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ABSTRACT

Operational risk has become an important risk component in the banking and
insurance world. The availability of (few) reasonable data sets has given some
authors the opportunity to analyze operational risk data and to propose differ-
ent models for quantification. As proposed in Dutta and Perry [12], the para-
metric g-and-h distribution has recently emerged as an interesting candidate.

In our paper, we discuss some fundamental properties of the g-and-h dis-
tribution and their link to extreme value theory (EVT). We show that for the
g-and-h distribution, convergence of the excess distribution to the generalized
Pareto distribution (GPD) is extremely slow and therefore quantile estimation
using EVT may lead to inaccurate results if data are well modeled by a g-and-
h distribution. We further discuss the subadditivity property of Value-at-Risk
(VaR) for g-and-h random variables and show that for reasonable g and h para-
meter values, superadditivity may appear when estimating high quantiles. Finally,
we look at the g-and-h distribution in the one-claim-causes-ruin paradigm.
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1. INTRODUCTION

Since the early discussion around Basel II and Solvency 2, the pros and cons
of a quantitative (Pillar I) approach to operational risk have been widely put
forward. Some papers, like Danielsson et al. [7], have early on warned against
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an over optimistic view that tools from market (and to some extent credit) risk
management can easily be transported to the Basel II framework for opera-
tional risk. Also, the actuarial community working on Solvency 2 so far defied
a precise definition, and as a consequence a detailed quantitative capital mea-
surement for operational risk. The situation in the banking world is very dif-
ferent indeed, not only did Basel II settle on a precise definition, ‘‘The risk of
loss resulting from inadequate or failed internal processes, people and systems
or from external events. Including legal risk, but excluding strategic and rep-
utational risk.’’, also concrete suggestions for risk capital calculation have been
made. These include the basic-indicator approach (BIA), the standardized
approach (SA) and the loss distribution approach (LDA). BIA and SA are
easy to calculate pure volume based measures. In the LDA however, banks are
basically given full methodological freedom for the calculation of regulatory
capital. The main reason being that for this new, and especially from a statis-
tical data point of view, poorly understood risk class, regulators hope that
modeling freedom would yield a healthy competition among the quant groups
of various financial institutions. Whereas this point of view is no doubt a laud-
able one, the imposed boundary conditions make a practical implementation
more than difficult. Some of these constraints are the use of the risk measure
(VaR), the level (99.9%) and the ‘‘holding’’ period (1 year). Of these, the
extremely high quantile (corresponding to a 1 in 1000 year event estimation)
is no doubt the most critical one. Beyond these, banks are required to augment
internal data modeling with external data and expert opinion. An approach that
allows for combining these sources of information is for instance discussed in
Lambrigger et al. [17]. The fact that current data — especially at the individual
bank level — are far from being of high quality or abundant, makes a reliable
LDA for the moment questionable.

By now, numerous papers, reports, software, textbooks have been written
on the subject. For our purposes, as textbooks we would like to mention McNeil
et al. [21] and Panjer [27]. Both books stress the relevance of actuarial method-
ology towards a successful LDA; it is no coincidence that in McNeil et al. [21],
Chapter 10 carries the title ‘‘Operational Risk and Insurance Analytics’’.
Another recent actuarial text that at some point will no doubt leave its foot-
print on the LDA platform is Bühlmann and Gisler [5].

For the present paper, two fundamental papers, which are center stage
to the whole LDA controversy, are Moscadelli [25] and Dutta and Perry [12].
Both are very competently written papers championing different analytic
approaches to the capital charge problem. Whereas Moscadelli [25] is strongly
based on EVT, Dutta and Perry [12] introduce as a benchmark model the para-
metric g-and-h distribution. Moscadelli [25] concludes that, based on the 2002
Loss Data Collection Exercise (LDCE) of the Basel Committee, EVT yields
reasonable capital estimates when data are pooled at Business Line (BL) level.
A considerable broader range for BL b-coefficients in the SA beyond the Basel
II (12-18)% range is arrived at. The overall a = 15% coefficient in the BIA is
corroborated. The information coming through from individual banks with
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respect to the use of EVT is mixed. As explained in Neslehova et al. [26], the
statistical properties of the data are no doubt a main fact underlying this dif-
fuse image. When it comes to high quantile estimation (and 99.9% is very high)
EVT emerges as a very natural key methodological player; more on this later
in the paper.

In Dutta and Perry [12] the authors conclude that ‘‘Many different tech-
niques being tested by researchers are centered around EVT. In many of those
cases we observe that attempts are made to fit a distribution or apply a method
without understanding the characteristics of the loss data or the limitation of
the models’’. And further, ‘‘In our experiment we found that EVT often did
not work for data where we observed many large losses’’. Based on the 2004
LDCE, Dutta and Perry [12] suggest the g-and-h distribution as a viable option.
They also stress that the 2002 LDCE data were pooled across many banks
outside of the US. The quality of this data was better in the sense of com-
prehensiveness because it included banks all around the world. Compared to
the 2004 LDCE data, the 2002 LDCE time series were shorter and many non-
US banks did not suffer large losses.

As already stated above, we consider both Moscadelli [25] and Dutta and
Perry [12] as very well written. The latter paper also introduces a fundamental,
more qualitative yardstick against which any capital charge model ought to be
tested:

1. Good Fit – Statistically, how well does the method fit the data?
2. Realistic – If a method fits well in a statistical sense, does it generate a loss

distribution with a realistic capital estimate?
3. Well Specified – Are the characteristics of the fitted data similar to the loss

data and logically consistent?
4. Flexible – How well is the method able to reasonably accommodate a wide

variety of empirical loss data?
5. Simple – Is the method easy to apply in practice, and is it easy to generate

random numbers for the purposes of loss simulation?

In our paper, we will mainly look carefully at the g-and-h approach and com-
pare and contrast its properties with EVT based methodology. As academics
we do not possess real operational risk data so that our comments may be
‘‘academic’’ in nature; we do however hope that the various results discussed
will contribute positively towards the quest for a reliable (in the sense of 1.-5.
above) capital charge for operational risk. Based on the empirical findings of
Dutta and Perry [12] that (1) operational risk data seem to be modeled appro-
priately by the g-and-h; and that (2) the EVT based Peaks Over Threshold (POT)
approach does not seem to model the data well, we like to bridge these findings
with theory.

