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ABSTRACT

For the classical Cramér-Lundberg risk model, a dividend strategy of threshold
type has recently been suggested in the literature. This strategy consists of pay-
ing out part of the premium income as dividends to shareholders whenever
the free surplus is above a given threshold level. In contrast to the well-known
horizontal barrier strategy, the threshold strategy can lead to a positive infinite-
horizon survival probability, with reduced profit in terms of dividend payments.
In this paper we extend several of these results to a Sparre Andersen model
with generalized Erlang(n)-distributed interclaim times. Furthermore, we com-
pare the performance of the threshold strategy to a linear dividend barrier
model. In particular, (partial) integro-differential equations for the correspond-
ing ruin probabilities and expected discounted dividend payments are provided
for both models and explicitly solved for n = 2 and exponentially distributed
claim amounts. Finally, the explicit solutions are used to identify parameter sets
for which one strategy outperforms the other and vice versa.
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1. INTRODUCTION

In collective risk theory, the Sparre Andersen model to describe the surplus
process of an insurance portfolio has a long history, starting with the original
paper [30]. In that model, the claim counting process (Nt)t ≥ 0 for time t is assumed
to be an ordinary renewal process, which can be written as

Nt = min{k : T1 + …+ Tk + 1 > t}, t ≥ 0,
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where (Ti)i !� is the sequence of independent interarrival times.
This renewal assumption allows for more flexibility than the classical Cramér-

Lundberg risk process (in which Nt constitutes a homogeneous Poisson process)
and enables to some extent contagion between claim occurrences (see for instance
Rolski et al. [27] and Asmussen [5] for textbook treatments of these models).
As usual, the premium inflow is assumed to be continuous over time with con-
stant intensity c, and the individual claim amounts (Yi)i !� are independent
and identically distributed positive random variables with distribution function
FY and mean m < 3. Then, for initial capital u, the risk reserve process (Rt)t ≥ 0

of the insurance portfolio at time t is given by

Rt = u + ct – St.

where St = i 1= i
tN Y! denotes the aggregate claim amount at time t. The net profit

condition in this model is given by c > m / �(Ti). Typical quantities studied in
this context are the time of ruin 

t(u) = inf{t > 0 | Rt < 0, R0 = u},

and the probability of ruin

c(u) = P{t(u) < 3 | R0 = u}.

Whereas the Poisson claim number process in the classical Cramér-Lundberg
model implies that (Ti)i !� is a sequence of independent exponential random
variables and consequently the interarrival times possess a lack-of-memory
property, this Markovian property does not carry over to general renewal risk
processes. However, the assumption that each Ti follows a generalized Erlang(n)
distribution (i.e. each Ti is a convolution of n independent exponentially dis-
tributed random variables with parameters l1,…,ln) allows to utilize some
analytical tools that are usually restricted to Markov processes. This approach
was recently exploited by Li & Garrido [23] and Gerber & Shiu [19] for the
study of the discounted penalty function (which contains the ruin probability
as well as other ruin-related quantities such as the distribution of the ruin deficit
and the time of ruin) in such an Erlang(n) renewal risk model. In earlier papers,
expressions for the probability of ultimate ruin and the Laplace transform of
the time to ruin for the special case of an Erlang(2) risk process had been
obtained by Dickson [10] and Dickson & Hipp [12,13] and for the same model
Cheng & Tang [7] had used the discounted penalty function to get integro-
differential equations for the moments of the surplus before ruin and the deficit
at ruin.

The analytical tractability of this Erlangian renewal setup has also been
used to include a horizontal dividend barrier strategy in the analysis, i.e. when-
ever the surplus reaches a certain level, all incoming premiums are immediately
paid out as dividends. In this context, Li & Garrido [24] derived properties of
the resulting risk process (generalizing earlier results for the Cramér-Lundberg
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model with horizontal barrier in Lin et al. [26]) and Albrecher et al. [1] calcu-
lated moments of dividend payments resulting from this strategy (generalizing
corresponding results for the Cramér-Lundberg model with horizontal barrier in
Dickson & Waters [14]). For a textbook treatment of horizontal barrier strate-
gies, see for instance Dickson [11].

However, one considerable disadvantage of the horizontal barrier strategy
is that the resulting surplus process will lead to ruin with probability 1, which
typically makes this strategy inappropriate in practice. More than that, even if
one is just interested in maximizing expected discounted dividend payouts, the
horizontal payout strategy is not optimal. While for the compound Poisson
model there are some optimality properties for horizontal barriers (see e.g. Ger-
ber [15], Azcue & Muler [6] and Schmidli [28]), it can be shown that horizontal
barrier strategies are not optimal in the Sparre Andersen model (see Albrecher &
Hartinger [2]). These two issues motivate to look at alternative dividend pay-
ment strategies that allow for a positive probability of survival and still have
a satisfying level of dividend payouts. In particular, it is desirable to look for
model assumptions that at the same time enable analytical expressions for deci-
sion quantities related to solvency and profit, so that the parameters of the
strategy can be tuned towards a given target.

Among these, there is the so-called threshold dividend strategy, where one
fixes a level b > 0 and no dividends are paid out if the surplus level is below b.
Whenever the surplus is above b, dividends are paid with intensity a, 0 < a < c
(and the surplus increases with intensity c – a) until the surplus falls again
below b due to the occurrence of a claim. Finally, the dividend payments are
stopped at the time of ruin. So the dynamics of the modified risk process Rthr

are given by

dRt
thr = c dt – dSt, 0 ≤ Rt

thr < b,

dRt
thr = (c – a)dt – dSt, Rt

thr ≥ b,

dDt
thr = a dt, Rt

thr ≥ b,

where (Dt
thr)t ≥ 0 denotes the accumulated dividend payments at time t (note that

a = c corresponds to the horizontal barrier strategy). The expected discounted
dividends of such a strategy are given by 

, ,�W u b a I e dt R uR b

u t thrt d

0 0
thr= =$

-

t
#^

]
eh

g
o" ,

where d > 0 is the discounting factor (another interpretation for d > 0 is that it
reflects the preference of a shareholder to receive payments earlier rather than
later according to an exponential utility function). Observe that c(u) = 1 if the
process above b does not fulfill the net profit condition (c – a) � (Ti) > m.

