. The values in Table 1 were generated by
first implementing the recursive procedures (3.2) and (3.3) using Mathematica
(Version 5), and then summing the trivariate probabilities computed via (2.10)
and (2.16). However, we point out that (2.15) and (3.5) were employed to cal-
culate the joint probabilities when x = 3. Similarly, (2.17) was used in the case
where y = 3. The key to Table 1 is as follows:

(1) ordinary model with na = 10 (so that j 1= .0 504j
n 1a

=
-

a! and ana
= 0.496);

(2) stationary model with na = 10;
(3) ordinary model with na = 25 (so that j 1= .0 846j

n 1a
=

-
a! and ana

= 0.154);
(4) stationary model with na = 25;
(5) ordinary model with na = 50 (so that j 1= .0 978j

n 1a
=

-
a! and ana

= 0.022);
(6) stationary model with na = 50.

We make the following observations concerning the results in Table 1:

(a) When na = 10, the mean (ordinary) interclaim time is 7.219, which happens
to be less than the claim amount mean. Consequently, as ruin is certain to
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occur, the values in Table 1 when na = 10 approach 1 as n, x, and y grow
larger.

(b) When na = 25 and 50, the mean (ordinary) interclaim times are 11.435 and
13.063 respectively, which are both greater than the claim amount mean.
As a result, the probability of ultimate ruin is strictly less than 1. This fact
is reflected in the values in Table 1, as the probabilities for na = 25 and 50
are significantly smaller when compared to their corresponding counter-
parts for na = 10.

(c) Under the stationary model assumption, the mean (initial) interclaim times
are 4.863, 9.182, and 12.298 for na = 10, 25, and 50 respectively. Note that
these means are smaller than their corresponding counterparts in the ordi-
nary model. As a result, ruin is more likely to occur on the first claim under
the stationary model than under the ordinary one. For this reason, the
values of Cn, x, y(50) under the stationary model are always larger than the
corresponding values in the ordinary model. However, Table 1 indicates that
the difference between the two models becomes less and less as na grows
from 10 to 25 and finally to 50, as expected.

• Example 2

Our second example has been chosen to illustrate, for comparative purposes,
the same computations carried out in our first example, but for a more
advanced model than the compound binomial one. In particular, we now
assume that the ordinary interclaim times have pmf

j j j

n n n

1 1 1

1 1 1

- - -

- - -

. . . . . . , , , ...,

. . . .

j n

j n

if

if

0 3 0 7 0 075 0 925 0 025 0 975 1 2 3 1

0 7 0 925 0 975
j

a

a

15
4

30
19

10
1

15
4

30
19

10
1a a a

=
+ + = -

+ + =
a

^ ^ ^ ^ ^ ^

^ ^ ^

h h h h h h

h h h

*
(4.4)

We recognize the pmf (4.4) as that from a truncated (at na) 3-point mixture of
geometric distributions having overall mean (4/15) (10/3) + (19/30) (40/3) +
(1/10)(40) = 40/3. We remark that this mean is identical to the ordinary inter-
claim time mean considered in our first example. In what follows, we fix na = 60
so that j 1= .0 971j

a =
n 1- a! and j 1= .j 12 379j

a =
n a! . Moreover, we assume that the

pmf of the individual claim amount distribution is once again defined by (4.2).
Table 2 displays the values (rounded to 5 decimal places) of Cn,x,y(50) for

several variants of a discrete-time risk process (again with c = 1) involving the
above interclaim time and claim amount distributions, namely:

(1) ordinary model;
(2) stationary model;
(3) delayed model where W1 is a truncated (at nr = 200) 3-point mixture of

geometric distributions with pmf
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(4) delayed model where W1 is truncated (at nr = 50) geometric with pmf
j 1-

. . , , , ..., ,

. ;
r

j

j

if

if

0 075 0 925 1 2 3 49

0 925 50
j 49

=
=

=

^ ^

^

h h

h

*

(5) delayed model where W1 is discrete uniform with pmf rj = 0.04, j = 1,2,3,
…, 25;

(6) delayed model where W1 = 1 with probability 1.