We expect the reader to have studied Moscadelli [25] and Dutta and Perry
[12] in detail. A basic textbook for EVT in the context of insurance and finance
is Embrechts et al. [13]; see also Chapter 7 in McNeil et al. [21]. Before we start
our discussion, we find it worthwhile to put the record straight on EVT: papers
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like Diebold et al. [10] and Dutta and Perry [12] highlight weaknesses of EVT
when it comes to some real applications, especially in finance. In Embrechts et
al. [13] these points were already stressed very explicitly. Like any statistical
method, EVT (for instance in its Peaks Over Threshold (POT) or Hill estimator
variant) only promises to deliver when a very precise set of conditions is
satisfied. We strongly advice the reader to revisit Embrechts et al. [13] and look
carefully at the following examples: Figure 4.1.13, Figure 5.5.4 and Figure 6.4.11.
Neslehova et al. [26] yields further warnings when EVT is applied blindly to
operational risk data. We very much hope that some of these underlying issues
will become more clear when we progress through the paper.

The paper is organized as follows. In Section 2 we recall the definition of
the g-and-h distribution and discuss some fundamental first order regular varia-
tion properties. In Section 3 we focus on second order regular variation as well
as on the (slow) rate of convergence of a relevant subclass of the g-and-h excess
distribution functions to the corresponding GPD. Further we analyze the impact
of these results on quantile estimation via the POT method. Subadditivity prop-
erties of VaR for g-and-h distributed random variables (rvs) are discussed in
Section 4. In Section 5 we highlight the link between g-and-h and the one-claim-
causes-ruin phenomenon. We conclude in Section 6.

2. THE G-AND-H DISTRIBUTION

2.1. The basic definition

Throughout this paper, rvs are denoted by capital letters X1, X2, … and assumed
to be defined on a common probability space (W,F, �). These rvs will typically
represent one-period risk factors in a quantitative risk management context.
The next definition is basic to the analysis in Dutta and Perry [12].

DEFINITION 2.1. Let Z+ N (0,1) be a standard normal rv. A rv X is said to have
a g-and-h distribution with parameters a,b,g,h ! �, if X satisfies

,X a b g
e e1 /

gZ
hZ 22

= +
- (1)

with the obvious interpretation for g = 0. We write X + g-and-h, or when X has
distribution function (df) F, F + g-and-h. ¡

Instead of g and h being constants, a more flexible choice of parameters may
be achieved by considering g and h to be polynomials including higher orders
of Z2. In Dutta and Perry [12], such a polynomial choice was necessary for
some banks and business lines. For our paper, we restrict our attention to the
basic case where g and h are constants. The parameters g and h govern the
skewness and the heavy-tailedness of the distribution, respectively; see Hoaglin
et al. [16].
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In the case h = 0, equation (1) reduces to X = a + b ,
g

e 1gZ
- which is referred to

as the g-distribution. The g-distribution thus corresponds to a scaled lognor-
mal distribution. In the case g = 0, equation (1) is interpreted as X = a + b ZehZ2/2,
which is referred to as the h-distribution. The case g = h = 0 corresponds to the
normal case. The linear transformation parameters a and b are of minor impor-
tance for our purposes. Unless otherwise stated we restrict our attention to the
g-and-h distribution with parameters a = 0 and b = 1. Furthermore we assume
g, h > 0. Parameters of the g-and-h distributions used in Dutta and Perry [12]
to model operational risk (at enterprise level) are within the following ranges:
g ! [1.79,2.30] and h ! [0.10,0.35].

REMARK: Since the function k(x) = g
e 1gx - ehx2/2 for h > 0 is strictly increasing,

the df F of a g-and-h rv X can be written as

F(x) = F (k–1(x)),

where F denotes the standard normal df. This representation immediately
yields an easy procedure to calculate quantiles and hence the Value-at-Risk of
a g-and-h rv X ,

VaRa(X ) = F –1(a) = k(F–1(a)), 0 < a < 1. ¡

In the next section we derive some properties of the g-and-h distribution which
are important for understanding its estimation properties of high quantiles.

2.2. Tail properties and regular variation

In questions on high quantile estimation, the statistical properties of the esti-
mators used very much depend on the tail behavior of the underlying model.
The g-and-h distribution is very flexible in that respect. There are numerous
graphical techniques for revealing tail behavior of dfs. We restrict our atten-
tion to mean excess plots (me-plots) and log-log density plots. In Figure 1 we
show a me-plot for a g-and-h distribution with parameter values typical in the
context of operational risk. Besides the thick line corresponding to the theo-
retical mean excess function, we plot 12 empirical mean excess functions based
on n = 105 simulated g-and-h data. The upward sloping behavior of the me-plots
indicates heavy-tailedness as typically present in the class of subexponential
dfs S (see Embrechts et al. [13], Figure 6.2.4), linear behavior corresponding
to Pareto (power) tails. In the latter case, the resulting log-log-density plot
shows a downward sloping linear behavior; see Figure 2 for a typical example.
Figure 1 also highlights the well-known problem when interpreting me-plots,
i.e. a very high variability of the extreme observations made visible through the
simulated me-plots from the same underlying model. Both figures give insight
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FIGURE 2: Density of the g-and-h distribution plotted on a log-log scale.
Note the different plotting ranges of the axes.

FIGURE 1: Theoretical mean excess function (thick line) together with 12 empirical mean
excess plots of the g-and-h distribution.

into the asymptotic heavy-tailedness of the g-and-h. We now make this prop-
erty analytically precise.

A standard theory for describing heavy-tailed behavior of statistical models
is Karamata’s theory of regular variation. For a detailed treatment of the the-
ory, see Bingham et al. [6]. Embrechts et al. [13] contains a summary useful
for our purposes. Recall that a measurable function L : � " (0,3) is slowly
varying (denoted L ! SV ) if for t > 0:

.lim
L x
L tx

1
x

=
"3 ^

^

h

h

A function f is called regularly varying (at 3) with index a ! � if f (x) = xaL(x)
and is denoted by f !RVa ; note that RV0 = SV. The following proposition is an
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immediate consequence of Karamata’s Theorem; see Embrechts et al. [13],
Theorem A3.6. It provides an easy tool for checking regular variation. In the
context of EVT, the result is known as von Mises condition for the Fréchet df;
see Embrechts et al. [13], Corollary 3.3.8. Throughout we denote F” = 1 – F.