The threshold dividend strategy was discussed for the Cramér-Lundberg
model in Asmussen [5] and recently studied in detail by Lin & Pavlova [25] and
Gerber & Shiu [21]; for a diffusion setup, see also Gerber & Shiu [20]). In this
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paper we will investigate the threshold dividend strategy for a renewal model
with generalized Erlang(n) interarrival times.

The second strategy we will focus on is the so-called linear barrier dividend strat-
egy, where the barrier bt = b + (c – a)t(b > 0, 0 < a < c) grows linearly in time and
dividends are paid out with intensity a whenever the surplus reaches bt, while
the reserve increases with intensity c – a. On the other hand, nothing is paid
out when the surplus is below the barrier. Dividend payments again stop at the
event of ruin. The dynamics of the modified risk process Rlin are thus given by

dRt
lin = c dt – dSt, 0 ≤ Rt

lin < bt,

dRt
lin = (c – a) dt – dSt, Rt

lin = bt,

dDt
lin = a dt, Rt

lin = bt.

The expected discounted dividend payments are in this case

li, , .�W u b a I e dt R u b bR b

u t nt d

0 0 0lin= = =$
-

tt
#^

]
eh

g
o" ,

The linearity of the barrier enables the application of classical techniques
developed for the horizontal barrier model for the computation of quantities
of interest (such as martingale techniques (see e.g. Gerber [16])). Historically,
together with the positivity of the corresponding survival probability, this was
one of the reasons to consider linear barriers. Explicit formulae for W(u,b) and
c(u,b) for light-tailed claim sizes were derived in Gerber [17] and Siegl & Tichy
[29]. Recently, the discounted penalty function and higher moments of dis-
counted dividend payments for the linear barrier strategy were investigated in
Albrecher et al. [3]. However, up to now all results in connection with linear
barriers are available in the Cramér-Lundberg model only. In this paper we will
generalize this analysis to Erlang renewal models.

Figure 1 depicts the two strategies for a sample path that leads to ruin in
both cases.

An objection sometimes raised against the linear barrier model is the fact
that the strategy depends on the point in time, i.e. the payment strategy is dif-
ferent for each t for an otherwise identical situation. However, if one is forced
to fix a dividend strategy at time 0 and is interested in both maximizing W(u,b)
and keeping the ruin probability c(u,b) below a specified level, it is intuitively
clear that for small t one will try to deduct a high dividend amount possibly
involving some higher risk, whereas for larger t the main focus will be on secur-
ing the survival (due to the discount factor d, the dividend contributions at this
later stage will only be marginal). Indeed, as will be illustrated in Section 4, for
higher values of d the linear barrier model often outperforms the threshold
model in terms of finding a compromise between the values of W(u, b) and
c (u,b).
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FIGURE 1: The linear barrier- and the threshold strategy for a sample path of Rt.

In this paper, we will derive (partial) integro-differential equations ((P)IDE’s)
for the ruin probability and moments of dividend payments for both the threshold
and the linear barrier strategy in the Sparre Andersen model with generalized
Erlang(n) interclaim times. These equations can in principle be solved explic-
itly whenever the individual claim size distribution itself follows a generalized
Erlang distribution. We will demonstrate this solution procedure for the case
of Erlang(2) interclaim times and exponential (i.e. Erlang(1)) claim amounts.
The explicit formulae pave the way for a fast numerical assessment of the per-
formance of these dividend strategies for a given set of parameters.
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In Section 2, we use the differential approach to establish a PIDE for the
moment-generating function of discounted dividend payments for the threshold
strategy in the Sparre Andersen model with Erlang(n) interclaim times. Sub-
sequently, the corresponding IDE’s for arbitrary moments of the discounted
dividend payments and for the ruin probability are derived. These equations
are explicitly solved for n = 2 and exponential claim amounts in Section 2.4.
Section 3 provides PIDE’s for the survival probability as well as the expected
discounted dividend payments in the linear barrier model with Erlang(n) inter-
claim times. As an alternative to the differential approach, these are derived
using the framework of piece-wise deterministic Markov processes. Again, an
explicit solution is provided for n = 2 and exponential claim amounts and the
exact results are compared with simulation in Section 3.2.4. Finally, in Section 4
the analytical results of the previous sections are used to compare the performance
of the threshold and linear barrier model for various sets of parameters. Sec-
tion 5 concludes.

2. THE THRESHOLD DIVIDEND STRATEGY

2.1. A system of PIDEs for the moment-generating function

Let us decompose every inter-occurrence time with generalized Erlang(n)-dis-
tribution into the independent sum of n exponential random variables with
possibly different parameters l1, …, ln, each causing a ‘‘sub-claim’’ of size 0
and at the time of the n-th sub-claim an actual claim with distribution function
FY occurs. This is done by defining n states for the risk process (see e.g. [1]).
Starting at time 0 in state 1, every sub-claim causes a transition to the next state
and at the time of occurrence of the n-th sub-claim, an actual claim with dis-
tribution function FY occurs and the risk process jumps into state 1 again. Let 

M ( j )(u, y, b) = ,exp� y e a I t R u jd state>
t

R b

u thrdt

0 0
thr = =

-

t
#

]
ee

g
o o" ,

denote the moment-generating function of the discounted dividend payments,
given that the risk process starts in state j ( j = 1, …, n ).

Furthermore we split up the moment-generating functions in two regions
below and above the barrier,

M ( j )(u, y, b) = M1
( j )(u, y, b) I{u < b} + M2

( j )(u, y, b) I{u ≥ b}.

For j = 1,…, n – 1, we condition on the occurrence of a claim within an infinites-
imal time interval, which gives 

M1
( j )(u, y, b) = (1 – lj dt)M1

( j )(u + cdt, ye– ddt, b)

+ lj dt M1
( j + 1)(u + cdt, ye– ddt, b) + o(dt),
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and

M2
( j )(u, y, b) = (1 – ljdt) eyadtM2

( j )(u + (c – a)dt, ye– ddt, b)

+ lj dt eyadtM2
( j +1)(u + (c – a)dt, ye– ddt, b) + o(dt).