We make the following comments about Table 2:

(a) Comparison of all values of Cn,x,y(50) corresponding to entry (5) of Table 1
and entry (1) of Table 2 seem to indicate that ruin is more likely to occur
when interclaim times have the 3-point mixture distribution of our second
example as opposed to the geometric distribution introduced in our first
example. This behaviour is attributable to the values of the mixing weights
{4/15, 19/30, 1/10}, since the probability of observing a “short” interclaim
time (i.e., one that is less than the mean 40/3) is 0.696 under the mixture
model and only 0.637 under the geometric model. Conversely, there is less
of a difference between the two models in observing a “long” interclaim
time (i.e., one that is greater than 30) — specifically, 0.096 under the geo-
metric model and 0.108 under the mixture model.

(b) Under the stationary model assumption with na = 60, the mean (initial)
interclaim time is 14.721 which is larger than the ordinary interclaim time
mean 12.379. Consequently, ruin is more likely to occur later in the sta-
tionary model than in the ordinary model. Hence, the values of Cn,x,y(50)
under the stationary model are consistently smaller than the correspond-
ing values in the ordinary model.

(c) It is not a difficult exercise to show that if the ordinary interclaim times
are distributed according to the non-truncated (i.e., infinite support) ver-
sion of the 3-point mixture of geometrics distribution given by (4.4), then
the limiting form of the forward recurrence time distribution is again a 3-
point mixture of the same geometrics but with different weights, namely
{1/15, 19/30, 3/10} instead of {4/15, 19/30, 1/10}. This new distribution has
mean 62/3 - 20.667, and in fact represents the true distribution for W1 in
the stationary model. Being a longer-tailed distribution, however, it is there-
fore not surprising that using na = 60 in model (2) is somewhat inadequate
since a mean (initial) interclaim time of 14.721 is only achieved. As a result,
we propose model (3) with nr = 200 as a more accurate reflection of the sta-
tionary model since j 1= . .j 20 250j

nr
=r!
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j j j1 1 1
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- - -
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(d) At first glance, it would appear that the ranking of models (1) through (5)
based on their values of Cn,x,y(50) is identical to the ranking of models
based on their mean (initial) interclaim time values. The mean (initial)
interclaim times corresponding to delayed models (4) and (5) are 13.063
and 13 respectively, both of which lie between the means corresponding
to models (1) and (2). A notable exception occurs when n = 50, however,
as values of Cn,x,y(50) for model (5) are always smaller (albeit slightly)
than their corresponding counterparts for model (2). Even with that said,
the values of Cn,x,y(50) look quite similar across models (1) through (5).

(e) In the absence of any knowledge regarding the choice of distribution to
employ for the first interclaim time, model (6) can be viewed as the “worst-
case scenario” model, thereby serving to provide upper bounds on the
values of Cn,x,y(50).

• Example 3

Our final example is intended to show how our discrete-time model can be
used to approximate ruin-related quantities in the analogous continuous-time
delayed Sparre Andersen model. Specifically, let U(t) = v + zt – i 1=

,i
tN Y! ] g t ≥ 0,

represent a continuous-time surplus process where:

• v ≥ 0 is the insurer’s initial surplus,

• z is the insurer’s premium rate per unit time,

• N (t) is the number of claims in the time interval (0, t ],

• {Y1, Y2, Y3, …} is a sequence of iid positive claim amount random variables
with common survival function G (y), y ≥ 0.

If {W1, W2, W3, …} denotes the corresponding sequence of independent pos-
itive interclaim time random variables, where W1 is the duration from time 0
until the first claim occurs and Wi, i = 2,3,4, …, is the time between the (i – 1)-th
and i-th claims, then it follows that N (t) = max{k : W1 + W2 + ··· + Wk ≤ t}. For
w ≥ 0, define K1(w) = Pr{W1 > w} and K(w) = Pr{Wi > w}, i = 2,3,4, …. More-
over, let T = inf{t > 0 : U (t) < 0} represent the time of ruin random variable with
T = 3 if U (t) ≥ 0 ∀ t > 0.

We essentially follow the ideas in Dickson et al. (1995) to construct a dis-
crete-time approximation to the above surplus process. First of all, we rescale
the above process by multiplying all monetary amounts by a parameter b > 0
and taking a new time unit to be k–1 times the original time unit where k > 0
is another parameter. We remark that b and k should be suitably chosen so that
the rescaled initial reserve (i.e., bv ) and premium rate per unit time (i.e., bz/k)
are both positive integers.

In order to discretize the rescaled claim amount distribution, define {Y1
(d ),

Y2
(d ), Y3

(d ), …} to be the sequence of iid random variables whose distribution is
approximately the same as that of bY1 and which are distributed on �+. As in
the previous two examples, one particular choice is to use
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aj
(d ) = G

j
b

1-
d n – G

j
bd n, j ! �

+,

as the approximating claim amount pmf (this is the “lower bound” discretiza-
tion method discussed in Dickson (2005, p. 79)).