Proposition 2.1. Let F be an absolutely continuous df with density f satisfying 

> ,lim a
F x
x x

0
x

=
"3

f
^

^

h

h

then F” ! RV–a. ¡

Note the slight abuse of notation, in the sense that we should restrict RV to non-
negative rvs. Through tail-equivalence (see Embrechts et al. [13], Definition 3.3.3)
we can easily bypass this issue.

We proceed by showing that the g-and-h distribution is indeed regularly
varying (at 3) with index –1/h (still assuming h > 0). Assume X+ g-and-h, then 

F (x) = F(k–1(x)), f (x) =
( ( ))

( ( ))
,

k k x

k xf

� 1

1

-

-

where f denotes the density of a standard normal rv. Using u (1 – F(u)) / f(u)"
1, as u "3, we have that 

lim
F x
x x

x "3

f
^

^

h

h
=

x
lim

k x k k x

k xf

F �1x 1 1

1

-"3 - -

-

^bb ^b

^b

hll hl

hl

u k x1

=
= -

] g

lim
u k u

k u uf
F �1u -"3 ^_ ^

^ ^

hi h

h h

= lim
u ge hu e

u ef

F1 1

1

u gu gu

gu

- + -

-

"3 ^_ bb

^ b

hi ll

h l

= h
1

and hence by Proposition 2.1 F” ! RV–1/h.

REMARK: In a similar way, one shows that also the h-distribution (h > 0) is
regularly varying with the same index. This was already mentioned in Morgen-
thaler and Tukey [24]. The g-distribution (g > 0) however is — as a scaled log-
normal distribution — subexponential but not regularly varying. At this point
the reader is advised to have a look at Section 1.3.2 and Appendix A 3.2 in
Embrechts et al. [13], or Section 5 later in the paper. ¡
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In summary, we have the following result.

Theorem 2.1. Suppose F + g-and-h with g, h > 0, then F” ! RV–1/h. For h = 0 and
g > 0, we have F ! S \ RV, where S denotes the class of subexponential dfs. ¡

Hence, if X ~ g-and-h with h > 0 we have by definition of regular variation
F” (x) = x–1/hL(x) for some slowly varying function L. A key message from our
paper is that the precise behavior of L may profoundly affect the statistical
properties of EVT-based high quantile estimations. This point was very clearly
stressed in Embrechts et al. [13]; see Figure 4.1.13 and Example 4.1.12. End-
users in risk management and financial applications seem largely to have missed
out on this message. We will show how absolutely crucial this point is. The
quality of high quantile estimation for power tail data very much depends on
the second order behavior of the underlying (mostly unknown) slowly varying
function L; for further insight on this, see Degen and Embrechts [9].

Below we derive an explicit asymptotic formula for the slowly varying func-
tion L in the case of the g-and-h distribution. For g, h > 0 we have 

L(x) = F” (x)x1/h = (1 – F(k–1(x))) x1/h,

and hence 

,

L k x x k x

x g
e e

x g
e O

xp

F

F

1

1 1

2
1 1 1 1

/

/
/

/

h

gx h
x

gx h

1

1
2

1

2

2

= -

= -
-

=
-

+

J

L

K
K

J

L

K
K

^_ ^_ ^_

^_

dd

N

P

O
O

N

P

O
O

hi hi hi

hi

nn

leading to

, .L x
x k x

e
O

k x
x

p2
1

1
1 1

/
gk x

h

1

1

1 2

1

" 3=

-

+
-

-

- J

L

K
K
KK

J

L

K
K
KK

^
^

]
c

^b

N

P

O
O
OO

N

P

O
O
OO

h
h

g
m

hl

In order to find an asymptotic estimate for k–1, define 

, ,x g e k x xk 1 h gxx
2

2

" 3+=
+

^ ^h h

with inverse function 

, > .logx h
g

h g h gx xk 1 2 01 2
= - + +

-
^ ^h h
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Here and throughout the paper, f (x) ~ g(x), x " a means that lim
g x
f x

x a" ^

^

h

h
= 1.

Note that k –1(x) ~ k–1(x) for x "3. Altogether we obtain:

Theorem 2.2. Let F ~ g-and-h with g,h > 0. Then F” (x) = x–1/hL(x), with L ! SV,
where for x "3,

.
log

exp log

logL x
g g h gx

g g h gx
O xp2

1

2

2 1
1 1

/

/

h

h

h
g

h

h
g

h
1 2

2
1

1

1

=
- + +

- + + -

+^

^

^bc

ddh

h

hlm

nn

; E

PROOF: Define 

.x
g x

e

p
L

k2

1
1

/

/

h

g x
h

k

1 1

11

=

-

-

-

^
^

]
c

h
h

g
m

Note that u = k–1(x) is a strictly increasing function for g,h > 0. Hence,

, ,log

x
L x

e

g x k x x

e

g k u u k u

e

e
u

k u u

O
u

O x x

p

p

f

F

F

F

L

k

k

k

1

2 1

1

2 1

1

1 1

1 1

1 1

/

/ /

/

/ /

/

g x
h

h h

g k u
h

h h

g k u

gu h

k

k

k

1

1 1 1 1

1

1 1 1

1 1

2

1

1

1

" 3

=

-

-

=

-

-

=
-

- -

= +

= +

- -

-

-

-

-

-

J

L

K
K

^

^

]
c

^ ^bb

]]
c

^_ ^_ ^_

]] ^

^_ ^_

d

d

N

P

O
O

h

h

g
m

h hll

gg
m

hi hi hi

gg h

hi hi

n

n

which completes the proof. ¡

REMARKS:

• The slowly varying function L in the above theorem is (modulo constants)
essentially of the form exp ( logx) / logx. This will turn out to be a par-
ticularly difficult type of slowly varying function in the context of EVT.
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• In this context, many authors consider U(x) = F –1(1 – 1/x) instead of F” ; see
Section 3.2. This would make some proofs easier, but from a pedagogical
point of view not always more intuitive. ¡

In the next section we will study the second order behavior of L more care-
fully. For this we will first make a link to EVT and discuss how the properties
of L may influence the statistical estimation of high quantiles based on EVT.