The analogous equations for j = n are 

M1
(n)(u, y, b) = (1 – ln dt)M1

(n)(u + cdt, ye– ddt, b)

+ ln dt 1M( )u cdt 1

0

+

# (u + cdt – z, ye– ddt, b) dFY (z)

+ ln dt d
u cdt

3

+
# FY (z) + o(dt),

M2
(n)(u, y, b) = (1 – ln dt) eyadtM2

(n)(u + (c – a)dt, ye– ddt, b)

+ ln dteyadt M( )u cdt 1

0

+

# (u + (c – a)dt – z, ye– ddt, b) dFY (z)

+ ln dteyadt d
u cdt

3

+
# FY (z) + o(dt).

Taylor expansion and collection of suitable terms leads to the following partial
(integro-)differential equations ( j = 1,…,n – 1):

M1
( j + 1) (u, y, b) =

j

jc ydu y- + +$ $
2
2

2
2

l
lJ

L

K
KK

N

P

O
OO

M1
( j )(u, y, b),

M2
( j + 1) (u, y, b) =

j

jc a ya ydu y- - + - +$ $
2
2

2
2

l
lJ

L

K
KK

^ _
N

P

O
OO

h i
M2

( j )(u, y, b),

and

c yd

n

u n y- + +$ $
2
2

2
2

l
lJ

L

K
KK

N

P

O
OO

M1
(n)(u,y,b)

– (1 – FY (u)) – 1M( )u 1

0
# (u – z,y,b) dFY (z) = 0,

c a ya yd

n

u n y- - + - +$ $
2
2

2
2

l
lJ

L

K
KK

^ ^
N

P

O
OO

h h
M2

(n)(u,y,b)

– (1 – FY(u)) – M( )u 1

0
# (u – z,y,b)dFY (z) = 0.

The quantity of eventual interest is M (1)(u,y,b) := M (u,y,b), which from the
above equations is seen to be the solution of the following system of partial
integro-differential equations:
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j

j
, ,

, , ,

c y
u y b u

u z y b zd

d
0 1u y

j

n

Y

Y

u

1
1

1
0

=
- + +

- -

- -

$ $
2
2

2
2

=
l
l

F

F

M

M#

%
J

L

K
KK

^ ^_

^ ^

N

P

O
OO

h hi

h h

(1)

j

j
, ,

, ,

c a ya y
u y b u

u z y b zd

d
0 1u y

j

n

Y

Y

u

1
2

0

=
- - + - +

- -

- -

$ $
2
2

2
2

=
l
l

F

F

M

M#

%
J

L

K
KK

^ _

^ ^_

^ ^

N

P

O
OO

h i

h hi

h h

(2)

(note that the product y y
$

2
2 in the above operator is not commutative). Boundary

conditions are given by

lim
b "3

M1 (u,y,b) = 1,

lim
u "3

M2 (u,y,b) = eya /d.

Moreover, at u = b, by continuity we have to have 

lim
u b"

+
M2

( j )(u,y,b) = lim
u b"

-
M1

( j )(u,y,b)

for all states j = 1,…,n, which translates into

,c a u y y ya c u y yd d
j

u b

j

u b

1

2

1

1
$ $ $ $

2
2

2
2

2
2

2
2

- - + = -
+ +

-

=

- -
-

=

M M
J

L

K
K

J

L

K
K^

N

P

O
O

N

P

O
Oh (3)

where the derivatives are assumed to be one-sided.

2.2. The moments of the discounted dividends

The results of the previous subsection can be used to derive an integro-differen-
tial equation for the mth moment Wm(u,b) of the discounted sum of dividend
payments (m ! �). Again, we write

Wm(u,b) = Wm,1(u,b) I{u < b} + Wm,2(u,b) I{u ≥ b}.

For d > 0, the quantity Wm(u,b) is bounded for every m ! � . Hence, with the
representation 

M (u,y,b) = ! , ,m
y

u b1
m

m
m

1

+
3

=

W! ^ h
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and the equations (1)-(3), a comparison of coefficients of ym gives 

j

j , , , , ,
Dc

u y b u z y b zd
d

0, ,
u

j

n

m m Y

u

1
1 1

0

- + +
- - =

$
2
2

=
l

l
FW W#%

J

L

K
KK

^ ^ ^

N

P

O
OO

h h h

j

j , , , , ,
Dc a a

u y b u z y b zd
dD

0,
u

j

n

m m Y

u

1
2

0

- - + - +
- - =

$
2
2

=
l

l
FW W#%

J

L

K
KK

^ _
^ ^ ^

N

P

O
OO

h i
h h h

with the operators DWm := mWm – 1, DWm := mWm. Moreover, W0 = 1, W–i = 0
(i ! �). Here, the product DD of operators is not commutative and is given by
(DD)Wm = D(DWm) = m(m – 1) Wm – 1 and (DD)Wm = D(DWm) = m2Wm – 1.

We have the boundary conditions:

lim
b "3

Wm,1(u,y,b) = 0, (4)

lim
u "3

Wm,2(u,y,b) = .a
d

m

d n (5)

Moreover, by assuming that all moments are continuous we have 

, , ..., .c u c a u a j nD 1, ,

j

m

u b

j

m

u b

1

1

1

2
$ $

2
2

2
2

= - + =
-

-

=

+
-

=

W W
J

L

K
K

J

L

K
K^ ^

N

P

O
O

N

P

O
Oh h

Remark 2.2. Note that the above formulas generalize equations (5.1)-(5.3) of
Gerber & Shiu [21], who studied the case m = 1, n = 1.

2.3. Probability of ruin

The probability of ruin is defined through 

c(u,b) = �(I{t < 3} | R0
thr = u).

Let us again split the function in two regions below and above the barrier b,

c(u,b) = c1(u,b) I{u < b} + c2(u,b) I{u ≥ b}.