We next introduce the rescaled number of claims process

N k(t) = N (t /k) = max{k : Wk,1 + Wk,2 + ··· + Wk,k ≤ t,},

where Wk, i = kWi ∀ i ! �
+. In order to apply our proposed methodology, we

must now discretize the distributions of Wk,1 and Wk,2 on intervals of finite sup-
port so as to create an approximating modified discrete-time renewal process
{Nd (t) : t = 0,1,2, …}. For specified (small) tolerances of e1 > 0 and e2 > 0, one
can select support values nr and na so that

nr = min{n ! �
+ : K1(n /k) ≤ e1}

and

na = min{n ! �
+ : K (n /k) ≤ e2}.

Once nr and na have been suitably chosen, one can then construct
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as the approximating pmf’s of Wk,1 and Wk,2 respectively.
If we now consider the discrete-time surplus process

Ud (t) = bv + (bz /k)t – i ,Y
d

i

t

1

d

=

N

! ]
]

g
g

t = 0, 1, 2, …,

then it is clear from the above construction that Ud (kt) /b will have approxi-
mately the same distribution as U (t). In fact, increasing the value of k should
result in an improved approximation.

To demonstrate the effectiveness of our approximation procedure, we consider
the Erlang-2 example in Dickson and Willmot (2005, pp. 58-59) concerning a
compound Poisson risk model in which z = 1.1,
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K1(w) = K (w) = e–w, w ≥ 0,

and

G (y) = (2y + 1) e–2y, y ≥ 0.

Table 3 displays values (rounded to 4 decimal places) for both the exact and
approximated finite-time ruin probabilities (i.e., Pr{T ≤ t | U (0) = v}) under this
model for v = 1,10 and t = 2,4,6,8,10,20,40. The exact values are taken directly
from Table 1 of Dickson and Willmot (2005, p. 59). The approximated values
were obtained by applying the above discretization procedure using b = 20 and
k = 22 (so as to yield a rescaled premium rate of 1) and then appropriately
summing the following univariate pmf (with u = bv)

sn(u) = Pr{T = n | Ud (0) = u}= ,f u,n j
j

m c

1

a

=

-

! ^ h n ! �
+,

which simplifies (via (2.15) and (3.5)) to give

.

g su r

r

L L

L L
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,

min

n i i m c
i c

u cn
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n n

n k i c
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n u cn u c n m
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1

1

1
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+ -

=

+ -

=

-

- - -

+ + - +

s ! !^ _
]
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h i
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g j

! +

In selecting the value of na(= nr), we remark that a tolerance level of 2.1% was
used which resulted in na = 85. The values under the heading “Approx. 1” in
Table 3 correspond to the definition of the time of ruin given in Section 1,
namely T = min{t ! �

+ : Ud (t) < 0} (i.e., a surplus of zero is not viewed as
ruin). Conversely, the values under the heading “Approx. 2” correspond to a
slightly altered definition of the time of ruin random variable, namely T * =
min{t ! �

+ : Ud (t) ≤ 0} (i.e., a surplus of zero is regarded as ruin). Clearly,
Pr{T * = n |Ud (0) = u} = sn(u – 1) for u ! �

+. Dickson et al. (1995) discuss the
use of these two definitions in approximating continuous-time ruin-related
quantities of interest, and we include both of them here for comparative pur-
poses. All in all, Table 3 demonstrates that our proposed method yields decent
approximations even for a moderate choice of k = 22. Based on the accuracy
in the table, however, we expect the approximation to improve for larger
values of k.

In fact, if we make further use of the relations in Dickson et al. (1995, p. 171),
we can readily establish that the joint probability distribution of the time of
ruin, the surplus immediately prior to ruin, and the deficit at ruin in the con-
tinuous-time delayed Sparre Andersen model, namely