3. SECOND ORDER REGULAR VARIATION

3.1. The Pickands-Balkema-de Haan Theorem

We assume the reader to be familiar with univariate EVT. The notation used
in this section is taken from Embrechts et al. [13]. For a g-and-h rv X (with
g, h > 0) it was shown in the previous section that F ! MDA(Hz), i.e. belongs
to the maximum domain of attraction of an extreme value distribution Hz with
index z = h > 0. The Pickands-Balkema-de Haan Theorem, Theorem 3.4.13(b)
in Embrechts et al. [13], implies that for F ! MDA(Hz), z ! �, there exists a
positive measurable function b (·), such that 

.lim sup x x 0
,

,
u x x x u

u uz b
00 0

- =
- ! -

GF
]

^ ] ^

g

h g h

We denote the upper support point of F by x0. In the case of a g-and-h dis-
tribution, x0 = 3. By the above theorem, the excess df Fu, defined by Fu(x) =
P(X – u ≤ x |X > u), is well approximated by the df of a GPD, Gz,b (u), for high
threshold values u. This first-order convergence result stands at the heart of
EVT and its numerous applications. For practical purposes however second-
order properties of F are of considerable importance for the performance of
parameter estimates or the estimation of high quantiles. We are in particular
interested in the rate of convergence of Fu towards Gz,b (u), i.e. in how fast does 

: supd u x x
,

,
x x u

u uz b
0 0

= -
! -

GF^

]

^ ] ^h

g

h g h

converge to 0 for u " x0. For this, define 

:

: ,
log
log

V t F e

A t
V t
V t

z

1 t1
= -

= -

- -

�

�

^ ^ b

^
^

^

h h l

h
h

h

for some F!MDA(Hz). The following proposition (see Raoult and Worms [28],
Corollary 1) gives insight into the behavior of the rate of convergence to 0 of
d (u) in cases including, for example, the g-and-h distribution with z = h > 0.
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Proposition 3.1. Let F ! MDA(Hz) be a df which is twice differentiable and let
z > –1. If the following conditions are satisfied:

i) lim
t "3

A(t) = 0,

ii) A(·) is of constant sign near 3,

iii) there exists r ≤ 0 such that |A| ! RVr ,

then, for u " x0,

: .supd u x x O A e
,

,
x x u

u V V u
V u

z
0 0

1
1

= - =
! -

-

-

�GF^

]

^ ]_ ^
]

cch

g

h gi h
g
mm ¡

The parameter r is called the second order regular variation parameter. Recall
that for a g-and-h distribution F(x) = F(k–1(x)) and hence F” –1(x) = k(F–1(1 – x)).
In this case the function V defined above is given by V(t) = k(F–1(1 – e–t)).

Moreover,

V�(log t) =
t t
k t

n
n�

f ^_

^_

hi

hi

and

V �(log t) =
/

,
t t

k t tk t t t t t

n

n n f n f n f n
2

- +

f

� ��

^__

^_ ^_ ^_ ^_ ^___

hii

hi hi hi hi hiii

where n (t) := F–1(1 – t
1 ). One easily checks conditions i) and ii) above. In addi-

tion, using Lemma 2 of Raoult and Worms [28], it can be shown that |A| ! RVr

with second order parameter r = 0. By definition of V we have 

/
/

( ( )) ( )
.

log

log

log
log

A e
V e

V e
h

V F u
V F u

h

k k u k u

k k u F u

k u

k u F u
h

f f�

�

1
1

1

V u

V u

V u

1 1

1

1

1

1

1

1

= - = -

= + - -
- -

-

-

-

-

-

-

� �

� �
]

c
]

c

]
c

^_

^_

^a ^a

^

^a

^

g
m

g
m

g
m

hi

hi

hk hk

h

hk

h

Lemma 3.1. For X ~ g-and-h with g,h > 0, the following asymptotic relation holds:

, .A e x
g

xV k x1

" 3+
-

]]
c

gg
m

PROOF: Using the expansion 

x
, ,

x
x

x O
x

x
f

1 1 1
3

" 3= + +
F
^

^
d

h

h
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By Proposition 3.1 and since k–1(·) is increasing (still assuming g, h > 0), the rate
of convergence of the excess df of a g-and-h distributed rv towards the GPD
Gz,b (u) with z = h and b (u) = V�(V–1(u)) is given by 
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At this point we would like to stress that ( )d u O
log u
1

=^ h does not imply that
the rate of convergence is independent of the parameters g and h. Not a
detailed derivation of this fact, but rather a heuristic argument is provided by
the following:
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Clearly the value h

g
/3 2 affects the rate of convergence of logL(x) /log x as x"3.

For our purposes however, this is not important.
In Table 1 we have summarized the rates of convergence in the GPD approxi-

mation as a function of the underlying df. For both the exponential as well as
the exact Pareto, d (u) = 0. For dfs like the double exponential parent, normal,
Student t and Weibull, convergence is at a reasonably fast rate. Already for the
very popular lognormal and loggamma dfs, convergence is very slow. This sit-
uation deteriorates further for the g-and-h where the convergence is extremely
slow. Note that one can always construct dfs with arbitrary slow convergence
of the excess df towards the GPD; see Resnick [29], Exercise 2.4.7. This result
is in a violent contrast to the rate of convergence in the Central Limit Theo-
rem which, for finite variance rvs, is always n–1/2.

From a theoretical point of view this already yields a first important result:
if data are well modeled by a g-and-h distribution with g, h > 0, then high
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quantile estimation for such data based on the POT method will typically con-
verge very slowly. In the next section we will look at this issue in somewhat more
detail.