Analogously to Section 2.1, one can now decompose the process into n states
and subsequently apply the differential approach to obtain 

j

j , , ,
c

u b u u z b zdc c1 0u

j

n

Y

u

Y
1

1 1
0

-
- - - - =

$
2
2

=
l

l
F F#%

J

L

K
KK

^ ^_ ^ ^

N

P

O
OO

h hi h h (6)
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j

j
2 , , .

c a
u b u u z b zdc c1 0u

j

n

Y

u

Y
1 0

- -
- - - - =

$
2
2

=
l

l
F F#%

J

L

K
KK

^
^ ^_ ^ ^

N

P

O
OO

h
h hi h h (7)

The natural boundary conditions are 

lim
u "3

c2(u,b) = 0 (8)

and 

lim
b "3

c1(u,b) = c(u), (9)

where c(u) denotes the ruin probability without dividend payments. Moreover,
from the continuity assumptions,

,, , , ..., .limc a u u b c u u b j nc c 1
j

u b
u b

j

u b

1

2

1

1
$ $

2
2

2
2

- = =
"

+
-

=

-
-

=

-

J

L

K
K

J

L

K
K^ ^ ^ ^

N

P

O
O

N

P

O
Oh h h h (10)

Remark 2.2. For n = 1 (i.e. the Cramér-Lundberg model), (6) and (7) appear
implicitly in Asmussen [5] and Lin & Pavlova [25].

2.4. Erlang(2) interarrivals and exponential claims

In principle, the above equations can be explicitly solved for arbitrary Erlang
distributed claim sizes. In the following we will illustrate the solution proce-
dure for the specific case of Erlang(2,l) distributed interclaim times (i.e. l1 =
l2 = l and n = 2) and Exp(a) distributed claim amounts. From Section 2.2, we
then obtain

,m c u u z b zdl d l 0, ,m m

u

Y

2

1
2

1
0

$
2
2

+ - - - =W W F#d ^ ^n h h

and

,m 2 ,

.

m c a u W u z b z

am c a u m W a m mW

dl d l

l d2 2 2 1 1, ,

m

u

Y

m m

2
2

0

1 2
2

2 2

$

$

2
2

2
2

+ - - - -

= - - + + - - -- -

W F#^d ^ ^

^ ^d ^

h n h h

h h n h

together with the boundary conditions (4), (5),

Wm,1(b,b) = Wm,2(b,b)
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and 

, ,m m1 2
,m 1 2- , .c u c a u a b b

u b u b
2 2

= - +
= =

W W
mW

2 2
^ ^h h

Let us consider the case m = 1. We then have 

c2W �1,1(u,b) – 2c (d + l)W �1,1(u,b) + (d + l)2 W1,1(u,b)

– l2ae–au
,

u

1 1
0
W# (v,b) eavdv = 0 (11)

and

(c – a)2W �1,2 (u,b) – 2(c – a) (d + l)W �1,2 (u,b) + (d + l)2W1,2(u,b) – a (2l + d)

– l2ae–au
u

1
0
W# (v,b) eavdv = 0 (12)

together with 

W1,1(b–, b) = W1,2(b+,b), (13)

and

, ,1 1 1, , .c u
W

u b c a u
W

u b a

u b u b

2

2 2
= - +

-

=

+

=

2 2
^ ^ ^h h h (14)

Applying the operator au +
$

2
2

a k to (11) and (12) yields the differential equations 

0 = c2W �1,1(u,b) + (ac2 – 2c (d + l))W �1,1(u,b) + ((l + d)2 – 2ca(d + l))W �1,1(u,b)

+ (a (d + l)2 – al2)W1,1(u,b), (15)

0 = (c – a)2W �1,2 (u,b) + (a(c – a)2 – 2(c – a) (d + l))W �1,2(u,b) + ((d + l)2

– 2a(c – a)(d + l))W �1,2(u,b) + (a(d + l)2 – al2)W1,2(u,b) – aa (2l + d). (16)

The solution of (15) is of the form 

W1,1(u,b) = ,A b e
i

i

R u
1

1

3 (
1

=

i)

! ]
^
g

h (17)

where R1
(1), R1

(2) > 0 and R1
(3) < 0 are the three roots of

(d + l – cR)2(R + a) – al2 = 0,

and A1
(i)(b) ( i = 1,2,3) are coefficients (depending on the value of b) to be deter-

mined in the following. Substitution in (11) then gives the condition 
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On the other hand, equation (16) has a solution of the form 

W1,2(u,b) = R ,a A b ed
u

2
1 1

+ 2]
^

]g
h

g

(18)

where a
d

is a particular solution of (16) and R2
(1) is the negative root of

(d + l – (c – a)R)2(R + a) – al2 = 0

(that this equation has indeed exactly one negative root follows by a Rouché-
type argument, see e.g. Gerber & Shiu [19]). The coefficients of the positive roots
have to be zero according to (4), hence these terms do not appear in (18).

Substituting (17) and (18) in (12), a comparison of coefficients gives 
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(note that the integral on the right hand side of (12) has to be written as

0
W1

u
# (v,b)eavdv = 10 ,1

b
W# (v,b)eavdv + 2b ,1

u
W# (v,b)eavdv). Together with condi-

tions (13) and (14), we hence obtain the explicit solution (17) and (18), where
the coefficients are determined by the system of linear equations 

R

R

R

R

R

R

R

R

R

R

R

R

.
e

e

c a R e

e

e

cR e

e

e

cR e

e

e

cR e

A

A

A

A a

0
0

a

a

a

a

a

a

a

a

a

a

a

R

b

b

b

R

R

b

b

b

R

R

b

b

b

R

R

b

b

b

a

a
d

d

2
1

1

1
1

1

1
2

1

1
3

2
1

1
1

1
2

1
3

2

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

2

1

2
1

2

1

2

1

2

1

3

1

3
1

3

1

3

1

3

-

-

- -

=+

+

+

+

+

+

+

2

2

2

J

L

K
K
K
K
K
K
KK

J

L

K
K
K
K
K
K

J

L

K
K
K
K
K

]

]

]

^
] ]

]

]

]

]

] ]

]

]

]

]

] ]

]

]

]

]

] ]

]

]

]

]

N

P

O
O
O
O
O
O
OO

N

P

O
O
O
O
O
O

N

P

O
O
O
O
O

g

g

g

h
g g

g

g

g

g

g g

g

g

g

g

g g

g

g

g

g

g g

g

g

g

g

For the ruin probability, one has to apply the operator au +
$

2
2

a k on (6) and (7)
to obtain the differential equations

j

j , ,a au
c

u bc0 u

j 1

2

1
$

2
2

= +
- +

-

$
2
2

=
l

l
%

J

L

K
KK

J

L

K
KK
d ^

N

P

O
OO

N

P

O
OO

n h

and 

j

j , .a au
c a

u bc0 u

j 1

2

2
$

2
2

= +
- - +

-

$
2
2

=
l

l
%

J

L

K
KK

J

L

K
KK
d

^
^

N

P

O
OO

N

P

O
OO

n
h

h

214 H. ALBRECHER, J. HARTINGER AND S. THONHAUSER

0345-07_Astin37/2_02  28-11-2007  14:14  Pagina 214



Thus for i = 1,2, we have solutions of the form 

R, .u b A A ei i
j

j

u
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] ] ]

h
g g g

Consider the corresponding Lundberg equations 
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For each of the two, one solution is 0 and both equations have exactly one neg-
ative solution (see again [19]), which are denoted by Ri