Pr{T < t, U (T –) ≤ x, |U (T ) | ≤ y | U (0) = v}, t > 0; x > 0; y > 0,
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can be approximated by the quantity Ckt, bx + bz/k – 1, by( bv – 1) defined by (4.3).
Applying the same discretization procedure described above, Table 4 displays
approximated values (rounded to 5 decimal places) of Pr{T < t, U (T –) ≤ x,
|U (T ) | ≤ y | U (0) = v} corresponding to the Dickson and Willmot (2005)
Erlang-2 example for v = 1. However, we remark that we are only able to com-
pare the approximated values to their exact counterparts when x = 3. In this
case, exact probabilities of the bivariate distribution of the time of ruin and
the deficit at ruin can be calculated by means of the approach described in
Dickson and Drekic (2006). The exact probabilities are italicized and appear
in parentheses next to their approximated values under the heading “x = 3”
in Table 4. Based on our findings here, it would appear that our proposed
approach provides accurate approximations to these joint ruin probabilities.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referee for the useful com-
ments and suggestions which helped to improve this paper. The authors would
also like to thank Ana Maria Mera for her valuable programming assistance.
This work has been assisted by the Natural Sciences and Engineering Research
Council of Canada.

REFERENCES

ALFA, A.S. (2004) “Markov chain representations of discrete distributions applied to queueing
models”. Computers & Operations Research 31, 2365-2385.

ALFA, A.S. and NEUTS, M.F. (1995) “Modelling vehicular traffic using the discrete time Markovian
arrival process”. Transportation Science 29, 109-117.

CARDOSO, R.M.R. and EGIDIO DOS REIS, A.D. (2002) “Recursive calculation of time to ruin dis-
tributions”. Insurance: Mathematics & Economics 30, 219-230.

CHENG, S., GERBER, H.U. and SHIU, E.S.W. (2000) “Discounted probabilities and ruin theory in
the compound binomial model”. Insurance: Mathematics & Economics 26, 239-250.

COSSETTE, H., LANDRIAULT, D. and MARCEAU, E. (2006) “Ruin probabilities in the discrete time
renewal risk model”. Insurance: Mathematics & Economics 38, 309-323.

DE VYLDER, F.E. and MARCEAU, E. (1996) “Classical numerical ruin probabilities”. Scandina-
vian Actuarial Journal, 109-123.

DICKSON, D.C.M. (1994) “Some comments on the compound binomial model”. ASTIN Bulletin
24, 33-45.

DICKSON, D.C.M. (2005) Insurance Risk and Ruin, Cambridge University Press, Cambridge.
DICKSON, D.C.M. and DREKIC, S. (2006) “Optimal dividends under a ruin probability constraint”.

Annals of Actuarial Science 1, 291-306.
DICKSON, D.C.M., EGIDIO DOS REIS, A.D. and WATERS, H.R. (1995) “Some stable algorithms

in ruin theory and their applications”. ASTIN Bulletin 25, 153-175.
DICKSON, D.C.M. and WATERS, H.R. (1991) “Recursive calculation of survival probabilities”.

ASTIN Bulletin 21, 199-221.
DICKSON, D.C.M. and WILLMOT, G.E. (2005) “The density of the time to ruin in the classical

Poisson risk model”. ASTIN Bulletin 35, 45-60.
GERBER, H.U. (1988) “Mathematical fun with the compound binomial process”. ASTIN Bulletin

18, 161-168.

ALGORITHMIC ANALYSIS OF THE SPARRE ANDERSEN MODEL 309

0345-07_Astin37/2_05  28-11-2007  15:01  Pagina 309



GERBER, H.U. and SHIU, E.S.W. (1998) “On the time value of ruin”. North American Actuarial
Journal 2(1), 48-78.

KARLIN, S. and TAYLOR, H.M. (1975) A First Course in Stochastic Processes, 2nd edition, Aca-
demic Press, New York.

LI, S. (2005a) “On a class of discrete time renewal risk models”. Scandinavian Actuarial Journal,
241-260.

LI, S. (2005b) “Distributions of the surplus before ruin, the deficit at ruin and the claim causing
ruin in a class of discrete time risk models”. Scandinavian Actuarial Journal, 271-284.

LI, S. and GARRIDO, J. (2002) “On the time value of ruin in the discrete time risk model”. Busi-
ness Economics Series 12, Working Paper 02-18, Universidad Carlos III de Madrid, Spain,
28 pp.

MICHEL, R. (1989) “Representation of a time-discrete probability of eventual ruin”. Insurance:
Mathematics & Economics 8, 149-152.

PAVLOVA, K.P. and WILLMOT, G.E. (2004) “The discrete stationary renewal risk model and the
Gerber-Shiu discounted penalty function”. Insurance: Mathematics & Economics 35, 267-
277.

SHIU, E.S.W. (1989) “Probability of eventual ruin in the compound binomial model”. ASTIN Bul-
letin 19, 179-190.