It is often stated by some authors that they have ‘‘solved’’ the (critical) opti-
mal choice of threshold problem in the POT or Hill method. On several occa-
sions we have stressed that this problem has no general solution; optimality can
only be obtained under some precise second order properties on the underly-
ing slowly varying function L (we concentrate on the Fréchet case). It is pre-
cisely this L (let alone its second order properties) which is impossible to infer
from statistical data. Hence, the choice of a reasonable threshold (we avoid
using the word ‘‘optimal’’) remains the Achilles heel of any high quantile esti-
mation procedure based on EVT. For a more pedagogic and entertaining pre-
sentation of the underlying issues, see Embrechts and Neslehova [14].

3.2. Threshold choice

There exists a huge literature on the optimal threshold selection problem in
EVT; see for instance Beirlant et al. [3] for a review. Within a capital charge
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TABLE 1

RATE OF CONVERGENCE TO THE GPD FOR DIFFERENT DISTRIBUTIONS,
AS A FUNCTION OF THE THRESHOLD u.

Distribution Parameters F” (x) r d (u)

Exponential(l) l > 0 e –lx –∞ 0 

Pareto(a) a > 0 x – a –∞ 0 

Double exp. parent e –ex
–1 O (e – u)

Student t n > 0 tn(x)1 –2/n O
u

1
2b l

Normal(0,1) F(x) 0 O
u

1
2b l

Weibull(t,c) t ∈ �+ \ {1}, c > 0 e – (cx)t
0 O (u– t)

Lognormal (m,s) m ∈ � , s > 0 F
log x

s
m-

b l 0 O log u
1

b l

Loggamma (a,g) a > 0, g ! 1 Ga,g(x)2 0 O log u
1

b l

g-and-h g,h > 0 F(k –1(x)) 0 O
log u
1

b l

1 tn (x) ~ c(n) x (1 + x2 /n) –(n + 1)/2.
2 Ga,g(x) ~ c (a,g)x–a(logx)g – 1.
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calculation problem, the choice of threshold u above which EVT fits well
the tail of the underlying df may significantly influence the value estimated.
We stress the word ‘‘may’’; indeed in some cases the quantile estimate is rather
insensitive with respect to the choice of u, in other cases it is very sensitive.
This stresses the fact that for the modeling of extremes, great care as to the
underlying model and data properties has to be taken. The analysis below is
indicative of the underlying issues and definitely warrants a much broader dis-
cussion. We have included it to warn the reader for some of the difficulties in
using automatic procedures for determining so-called ‘‘optimal’’ tail regions for
the estimation of high quantiles. We restrict our attention to g-and-h dfs and
estimate quantiles using the Hill estimator. The conclusions obtained also hold
for the MLE based POT method.

We assume that X1, X2, …, Xn are iid realizations from a continuous df F
with F” ! RV–1/z, i.e. F” (x) = x–1/zL (x), L ! SV.

DEFINITION 3.1. The Hill estimator is defined by 

Hk,n := logk
1

,n j n
j

k

1
1

- +

=

X! – logXn – k,n, 1 < k < n,

where X1,n ≤ … ≤ Xn,n are the order statistics of X1, …, Xn. ¡

Consider the quantile function U(x) := F–1(1 – 1/x). Since F” ! RV–1/z, we have
U(x) = xzl (x), for some slowly varying function l ; see for instance Beirlant et
al. [3]. If there exist r ≤ 0 and a positive function b with b (x) " 0 for x "3,
such that for all t ≥ 0,

, ,log
l x
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b x t xr " 3+ k
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then the asymptotic mean square error (AMSE) of the Hill estimator satisfies 

AMSEHk,n := (ABiasHk,n)2 + AVarHk,n

=
/

;
b n k

kr
z

1
1 1

2 2
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+ +
+

J
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K
K

^ ^_
N

P

O
O

h hi
(2)

see for instance Matthys and Beirlant [19]. Applying this result to the regularly
varying g-and-h df F with index 1/z= 1/h ! (0,3), we get
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Using the following approximation for the quantile function of the normal,
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Hence, in particular, r = 0 for the g-and-h distribution with g,h > 0. Note that,
given the precise model assumptions above, formula (2) yields an obvious
approach to estimating the optimal sample fraction to calculate the Hill esti-
mator.

In practice however, one usually does not have any information about the
second order properties of the underlying df. Thus for each k, 1 < k < n, b(·), r
and h have to be estimated form the data by estimators b (·), r and h, which
are for example the maximum likelihood or the least squares estimators; see
Beirlant et al. [3]. One then chooses k in the following way:

/
.argmin r

b hn k
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1 1
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opt

k

2
2

=
-

+ +
+

! +

k
J

L

K
KK

^ ^_
N

P

O
OO

h hi

R

T

S
S
SS

V

X

W
W
WW

We will now apply this procedure to simulated g-and-h data. For each pair of
parameter values g and h (see Table 2 below) we simulate a hundred samples
of 2000 observations from a g-and-h distribution. For each of the 100 sam-
ples we compute the Hill estimator hHill

kopt
of h using kopt number of upper order

statistics of the 2000 observations of that sample. For every cell in Table 2 we
thus get 100 estimates (hHill

kopt ,m)1 ≤ m ≤ 100 of h. To analyze the performance of the
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Hill estimator hHill
kopt we calculate the standardized root mean square error

(SRMSE), which for a single cell is given by 

.hh h1
100

1
,k m

Hill

m

2

1

100

opt
-

=

! b l

The SRMSE of the Hill estimator hHill
kopt

is summarized in Table 2.
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TABLE 2

SRMSE (IN %) OF THE HILL ESTIMATOR hHill
kopt OF h FOR G-AND-H DATA

FOR DIFFERENT PARAMETER VALUES OF g AND h.

g \h 0.1 0.2 0.5 0.7 1 2 

0.1 142 82 33 23 18 11 
0.2 165 97 42 32 25 20
0.5 224 132 49 38 27 19 
0.7 307 170 63 44 29 20 

1 369 218 86 58 36 26
2 696 385 151 108 74 31 
3 1097 613 243 163 115 54

From Table 2 we may deduce a characteristic pattern which essentially remains
the same for other threshold selection procedures. We confirmed this by imple-
menting the optimal threshold selection method proposed by Guillou and Hall
[15] and by applying an ad-hoc selection method, using a fixed percentage of
exceedances of 5%. Further, we applied a method based on a logarithmic
regression model provided by Beirlant et al. [4], where the authors try to handle
the case r = 0. They analyze slowly varying functions of the following form,

L(x) = C (log(x))b (1 + o (1)), (3)

with C, b > 0.
If data come from a loggamma distribution, for which the slowly varying

function fulfills (3), numerical calculations show rather good results when com-
pared to a Hill estimator without bias reduction. However, for g-and-h data
with g and h in a typical operational risk range, even given the extra knowledge
about the second order parameter, the corresponding SRMSEs are in a simi-
lar range as for the other estimators.