(1), i = 1, 2. The remaining
positive solutions are called Ri

(2). Thus for i = 1, 2, one has 

ci(u,b) = R ,A A e( )
i i

j

j

u3
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+
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i! ] ]g g

(20)

where the Ai
( j )(b) depend on the choice of b. Condition (9) gives 
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(cf. [19]) and (8) translates into 
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Thus, we now have four unknown constants. Two equations are obtained by
using (10) for j = 1,2 and the remaining two are found by a comparison of
coefficients of the solutions in the IDE’s (6) and (7). Altogether, the resulting
system of equations is given by 
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3. THE LINEAR DIVIDEND BARRIER STRATEGY

Consider a linear barrier of the form bt = b + (c – a)t. With this strategy, divi-
dends are paid out with intensity a whenever Rt

lin reaches bt, while the reserve
increases with intensity c – a until the next claim occurs. On the other hand,
nothing is paid if the surplus is below the barrier.

3.1. Integro-differential equation for U (u,b)

For convenience, let us think of the risk process with linear dividend barrier
as a piecewise deterministic Markov process (PDMP) with n external states
(see e.g. Davis [9] or Rolski et al. [27]), where the transition from state i to
state i + 1 is generated by an Exp(li) random variable. This can again be inter-
preted as a decomposition of the interclaim time Ti into n exponentially dis-
tributed summands, see [1]. For i = 1, …, n – 1 the process only changes the
state, for i = n the state moves to state 1 and a claim with distribution function
FY occurs. The generator A for a suitable function g (depending on the state i,
the risk process and the barrier b) is given by

Y
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and at the barrier 
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To get candidates for the survival probability U (i)(u) := 1 – c(i)(u) (for initial state i)
we have to solve the equations AU (i)(u,b) = 0 together with the boundary condi-
tions given below. From the equations above we get the following integro-differ-
ential equation for the survival probability in state 1 (which is the one we are
in fact interested in):
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By continuity at u = b, the boundary conditions are
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,limU u b uU( )

b

1
=

"3
^ ^h h

(with U(u) denoting the survival probability in the renewal model without divi-
dend payments) and ,lim U u b 1

,

( )

u b

1
=

"3
^ h if u and b go to infinity uniformly (cf. [17]).

3.1.1. Erlang(2) interarrivals and exponential claims

In this section we look for an explicit solution for the survival probability in
case of Erlang(2, l)-distributed interclaim times and Exp(a) claim amounts.
Write U(u,b) := U (1)(u,b). The integro-differential equation then reads 
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Analogous to Section 2, equation (24) can be transformed into a partial differ-
ential equation with constant coefficients:
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From (21) we have 

R ,
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^

]

h

g

where R(1)
1,1 is the unique negative solution of (19).

We will construct an explicit solution to the above problem. Using fixed-
point arguments it follows that there is a unique solution to the problem, so we
have actually solved the problem completely (see Albrecher & Kainhofer [4] for
details on the uniqueness argument in a related model and Cohen & Down [8]
in a queueing framework). The solution of (29) will be of the form 
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where for each k ≥ 0 the pairs (S (k),Rj
(k)), j =1,2,3, are zeroes of the polynomial 

P(R,S ) = (R + a) (l – cR – (c – a)S )2 – al2.

In the spirit of [29], the initial step k = 0 is chosen in order to satisfy (27), i.e.
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(27) and (28) are fulfilled. Thus, if for some k and j, S (k) + Rj
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essarily Aj
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For each k, the summand in (30) solves the integro-differential equation (29).
For k = 0, S (0) = R1

(0) = 0, so only the second term produces an error concerning
the two boundary conditions above (note that in Gerber [17] and Siegl & Tichy
[29], only one boundary condition had to be satisfied this way). For each of
the two conditions, the first summand of a larger index k in (30) will be used
to correct for it. However, the second summand will again provide a mismatch
with respect to this boundary condition and will itself be corrected by a first
summand of higher index etc. It will turn out that these correction terms
converge to zero and thus in the limit we have found the exact solution. In fact,
the convergence is fast and with only a few terms of the series (30) the approxi-
mation to the exact value is satisfying.

The deletion algorithm

So, for a general step k, fix two new steps k > k and k� > k such that 

S (k) + R2
(k) = S (k�) + R1

(k�) = S (k) + R1
(k). (31)

The coefficients A1
(k�) and A1

(k) of the new steps have to solve the linear equations 
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(32)

To that end, it is essential that S (k�)
! S (k) and R1

(k�)
! R1

(k). In the following it is
shown that it is always possible to find two distinct roots R1

(k�) and R1
(k) such

that S (k�) + R1
(k�) < 0 and S (k) + R1

(k) < 0 and at the same time S (k�) + R2
(k�), S (k) +

R2
(k) < 0 holds.

For each fixed S < 0, P(R,S) has three real roots in R which satisfy 
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so that

< ;r S S c c
a Sl

2 + +^ h

whence r2(S) + S < 0 if

< .S a
l

-
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Later on we will see from the construction of S (k) that this is guaranteed. More-
over, it turns out that lim ar S

S
1 = -

"3
^ h , whereas r2(S) and r3(S) do not have a

finite limit.
On the other hand, if we fix R, then P(R,S) = 0 has two solutions in S given by
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We get that s2(R) < 0 for R ! (–3, r1(0)) � (min{ c
l , r2(0)}, min{ c

l , r3(0)}) �
( c

l ,3). On the other hand, s1(R) > 0 if R ! (max{ c
l ,r1(0)}, max{ c

l , r2(0)}) �
(max{c

l , r3(0)}, 3).
Let us now turn to the determination of R1

(k�) and R1
(k) for a given step k so

as to match (31). For that purpose, consider the polynomial

P(R,S (k) + R2
(k) – R),

which has three real roots {R1, R2, R3} in R. A closer look at its behavior reveals
that we again have R1, R2 > 0 and R3 < 0.