WILLMOT, G.E. (1993) “Ruin probabilities in the compound binomial model”. Insurance: Math-
ematics & Economics 12, 133-142.

ATTAHIRU SULE ALFA

Department of Electrical and Computer Engineering
University of Manitoba
75A Chancellor’s Circle
Winnipeg, Manitoba, Canada R3T 5V6
E-mail: alfa@ee.umanitoba.ca

STEVE DREKIC (corresponding author)
Department of Statistics and Actuarial Science
University of Waterloo
200 University Ave. West
Waterloo, Ontario, Canada N2L 3G1
E-mail: sdrekic@math.uwaterloo.ca

310 A.S. ALFA AND S. DREKIC

0345-07_Astin37/2_05  28-11-2007  15:01  Pagina 310



ALGORITHMIC ANALYSIS OF THE SPARRE ANDERSEN MODEL 311

TABLE 1

VALUES OF Cn,x,y(50) CORRESPONDING TO EXAMPLE 1

(a) x = 10

n = 50 n = 100 n = 250 n = 500

y = 10 (1) 0.01766 0.04572 0.09105 0.10791
(2) 0.02067 0.04936 0.09288 0.10846
(3) 0.00677 0.01373 0.02580 0.03458
(4) 0.00755 0.01483 0.02706 0.03580
(5) 0.00630 0.01173 0.01982 0.02473
(6) 0.00643 0.01194 0.02009 0.02501

y = 25 (1) 0.02490 0.06452 0.12852 0.15232
(2) 0.02915 0.06965 0.13110 0.15310
(3) 0.00953 0.01934 0.03633 0.04870
(4) 0.01063 0.02088 0.03812 0.05043
(5) 0.00887 0.01652 0.02791 0.03483
(6) 0.00905 0.01681 0.02829 0.03522

y = 50 (1) 0.02752 0.07134 0.14212 0.16846
(2) 0.03222 0.07701 0.14498 0.16932
(3) 0.01052 0.02136 0.04013 0.05380
(4) 0.01174 0.02307 0.04210 0.05570
(5) 0.00979 0.01825 0.03083 0.03847
(6) 0.00999 0.01857 0.03124 0.03890

y = ∞ (1) 0.02843 0.07370 0.14684 0.17405
(2) 0.03328 0.07957 0.14980 0.17494
(3) 0.01086 0.02205 0.04144 0.05555
(4) 0.01212 0.02382 0.04347 0.05751
(5) 0.01011 0.01884 0.03184 0.03973
(6) 0.01032 0.01917 0.03226 0.04017

(b) x = 25

n = 50 n = 100 n = 250 n = 500

y = 10 (1) 0.04981 0.13476 0.27343 0.32501
(2) 0.05876 0.14587 0.27914 0.32683
(3) 0.01673 0.03494 0.06645 0.08921
(4) 0.01872 0.03779 0.06977 0.09242
(5) 0.01561 0.02979 0.05080 0.06343
(6) 0.01593 0.03033 0.05148 0.06414

y = 25 (1) 0.07384 0.20002 0.40604 0.48268
(2) 0.08714 0.21653 0.41454 0.48539
(3) 0.02471 0.05168 0.09834 0.13203
(4) 0.02765 0.05591 0.10325 0.13679
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n = 50 n = 100 n = 250 n = 500

(5) 0.02306 0.04406 0.07515 0.09384
(6) 0.02353 0.04485 0.07617 0.09490

y = 50 (1) 0.08409 0.22792 0.46278 0.55016
(2) 0.09924 0.24674 0.47248 0.55324
(3) 0.02809 0.05878 0.11188 0.15022
(4) 0.03144 0.06359 0.11748 0.15564
(5) 0.02621 0.05011 0.08549 0.10675
(6) 0.02675 0.05101 0.08665 0.10795

y = ∞ (1) 0.08838 0.23962 0.48661 0.57849
(2) 0.10431 0.25941 0.49681 0.58174
(3) 0.02949 0.06174 0.11754 0.15782
(4) 0.03301 0.06680 0.12342 0.16352
(5) 0.02752 0.05264 0.08980 0.11214
(6) 0.02809 0.05358 0.09102 0.11340