An identical study was performed for the MLE estimates hMLE of h, yielding
very similar results to the case of hHill

kopt
. Therefore, whether using Hill or MLE

to estimate h, the key message we infer from Table 2 is that EVT-based tail index
estimation leads to highly inaccurate results. Moreover, the larger the ratio g/h,
the larger the SRMSE. In particular, for parameter values reported in Dutta
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FIGURE 4: Hill plot for g = 4, h = 0.2 and n = 106.

FIGURE 3: Hill plot for g = 0.1, h = 1 and n = 106 (left panel)
and g = 2, h = 0.2 and n = 106 (right panel).

and Perry [12], which are in a range around g = 2, h = 0.2, the SRMSE is close
to 400%. The numbers reported in Table 2 are somewhat counterintuitive.
Indeed in papers like McNeil and Saladin [22] and Dutta and Perry [12] it is
stated that heavier tailed models require higher thresholds and likewise a larger
sample size to achieve a similar error bound. Table 2 on the other hand indi-
cates, that for fixed g, the SRMSE decreases for increasingly heavier tails.

The poor performance of EVT-based tail index estimation, especially for
parameter values with a large ratio g/h, e.g. g = 2 and h = 0.2, is further
confirmed by a Hill plot; see Figure 3 (right panel). On the other hand, we
expect a ‘‘good’’ Hill plot for g/h small, e.g. g = 0.1 and h = 1, which is confirmed
by Figure 3 (left panel).

In the left panel, the Hill plot is rather flat over a large range of threshold
values yielding an accurate estimate of the true value h = 1. In the right panel
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however, the Hill plot is absolutely misleading. Though being temptingly flat,
an estimation of the shape parameter z = h based on the Hill plot would in that
case lead to a completely wrong estimate of hHill . 0.7, whereas the true value is
h = 0.2. One can easily come up with finite mean g-and-h examples (i.e. h < 1)
leading to infinite mean EVT estimates (h Hill > 1). Such an example can be
constructed by choosing the skewness parameter sufficiently high. We exem-
plify this issue in Figure 4, where we present a Hill plot for n = 106 realizations
of a g-and-h rv with parameter values g = 4 and h = 0.2 (finite mean). Again
the Hill plot shows a relatively flat behavior, suggesting a value of hHill . 1.2,
indicating an infinite mean.

In summary, given that data are well modeled by a g-and-h distribution
where g/h is large, as is the case with the data reported by Dutta and Perry [12],
an EVT based estimation of the tail index h unavoidably leads to highly inac-
curate estimates. Consequently in such cases high quantile estimation using
standard EVT methodology becomes highly sensitive to specific numerical esti-
mation procedures. We emphasize this further in the next section.

3.3. Quantile estimation

To confirm our findings of the previous section we performed a quantile esti-
mation study along the lines of McNeil and Saladin [22], [23]. Instead of apply-
ing sophisticated optimal threshold selection procedures we likewise concen-
trated on an ad-hoc method by taking into account only a certain percentage
of the highest data points; see McNeil and Saladin [22] for details. We gener-
ated g-and-h data and calculated the POT estimator of the 99% and the 99.9%
quantiles for different values of g and h. We compared our results (h = 0.2 and
h = 1) with the findings of McNeil and Saladin [22] to conclude that the
performance of the POT estimator for the g-and-h distribution is much worse
— in terms of high standardized bias and SRMSE — than for any of the dis-
tributions used in that paper.

From a methodological point of view, Makarov [18] is also relevant in this
respect. In that paper, the author shows that uniform relative quantile con-
vergence in the Pickands-Balkema-de Haan Theorem necessarily needs a slowly
varying function L which is asymptotically constant. Clearly, L in the g-and-h
case is far from being constant; a more detailed discussion on this is to be
found in Degen and Embrechts [9].

All the results shown so far point to the fact that the slowly varying func-
tion L for the g-and-h distribution for g, h > 0 renders high quantile estimation
based on EVT methodology difficult: for g-and-h type data, all EVT based
procedures show extremely slow convergence and hence for small to medium
size data samples, these estimators may be highly inaccurate.

In order to better understand the relative merits of EVT and g-and-h, we
now turn to estimating quantiles in cases where EVT is known to do well and
see how g-and-h based estimation compares. In the Tables 3 and 4 we give the
estimated quantiles for two empirical data sets; the daily S&P data from 1960
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to 1993 and the Danish fire insurance data from 1980 to 1990, as discussed in
Embrechts et al. [13].

We compare empirical quantile estimation, POT quantile estimation and the
g-and-h method. For the latter we fit a g-and-h distribution to the data, where
we allow for location and scale parameters to be different from a = 0, b = 1. The
parameters a, b, g, h are estimated using Tukey’s percentiles. Using the language
of Hoaglin et al. [16], we take approximately log2(n) letter values, where n is
the number of available data points, with the full spread (FS) for the S&P data
and with the upper half spread (UHS) for the Danish fire insurance data; see
for instance Hoaglin et al. [16] and Dutta and Perry [12], Appendix C. The quan-
tile is then given by a + bk(F–1(a)).

We conclude that for the 95% and 99% levels all methods yield rather sim-
ilar results, whereas for very high quantiles, the results differ substantially.
Of course for the S&P data a more dynamic modeling, as for instance given
in McNeil and Frey [20] including careful backtesting, would be useful. In the
case of the Danish data backtesting to find the better fitting procedure is not
really available. Once more, these results are in no way conclusive. We have
included them to highlight some issues and hopefully encourage further research.