In the following it is shown that S(k) + R2
(k) < 0, therefore the following choice

is possible:

R1
(k�) := R1, S (k�) = S (k) + R2

(k) – R1
(k�),

R1
(k) := R2, S (k) = S (k) + R2

(k) – R1
(k).

(34)

If S (k) + R2
(k) < 0, then clearly both S (k�) + R2

(k�) < 0 and S (k) + R2
(k) < 0. Moreover,

from R1
(k�), R1

(k) > 0 it follows that S (k�), S (k) < 0, as required. Consequently, due
to (33) it is always possible to choose R2

(k�),R2
(k) < 0 as the negative solutions of

P(R,S (k�)) = 0.
Summarizing, starting with S (0) = 0, choose R2

(0) as the negative zero of
P(R,0), so that 

S (0) + R2
(0) < 0.

Then, the coefficients of two next steps k� and k are chosen according to (34)
and (32). Subsequently, the same procedure is applied to each of the two steps
and so on. By the above considerations and induction, S (k) + R2

(k) < 0 holds for
all k ≥ 0. In addition,

R2
(k�) + S (k�) = R2

(k) + S (k) – R1
(k�) + R2

(k�) < R2
(k) + S (k),

since R1
(k�) > 0 and R2

(k�) < 0. So this sum decreases in every step of the algorithm
and, moreover, S (k�) < S (k) (the same argument holds with k� replaced by k ).

A numerical illustration of this solution algorithm will be given in Section 3.2.4.
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3.2. Integro-Differential equation for W(u,b)

Since one of the boundary conditions to the equation for W(u,b) will involve the
expected discounted dividends of the linear barrier strategy in case the payments
are continued after the event of ruin, we will first discuss this variant of the model.

3.2.1. Dividend payments continue after ruin

It is well-known that in this case it suffices to look at the process zt = bt – Rt
lin

(see e.g. [17]). Dividends are then paid whenever zt = 0. The resulting expected
discounted dividends (with discounting factor d > 0) are 
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As in Section 3.1 we think of z = (zt)t ≥ 0 as a PDMP with n external states. The
generator A for a suitable function g depending on the state i and the process
z is given by 
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and at the boundary z = 0 we get for the generator
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Here, a function g is suitable, if for all states i it is absolutely continuous on
(0, 3) and 
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where {si}i ≥ 1 denote the claim occurrence times (this condition is certainly
fulfilled if g is bounded). From Rolski et al. [27, Thm. 11.2.3] we know that
for a suitable function f which fulfills 
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A f (z) – df (z)+ g(z) = 0,

the relation

tt ,�f z z e dt e zg t t
ter

t d d
0

0

0

0

0

= +
- - f#^ ^ _eh h io

holds for any t0 > 0 (and for a bounded function fter the second summand van-
ishes for t0 " 3).

Let V (i)(z) denote the value of the expected dividends for initial state i and
set g(z) = aI(z = 0). Then we can write 

tt, , .�V z t z e dt e i zgi t t
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^ ^ _e
g

h h io

From the upper bound (35) it is clear that Vter is bounded and hence neglible
in the limit t0 " 3 in the above expression. Hence V (i)(z) = V (i)(z,3) is given as
the solution of

,a
z
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and
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For z = 0 we get the boundary conditions 

Y

, , ..., ,

.

V V V a i n

V y dF y V V a

d

d

0 0 0 0 1 1

0 0 0

i
i i i

n
n n

1

1

0

- - + = = -

- - + =
3

+l

l #

]
^

]
^a

]
^

]
^ ^

]
^e

]
^

g
h

g
hk

g
h

g
h h

g
ho

g
h

Moreover, continuity of V (i)(z) implies 0z
V (

2
2 i)

^ h = –1 for i =1,…,n. Eventually,
we are interested in the quantity V(z) = V (1)(z). From (36) we have 
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and together with (37) we arrive at 
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and for the boundary z = 0
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3.2.2. Dividend payments stop at ruin

If the dividend payments stop at the event of ruin, the expected discounted div-
idend payments are given by 
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The PDMP approach analogous to Section 3.2.1 leads to the PIDE
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3.2.3. Erlang(2) interarrivals and exponential claims

In the special case of Erlang(2,l) distributed interclaim times and Exp(a) dis-
tributed claim amounts, the integro-differential equation (38) can (similarly to
the previous sections) be transformed into the ordinary linear differential equa-
tion with constant coefficients

a2V�(z) + (2(d + l) a – aa2)V �(z)

+ ((d + l)2 – 2a(d + l)a)V �(z) + (al2 – a (d + l)2)V(z) = 0,

with a solution of the form

V(z) = A1 eR1z + A2 eR2z + A3 eR3z,

where {R1, R2, R3} denote the roots of the polynomial 

P1(R) = a2R3 + (2(d + l)a – aa2)R2 + ((d + l)2 – 2a(d + l)a)R + (al2 – a(d + l)2).
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It is easy to see that P1(R) has three real roots, two of which are negative. The
condition lim

z "3
V(z) = 0 implies that if R3 refers to the positive root, A3 = 0.

Under the assumption of exponential claim amounts, the boundary condi-
tions (39) can be rewritten as 

V �(0) = –1 and V �(0) = a
d .

Altogether this leads to the explicit solution 

V(z) = A1 eR1z + A2 eR2z (40)

with

A
R R R

R a
d
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1 2

2
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and  
2

.A
R R R

R a
d

2 2
1 2

1=
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+

The function V(z) is differentiable and bounded. Thus it fulfills the conditions
of Rolski et al. [27, Thm.11.2.3] and is indeed the solution to the problem.