(c) x = 50

n = 50 n = 100 n = 250 n = 500

y = 10 (1) 0.07605 0.19299 0.37938 0.44862
(2) 0.08953 0.20881 0.38767 0.45164
(3) 0.02715 0.05581 0.10524 0.14077
(4) 0.03044 0.06049 0.11066 0.14603
(5) 0.02514 0.04706 0.07935 0.09865
(6) 0.02566 0.04791 0.08044 0.09978

y = 25 (1) 0.11790 0.29742 0.58288 0.68889
(2) 0.13878 0.32180 0.59567 0.69362
(3) 0.04225 0.08673 0.16340 0.21848
(4) 0.04739 0.09403 0.17185 0.22669
(5) 0.03910 0.07307 0.12308 0.15294
(6) 0.03991 0.07439 0.12477 0.15469

y = 50 (1) 0.13873 0.34836 0.68107 0.80461
(2) 0.16328 0.37691 0.69608 0.81023
(3) 0.04988 0.10227 0.19253 0.25735
(4) 0.05595 0.11181 0.20250 0.26705
(5) 0.04615 0.08612 0.14492 0.18001
(6) 0.04710 0.08767 0.14691 0.18208

y = ∞ (1) 0.14965 0.37429 0.73027 0.86244
(2) 0.17611 0.40496 0.74642 0.86854
(3) 0.05397 0.11051 0.20791 0.27784
(4) 0.06055 0.11984 0.21870 0.28833
(5) 0.04992 0.09303 0.15643 0.19425
(6) 0.05095 0.09471 0.15858 0.19649
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(d) x = ∞

n = 50 n = 100 n = 250 n = 500

y = 10 (1) 0.09293 0.21747 0.41323 0.48604
(2) 0.10716 0.23343 0.42092 0.48816
(3) 0.03848 0.07360 0.13466 0.17977
(4) 0.04269 0.07923 0.14105 0.18593
(5) 0.03549 0.06271 0.10375 0.12918
(6) 0.03623 0.06380 0.10511 0.13059

y = 25 (1) 0.14843 0.34182 0.64440 0.75697
(2) 0.17055 0.36630 0.65595 0.75990
(3) 0.06286 0.11933 0.21778 0.29097
(4) 0.06963 0.12828 0.22790 0.30072
(5) 0.05791 0.10176 0.16823 0.20980
(6) 0.05911 0.10350 0.17042 0.21206

y = 50 (1) 0.17911 0.40721 0.76280 0.89514
(2) 0.20514 0.43572 0.77596 0.89814
(3) 0.07730 0.14594 0.26604 0.35599
(4) 0.08548 0.15668 0.27815 0.36761
(5) 0.07114 0.12455 0.20609 0.25761
(6) 0.07262 0.12667 0.20873 0.26033

y = ∞ (1) 0.19816 0.44527 0.82920 0.97217
(2) 0.22618 0.47560 0.84277 0.97474
(3) 0.08721 0.16407 0.29952 0.40236
(4) 0.09624 0.17582 0.31271 0.41495
(5) 0.08018 0.14020 0.23300 0.29289
(6) 0.08184 0.14254 0.23591 0.29590

TABLE 2

VALUES OF Cn,x,y(50) CORRESPONDING TO EXAMPLE 2

(a) x = 10

n = 50 n = 100 n = 250 n = 500

y = 10 (1) 0.01414 0.02473 0.04003 0.04971
(2) 0.01236 0.02270 0.03801 0.04782
(3) 0.01150 0.02115 0.03580 0.04543
(4) 0.01298 0.02360 0.03906 0.04885
(5) 0.01195 0.02281 0.03852 0.04841
(6) 0.02221 0.03397 0.04938 0.05857

y = 25 (1) 0.01987 0.03474 0.05624 0.06985
(2) 0.01736 0.03189 0.05341 0.06719
(3) 0.01615 0.02972 0.05029 0.06384
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n = 50 n = 100 n = 250 n = 500

(4) 0.01823 0.03316 0.05488 0.06863
(5) 0.01678 0.03205 0.05412 0.06801
(6) 0.03121 0.04773 0.06939 0.08229

y = 50 (1) 0.02191 0.03832 0.06205 0.07706
(2) 0.01915 0.03518 0.05892 0.07412
(3) 0.01782 0.03278 0.05549 0.07043
(4) 0.02010 0.03658 0.06055 0.07572
(5) 0.01851 0.03535 0.05970 0.07503
(6) 0.03442 0.05266 0.07655 0.09079

y = ∞ (1) 0.02261 0.03955 0.06404 0.07953
(2) 0.01976 0.03630 0.06081 0.07650
(3) 0.01838 0.03383 0.05726 0.07268
(4) 0.02075 0.03775 0.06248 0.07814
(5) 0.01910 0.03648 0.06161 0.07743
(6) 0.03552 0.05435 0.07900 0.09369