As a final comparison we test the three quantile estimation methods men-
tioned above by means of two selected examples in line with McNeil et al. [21],
Section 7.2.5. We will distinguish between a ‘‘soft’’ and a ‘‘hard’’ problem. With
regards to the ‘‘soft’’ problem, we generate 1000 realizations of a standard
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TABLE 3

QUANTILE ESTIMATION OF S&P-DATA WITH n = 8414 DATA POINTS.
IN THE CASE OF THE POT-METHOD WE FIX THE THRESHOLD AT u = 1.45.

Empirical POT g-and-h

90% 0.93 1.10 0.92 
95% 1.30 1.34 1.29 
99% 2.14 2.13 2.23 

99.9% 4.10 4.30 3.98 

TABLE 4

QUANTILE ESTIMATION OF DANISH FIRE INSURANCE DATA WITH n = 2167 DATA POINTS.
IN THE CASE OF THE POT-METHOD WE FIX THE THRESHOLD AT u = 5.

Empirical POT g-and-h 

90% 5.54 5.64 5.72 
95% 9.97 9.30 9.43 
99% 26.04 27.51 27.32 

99.9% 131.55 121.17 101.51 
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FIGURE 5: SRMSE for the ‘‘soft’’ case (left panel) and for the ‘‘hard’’ case (right panel).

normal rv and estimate the 95%-quantile, whereas for the ‘‘hard’’ problem we
generate 1000 realizations of a t3 rv and estimate the 99.9%-quantile. So in the
‘‘soft’’ problem we estimate a quantile well within the range of light-tailed data.
For the ‘‘hard’’ problem we estimate a quantile at the edge of heavy-tailed
data. In both problems our estimations are based on the empirical, the POT
and the g-and-h method by means of the procedure mentioned above. In the
case of the g-and-h method the full spread is used to estimate the parameters
a, b, g, h. In Figure 5 we plot the SRMSE as a function of the chosen threshold
of the GPD.

In the soft case, where the quantile is estimated at a moderate level, g-and-h
fits well and its SRMSE is smaller than the SRMSE obtained by the POT
method. This is not surprising, as the normal distribution perfectly fits into the
g-and-h framework. In the hard case, the g-and-h method as well as the POT
method clearly outperform the empirical estimator.

4. SUBADDITIVITY OF VAR

As stated above, we can give an explicit formula for the Value-at-Risk in the case
of a g-and-h rv:

VaRa(X ) = k(F–1(a)), 0 < a < 1,

with 

k(x) = .g
e e1 /

gx
hx 22-

In Dutta and Perry [12] the authors state: ‘‘We have not mathematically verified
the subadditivity property for g-and-h, but in all cases we have observed empir-
ically that enterprise level capital is less than or equal to the sum of the capitals
from business lines or event types’’. Of course, a mathematical discussion of
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FIGURE 6: Plot of dg,h(a) as a function of a for g = 2.4, h = 0.2; n = 107.

subadditivity would involve multivariate modeling; we will return to this issue
in a future publication.

In order to statistically investigate the subadditivity property for the g-and-h
distribution, we perform a simulation study. Let X1, X2 be iid g-and-h rvs with
parameters g = 2.4 and h = 0.2. We estimate (by simulation of n = 107 realiza-
tions) the diversification benefit dg,h(a) = VaRa(X1) + VaRa(X2) – VaRa(X1 + X2),
where of course dg,h(a) will be non-negative if and only if subadditivity occurs.
Our results are displayed in Figure 6. For the above realistic choice of para-
meters, superadditivity holds for a smaller than a certain level a~ . 99.4%. The
fact that subadditivity, i.e. VaRa(X1 + X2) ≤ VaRa(X1) + VaRa(X2), holds for a
sufficiently large is well known; see Proposition 4.1 below. That superadditivity
enters for typical operational risk parameters at levels below some a~ may be
somewhat surprising. The latter may be important in the discussion around the
scaling of risk measures. Indeed, risk managers realize that estimating VaRa

at a level a ≥ 99%, say, is statistically difficult. It has been suggested to esti-
mate VaRa deeper down in the data, a = 90%, say, and then scale up to 99.9%.
The change from super- to subadditivity over this range should be of concern.

Note that one can even construct finite-mean examples (choosing the
skewness parameter g large enough) for levels a~ = 99.9% and higher, such that
subadditivity of Value-at-Risk fails for all a < a~. This should be viewed in
contrast to the following proposition by Danielsson et al. [8]. See also that
paper for a definition of bivariate regular variation.

Proposition 4.1. Suppose that the non-degenerate vector (X1,X2) is regularly
varying with extreme value index z < 1. Then VaRa is subadditive for a sufficiently
large. ¡

Figure 6 exemplifies the subadditivity of VaR only in the very upper tail region.
The reader should thus be warned that Proposition 4.1 is an asymptotic statement
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FIGURE 7: Contour plot of dg,h(a) as a function of g and h for fixed a = 99% (left panel)
and a = 99.9% (right panel); n = 107.

and does not guarantee subadditivity for a broad range of high quantiles.
Furthermore, note that for z = h > 1 subadditivity typically fails. The reason
being that for h > 1 one deals with infinite mean models; see Neslehova et al. [26]
for more details on this.

For practitioners it will be of prime importance to know for which choices
of g and h values one can expect subadditivity. As shown in Figure 6, this
depends on the level a. We restrict ourself to the a-values 99% and 99.9%, rele-
vant for practice. Assume that the operational risk data of two business lines of
a bank are well modeled by iid g-and-h rvs with parameter values g! [1.85, 2.30],
h ! [0.15, 0.35]. Note that these values roughly correspond to the parameters
estimated by Dutta and Perry [12] at enterprise level. It would be of interest
to figure out if aggregation at business line level leads to diversification in the
sense of subadditivity of VaR. For this purpose we consider two iid g-and-h rvs
with g and h values within the above mentioned ranges. In Figure 7 we display a
contour plot of dg,h(a) for a fixed a, together with the rectangle containing the
parameter values of interest. The number attached to each contour line gives
the value of dg,h(a) and the lines indicate levels of equal magnitude of diversi-
fication benefit. The 0-value corresponds to models where VaRa is additive,
VaRa(X1 + X2) = VaRa(X1) + VaRa(X2). The positive values (bottom left hand
corner) correspond to models yielding subadditivity. The top right hand cor-
ner, corresponding to negative values for dg,h(a), leads to superadditivity for the
corresponding parameter values. Note that for a = 99.9%, the entire parame-
ter rectangle lies within the region of subadditivity; see right panel of Figure 7.
It is though important to realize that with only relatively small changes in the
underlying g and h parameters, one may end up in the superadditivity region.
The situation becomes more dramatic at lower quantiles. The left panel of Fig-
ure 7 corresponds to a = 99% (which is still relatively high!). There the super-
additivity region extends and a substantial fraction of our parameter rectangle
lies therein.
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FIGURE 8: Plot of dg,h(a) as a function of a for g = 2.4, h = 0.2, n = 107