For W (u,b), one has to solve 
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which by applying the operator au
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2
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The boundary conditions simplify to 
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, ,limW u u z V z
u

+ =
"3

^ ^h h (46)

where V (z) is given by (40).
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(42) is a homogeneous differential equation of third order with constant coeffi-
cients and we will construct a solution of the form 

, .W u b e A e A e A eS b

k

k R u k R u k R u
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1 2 3

( ( ( (
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] ] ]
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where Ri
(k)(S (k)), (i = 1,2,3), denote the roots of the polynomial 

P(R,S (k)) = R((d + l) – cR – (c – a)S (k))2 + a ((d + l) – cR – (c – a)S (k))2 – al2

for a given value of S (k).
The main idea is again that each of the above summands solves (42) and the

combination of such solutions is used to match all the necessary boundary
conditions. Substitution of each term in the original integro-differential equa-
tion (41) gives 
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As in the case of the survival probability, the choice A3
(k) = 0 for all k ≥ 0 turns

out to be feasible and hence 
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So we actually look for a solution of the form 
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Condition (43) is automatically satisfied as long as S (k) < 0 for k ≥ 0. In view
of (40) and (46), define for k = 0 

A1
(0) := A1, S (0) := R1 R1

(0) := – R1,

A1
(1) := A2, S (1) := R2 R1

(1) := – R2.

At the same time this choice already determines the values of R2
(0) and R2

(1). Note
also that the combination of R1

(0) and R1
(1) is possible, since P(–R, R) = –P1(R).

By construction, R1
(0) and R1

(1) are positive and for S (i) = Ri the polynomial P(R,
S (i)) also has a negative root, the value of which is assigned to R2

(i)(i = 0,1). If both
S (0) + R2

(0) and S (1) + R2
(1) and all remaining sums S (k) + Ri

(k), k ≥ 2, i! {1,2}, are
negative, condition (46) will be fulfilled.
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Let us now turn the attention to (44). Inserting the above choice of the
first terms, this condition reads 

S S .
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From V �(0) = – 1 we know that A1R1 + A2R2 = – 1, so the above equation can
be simplified to
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which will be fulfilled by an appropiate definition of the coefficients A1
(k). How-

ever, in addition we have to satisfy the boundary condition (45). Inserting all
the chosen initial values and using the identity A1R1

2 + A2R2
2 = d/a, (45) can be

written as 
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The procedure needed now to create the correction terms for these two remain-
ing boundary conditions is analogous to the case of the survival probability in
Section 3.1.1 and will therefore not be given in detail. The additional factor d
in all the polynomial equations does not cause any harm. A different feature of
the present case as compared to Section 3.1.1 is that in order to satisfy condi-
tion (46), here coefficients for both the steps k = 0 and k = 1 have to be assigned,
so we start with two (instead of one) terms to be deleted and the algorithm of
Section 3.1.1 has to be applied to each of the two separately; the sequence
(S (k))k!� then consists of strictly decreasing subsequences and tends to –3 again.
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3.2.4. Numerical Illustration

In the following, the exact solutions derived in the previous sections are approx-
imated by truncating the series after 18 terms. The accuracy of this approxima-
tion is already striking. One should note that these values are obtained virtually
instantaneously, whereas Monte Carlo simulation (including variance reduction
procedures) takes several minutes to achieve a comparable accuracy. Tables 1
and 2 show exact and simulated values of the survival probability Ulin(u,b) and
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TABLE 1

EXACT AND SIMULATED VALUES FOR THE SURVIVAL PROBABILITY AND THE EXPECTED SUM OF

DISCOUNTED DIVIDEND PAYMENTS FOR l = n = 2, a = 1, d = 0.03, c = 1.5, alin = 0.8.

Ulin(u,3) Wlin(u,3)

u Exact Simulation Exact Simulation

2.1 0.733224 0.7380 1.46862 1.46972
2.2 0.739212 0.7333 1.54505 1.53293
2.3 0.744364 0.7462 1.62477 1.65721
2.4 0.748668 0.7506 1.70782 1.72777
2.5 0.752118 0.7574 1.79422 1.80451
2.6 0.754721 0.7543 1.88392 1.89729
2.7 0.756511 0.7542 1.97677 1.95437
2.8 0.757559 0.7615 2.07247 2.04798
2.9 0.758001 0.7540 2.17051 2.18002
3.0 0.758073 0.7554 2.27010 2.27564

TABLE 2

EXACT AND SIMULATED VALUES FOR THE SURVIVAL PROBABILITY AND THE EXPECTED SUM OF

DISCOUNTED DIVIDEND PAYMENTS FOR l = 4, n = 2, a = 1.5, d = 0.03, c = 5/3, alin = 1/3.

Ulin(u,2) Wlin(u,2)

u Exact Simulation Exact Simulation

1.1 0.518345 0.5226 0.000442681 0.00060890
1.2 0.536764 0.5355 0.000897554 0.00112367
1.3 0.554457 0.5453 0.001819520 0.00169736
1.4 0.571422 0.5630 0.003687090 0.00398161
1.5 0.587612 0.5858 0.007464610 0.00782931
1.6 0.602876 0.6070 0.015079200 0.01474820
1.7 0.616821 0.6167 0.030302600 0.02912370
1.8 0.628532 0.6319 0.060134400 0.06046390
1.9 0.636225 0.6347 0.115667000 0.11660100
2.0 0.638223 0.6319 0.204578000 0.20514300
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the expected discounted dividends Wlin(u,b) in the linear barrier model with
Erlang(2) interclaim times and exponential claim sizes for two different para-
meter sets. In these tables, the Monte Carlo estimates are based on N = 10 000
iterations. As an illustration, for N = 20 000 iterations, one obtains the simu-
lation estimates Ulin(1.1,2) = 0.51925 and Wlin(1.1,2) = 0.00046 in Table 2, which
is still not fully satisfying. One should note in this context that opposed to
horizontal barrier models, here one has positive probability of survival of the
trajectories, which increases the simulation time and effort.

4. COMPARING THE TWO DIVIDEND MODELS

The availability of exact solutions provides a quick way to compare the two
dividend models investigated in this paper. One motivation for the introduc-
tion of the threshold dividend model was the positive survival probability,
while the expected discounted dividend payments are still of reasonable size.
Let us assume that we consider the survival probabilities U and the expected sums
of discounted dividend payments W as the only quantities of interest and that
we compare the two proposed dividend strategies at time 0 on that basis. Then,
at least for larger values of the discounting factor, dividends earned at a rather
late stage do not provide a substantial contribution to the overall sum of dis-
counted dividend payments and hence it seems preferable to focus on securing
survival once time has evolved. At the same time, dividends paid out at an
earlier stage contribute significantly to the overall value of the discounted sum
of dividend payments. For large d, this aspect is perhaps better captured by
linear dividend barrier models (where the barrier departs from the ruin level
as time evolves) than by threshold models (where the payment strategy is not
‘‘safer’’ at later times).