(b) x = 25

n = 50 n = 100 n = 250 n = 500

y = 10 (1) 0.03083 0.05452 0.08857 0.10997
(2) 0.02686 0.04996 0.08402 0.10569
(3) 0.02499 0.04655 0.07910 0.10039
(4) 0.02820 0.05197 0.08636 0.10799
(5) 0.02584 0.05015 0.08509 0.10694
(6) 0.04889 0.07534 0.10968 0.12998

y = 25 (1) 0.04528 0.08011 0.13016 0.16159
(2) 0.03944 0.07340 0.12347 0.15530
(3) 0.03669 0.06839 0.11623 0.14752
(4) 0.04141 0.07636 0.12690 0.15868
(5) 0.03793 0.07367 0.12503 0.15714
(6) 0.07183 0.11073 0.16120 0.19104

y = 50 (1) 0.05129 0.09077 0.14749 0.18311
(2) 0.04467 0.08316 0.13991 0.17598
(3) 0.04155 0.07748 0.13170 0.16715
(4) 0.04690 0.08651 0.14380 0.17980
(5) 0.04295 0.08346 0.14167 0.17806
(6) 0.08139 0.12549 0.18269 0.21650

y = ∞ (1) 0.05375 0.09514 0.15459 0.19193
(2) 0.04681 0.08716 0.14664 0.18445
(3) 0.04354 0.08121 0.13804 0.17520
(4) 0.04914 0.09067 0.15072 0.18846 
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n = 50 n = 100 n = 250 n = 500

(5) 0.04500 0.08747 0.14849 0.18663
(6) 0.08530 0.13154 0.19150 0.22693

(c) x = 50

n = 50 n = 100 n = 250 n = 500

y = 10 (1) 0.04546 0.07871 0.12641 0.15631
(2) 0.03953 0.07195 0.11967 0.14995
(3) 0.03677 0.06704 0.11263 0.14238
(4) 0.04149 0.07486 0.12304 0.15326
(5) 0.03790 0.07204 0.12099 0.15153
(6) 0.07263 0.10975 0.15786 0.18624

y = 25 (1) 0.06985 0.12068 0.19358 0.23925
(2) 0.06072 0.11029 0.18322 0.22946
(3) 0.05648 0.10276 0.17242 0.21787
(4) 0.06374 0.11475 0.18837 0.23454
(5) 0.05820 0.11038 0.18519 0.23184
(6) 0.11173 0.16847 0.24200 0.28535

y = 50 (1) 0.08179 0.14106 0.22605 0.27928
(2) 0.07109 0.12889 0.21391 0.26781
(3) 0.06612 0.12008 0.20130 0.25427
(4) 0.07461 0.13411 0.21994 0.27374
(5) 0.06811 0.12896 0.21618 0.27056
(6) 0.13092 0.19709 0.28282 0.33335

y = ∞ (1) 0.08797 0.15150 0.24257 0.29961
(2) 0.07645 0.13841 0.22951 0.28726
(3) 0.07111 0.12895 0.21598 0.27273
(4) 0.08024 0.14401 0.23598 0.29364
(5) 0.07323 0.13846 0.23192 0.29018
(6) 0.14089 0.21181 0.30368 0.35782

(d) x = ∞

n = 50 n = 100 n = 250 n = 500

y = 10 (1) 0.05649 0.09486 0.15125 0.18753
(2) 0.04979 0.08740 0.14388 0.18063
(3) 0.04632 0.08148 0.13556 0.17171
(4) 0.05222 0.09080 0.14777 0.18444
(5) 0.04862 0.08804 0.14589 0.18295 
(6) 0.08668 0.12882 0.18538 0.21976

y = 25 (1) 0.08982 0.15015 0.23936 0.29716
(2) 0.07936 0.13856 0.22793 0.28649
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n = 50 n = 100 n = 250 n = 500