and Gauss-copula with correlation r = 0,0.5 and 0.7.
Note that r = 0 corresponds to the independence case in Figure 6.

The above statements were made under the iid assumption. In the example
below we allow for dependence. For this we link the marginal g-and-h dis-
tributions with the same parameters as in Figure 6 by a Gauss-copula;
see McNeil et al. [21], p. 191. In Figure 8 we plot dg,h(a) for three different cor-
relation parameters r = 0,0.5 and 0.7. This figure should be compared with
Figure 6.

It seems that in a range below 95%, | dg,h(a) | becomes smaller when the
correlation parameter increases. This is not surprising because VaR is additive
under comonotonic dependence, i.e. for risks with maximal correlation; see
McNeil et al. [21], Theorem 5.25. As a consequence dg,h(a) would be tending
to 0 for r" 1. The effect of dependence can clearly be seen for large values of a.
Based on our simulation study, it appears that with increasing correlation r,
the range of superadditivity extends to even higher values of a. Hence the
stronger the dependence the higher the level a has to be in order to achieve a
subadditive model. Formulated differently, for strong dependence (r large),
most levels a chosen in practice will lie within the range of superadditivity.
We have worked out these results also for other dependence structures, like the
t- and the Gumbel-copula. For these cases we also elaborated contour plots
as in Figure 7. The results do not differ significantly from Figure 7 and thus
we refrain from displaying these plots here.

The situation in any LDA is of course in general much more complicated
than in our simple example above. Practitioners and risk managers should
therefore interpret our statements rather from a methodological and peda-
gogical point of view. It seems that diversification of operational risk can go
the wrong way due to the skewness and heavy-tailedness of this type of data.
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5. THE ONE-CLAIM-CAUSES-RUIN PARADIGM

In several publications on operational risk it is stated that often relatively few
claims cause the major part of the total operational risk loss. Papers high-
lighting this phenomenon in an operational risk context are Neslehova et al. [26]
and Böcker and Klüppelberg [2]. Though these publications contain the relevant
results, for matter of completeness we reformulate the main conclusions in
terms of the g-and-h distribution. We concentrate on the iid case, changes
incorporating dependence between the different loss rvs along the lines of
Böcker and Klüppelberg [2] can easily be made.

Let X1, …, Xd be iid g-and-h rvs and Sd = i 1= i
d X! the total loss. Recall that

for g > 0, h ≥ 0 the g-and-h distribution is subexponential, i.e.

> > , .maxP x P x xd
i d

i
1

" 3+
# #

S X6 :@ D

The above relation expresses the fact that for subexponential distributions, the
tail distribution of the total loss Sd is determined by the tail distribution of the
maximum loss. We are in the so-called ‘‘one-claim-causes-ruin’’ regime; see
Embrechts et al. [13], Section 8.3, or Asmussen [1].

More generally, consider (Xi)i ≥ 0 a sequence of iid g-and-h rvs, independent
of a counting process (Nt)t ≥ 0 and St = t

i 1= i
N X! . Hence we have 

: ,G x P S x P n F xt t t
n

n

0

#= = =
3

=
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where F n* denotes the n-th convolution of F. Furthermore, by Theorem 1.3.9
of Embrechts et al. [13], if there exists e > 0 such that

n
< ,P ne1 t

n 0

3+ =
3

=

N!^ h 6 @ (4)

then the tail df of St satisfies 

P[St > x] ~ E [Nt ] F” (x), x " 3.

Note that condition (4) is for instance satisfied in the Poisson, Binomial and
Negative Binomial case. The above representation implies 

Gt
–1(a) ~ F” –1

t

a
E
1 -

N
d n

6 @
, a " 1,

and hence for F ~ g-and-h with g > 0, h ≥ 0,

VaRa(St) ~ k
t

1- a
E

F 1 1
-

-

N
dd nn

6 @
, a " 1.
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Though these results yield explicit analytic approximations for VaRa, a large,
their practical importance is questionable.

6. CONCLUSION

In this paper we have highlighted some of the modeling issues for g-and-h
severity distributions within an LDA for operational risk. There seems to be
a discrepancy in practice between results which strongly favor EVT method-
ology (Moscadelli [25]) and g-and-h methodology (Dutta and Perry [12]). Our
main results are as follows. First, the g-and-h class of dfs yields an overall very
slow rate of convergence in applications using EVT based techniques. This is
mainly due to the second order behavior of the slowly varying function under-
lying the g-and-h for h > 0. As a consequence, setting an optimal threshold for
an EVT based POT approach becomes very difficult and hence quantile (risk
capital) estimates may become unreliable. Second, the issue of sub- or super-
additivity of g-and-h based VaR estimation very much depends on the para-
meter values g and h. It is shown that, both for iid as well as for dependent
data, small changes in the underlying parameters may lead VaR to switch
regime (super to sub or vice versa). Finally, since the class of g-and-h distribu-
tions is subexponential (for g > 0, h ≥ 0), this class of dfs also yields the one-
claim-causes-ruin phenomenon.

Several of the above results (observations) were based on simulation stud-
ies. We do however believe that the messages delivered in our paper may already
have considerable relevance for practical application of the LDA for operational
risk. In future publications we shall come back to some of these issues in a more
analytic form. In particular, we are working on QRM relevant properties of
multivariate g-and-h models.
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