(3) 0.07382 0.12920 0.21483 0.27244
(4) 0.08321 0.14391 0.23403 0.29245
(5) 0.07773 0.13971 0.23122 0.29026
(6) 0.13688 0.20292 0.29226 0.34701

y = 50 (1) 0.10822 0.18040 0.28782 0.35798
(2) 0.09583 0.16672 0.27438 0.34545
(3) 0.08914 0.15549 0.25870 0.32866
(4) 0.10046 0.17310 0.28162 0.35253
(5) 0.09412 0.16826 0.27845 0.35010
(6) 0.16386 0.24260 0.35003 0.41644

y = ∞ (1) 0.11979 0.19950 0.31943 0.39895
(2) 0.10637 0.18475 0.30500 0.38557
(3) 0.09895 0.17235 0.28774 0.36712
(4) 0.11147 0.19171 0.31287 0.39325
(5) 0.10479 0.18665 0.30965 0.39085
(6) 0.18001 0.26657 0.38623 0.46143

TABLE 3 

COMPARISON OF VALUES OF Pr{T ≤ t | U (0) = v} CORRESPONDING TO THE DICKSON

AND WILLMOT (2005) ERLANG-2 EXAMPLE

v = 1 v = 10

t Exact Approx. 1 Approx. 2 Exact Approx. 1 Approx. 2

2 0.3649 0.3545 0.3662 0.0002 0.0001 0.0001
4 0.4830 0.4732 0.4845 0.0014 0.0012 0.0012
6 0.5459 0.5378 0.5484 0.0042 0.0037 0.0038
8 0.5863 0.5801 0.5900 0.0084 0.0076 0.0078
10 0.6150 0.6104 0.6199 0.0137 0.0126 0.0129
20 0.6889 0.6899 0.6978 0.0464 0.0450 0.0459
40 0.7416 0.7482 0.7548 0.1038 0.1067 0.1080
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TABLE 4

APPROXIMATED VALUES OF Pr{T < t, U (T –) ≤ x, | U (T ) | ≤ y | U (0) = 1} CORRESPONDING

TO THE DICKSON AND WILLMOT (2005) ERLANG-2 EXAMPLE

(a) t = 2

x = 0.5 x = 1 x = 1.5 x = 2 x = 4 x = ∞

y = 0.5 0.01965 0.06694 0.14710 0.17517 0.18520 0.18520 (0.18465)
y = 1 0.03376 0.10712 0.22706 0.26814 0.28260 0.28260 (0.28166)
y = 2 0.04526 0.13726 0.28381 0.33314 0.35030 0.35030 (0.34904)
y = 3 0.04775 0.14346 0.29501 0.34582 0.36345 0.36345 (0.36212)
y = 4 0.04821 0.14459 0.29700 0.34806 0.36576 0.36576 (0.36443)
y = 5 0.04829 0.14478 0.29734 0.34843 0.36615 0.36615 (0.36481)
y = ∞ 0.04831 0.14482 0.29740 0.34851 0.36622 0.36622 (0.36489)

(b) t = 6

x = 0.5 x = 1 x = 1.5 x = 2 x = 4 x = ∞

y = 0.5 0.03072 0.10281 0.20677 0.25122 0.27760 0.27789 (0.27677)
y = 1 0.05274 0.16472 0.32022 0.38525 0.42317 0.42358 (0.42175)
y = 2 0.07068 0.21125 0.40119 0.47926 0.52417 0.52465 (0.52227)
y = 3 0.07456 0.22083 0.41723 0.49765 0.54375 0.54425 (0.54176)
y = 4 0.07529 0.22257 0.42010 0.50090 0.54721 0.54770 (0.54519)
y = 5 0.07541 0.22286 0.42058 0.50145 0.54778 0.54828 (0.54576)
y = ∞ 0.07544 0.22292 0.42067 0.50155 0.54789 0.54839 (0.54587)

(c) t = 10

x = 0.5 x = 1 x = 1.5 x = 2 x = 4 x = ∞

y = 0.5 0.03499 0.11651 0.22951 0.28031 0.31379 0.31438 (0.31204)
y = 1 0.06007 0.18673 0.35574 0.43003 0.47815 0.47899 (0.47531)
y = 2 0.08049 0.23954 0.44595 0.53514 0.59211 0.59308 (0.58842)
y = 3 0.08492 0.25041 0.46385 0.55571 0.61419 0.61519 (0.61033)
y = 4 0.08574 0.25238 0.46704 0.55936 0.61808 0.61908 (0.61419)
y = 5 0.08588 0.25272 0.46758 0.55997 0.61873 0.61973 (0.61483)
y = ∞ 0.08591 0.25278 0.46768 0.56008 0.61886 0.61985 (0.61495)

0345-07_Astin37/2_05  28-11-2007  15:01  Pagina 317