228 H. ALBRECHER, J. HARTINGER AND S. THONHAUSER

TABLE 3

COMPARISON FOR a = 2, l = 2, d = 0.03, c = 1.1, alin = 0.55, athr = 0.55.

u Ulin(u,2) Uthr(u,35) Wlin(u,2) Wthr(u,35) Uthr(u,15) Wthr(u,15)

1.0 0.910725 0.912509 2.47362 2.94955 0.912509 7.89945
1.1 0.921141 0.923443 2.56674 2.99669 0.923443 8.02571
1.2 0.930043 0.933011 2.66011 3.03995 0.933011 8.14155
1.3 0.937560 0.941383 2.75400 3.07981 0.941383 8.24831
1.4 0.943794 0.948709 2.84862 3.11672 0.948709 8.34716
1.5 0.948818 0.955119 2.94414 3.15106 0.955119 8.43914
1.6 0.952685 0.960728 3.04064 3.18318 0.960728 8.52515
1.7 0.955437 0.965636 3.13812 3.21335 0.965636 8.60597
1.8 0.957132 0.969931 3.23650 3.24185 0.969931 8.68228
1.9 0.957896 0.973689 3.33565 3.26888 0.973689 8.75468
2.0 0.958029 0.976977 3.43538 3.29465 0.976977 8.82371
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The numerical values worked out in this section are intended to give an
impression on how the performance of the dividend strategy differs in various
regions of the parameter space.

In Table 3, for a given set of parameters including the value blin of the lin-
ear barrier model, the threshold bthr is calibrated in such a way that the expected
dividend payments of the two strategies (which are calculated from (47), (17)
and (18)) are of comparable size. It turns out that in this case also the survival
probabilities (computed from (30), (20) and (22)) are comparable. However, if
instead bthr is more than halved, then the survival probabilities are not affected,
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TABLE 4

COMPARISON FOR a = 0.5, l = 4, c = 4.2, d = 0.08, alin = 3.6, athr = 0.1.

u Ulin(u,20) Uthr(u,25) Wlin(u,20) Wthr(u,25)

10 0.270068 0.221158 0.972399 0.147233
11 0.285057 0.235981 1.171740 0.166242
12 0.298725 0.250344 1.410030 0.187142
13 0.311005 0.264260 1.695140 0.210175
14 0.321820 0.277744 2.036520 0.235608
15 0.331085 0.290809 2.445470 0.263735
16 0.338698 0.303468 2.935500 0.294881
17 0.344551 0.315733 3.522600 0.329407
18 0.348533 0.327617 4.225038 0.367710
19 0.350586 0.339132 5.059620 0.410232
20 0.351000 0.350288 6.019980 0.457460

TABLE 5

COMPARISON FOR a = 2, l = 2, c = 0.8, alin = 0.6, athr = 0.25.

d = 0.03 d = 0.1

u Ulin(u,1.5) Uthr(u,= 2.5) Wlin(u,1.5) Wthr(u,= 2.5) Wlin(u,1.5) Wthr(u,= 2.5)

0.5 0.598238 0.522446 2.84655 4.13162 0.98854 0.919823
0.6 0.619711 0.545412 2.99965 4.33540 1.06783 0.976708
0.7 0.637969 0.566298 3.14423 4.52543 1.14843 1.032120
0.8 0.653200 0.585293 3.28100 4.70307 1.23070 1.086340
0.9 0.665577 0.602567 3.41055 4.86955 1.31493 1.139630
1.0 0.675266 0.618277 3.53345 5.02600 1.40141 1.192220
1.1 0.682442 0.632565 3.65021 5.17343 1.49034 1.244320
1.2 0.687309 0.645560 3.76139 5.31275 1.58188 1.296120
1.3 0.690138 0.657380 3.86771 5.44480 1.67609 1.347810
1.4 0.691330 0.668132 3.97017 5.57032 1.77286 1.399530
1.5 0.691525 0.677914 4.07045 5.69000 1.87191 1.451440
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whereas the expected dividends are much higher (see the two columns on the
right of Table 3).

Table 4 depicts a situation where athr and bthr are chosen so that the ruin prob-
abilities of the two strategies are comparable, but where then the linear barrier
strategy outperforms the layer strategy in terms of expected dividend payments.
Table 5 illustrates the importance of the discount factor d in comparing the
performance of the two strategies. Table 6 shows a parameter choice with com-
parable survival probabilities, where the linear barrier strategy is preferable
although the discount factor is of moderate size (d = 0.03). For still smaller
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TABLE 6

COMPARISON FOR a = 0.5, l = 2, c = 2.5, alin = 2, athr = 0.4.

d = 0.03 d = 0.1

u Ulin(u,10) Uthr(u,20) Wlin(u,10) Wthr(u,20) Wlin(u,10) Wthr(u,20)

9.0 0.611476 0.622957 8.38890 5.44013 14.2771 22.0554
9.1 0.611840 0.625355 8.48463 5.47752 14.3777 22.1631
9.2 0.612144 0.627722 8.58098 5.51489 14.4781 22.2699
9.3 0.612390 0.630058 8.67791 5.55226 14.5784 22.3761
9.4 0.612584 0.632363 8.77540 5.58962 14.6786 22.4814
9.5 0.612729 0.634639 8.87343 5.62698 14.7788 22.5860
9.6 0.612831 0.636886 8.97194 5.66435 14.8788 22.6900
9.7 0.612895 0.639104 9.07090 5.70172 14.9789 22.7931
9.8 0.612930 0.641292 9.17025 5.73910 15.0788 22.8956
9.9 0.612944 0.643453 9.26991 5.77649 15.1788 22.9974
10.0 0.612946 0.645586 9.36982 5.81389 15.2788 23.0986

TABLE 7

COMPARISON FOR a = 0.25, l = 2, c = 4.2, d = 0.02, alin = 2.3, athr = 0.19.

u Ulin(u,15) Uthr(u,20) Wlin(u,15) Wthr(u,20)

14.0 0.210288 0.00589161 3.36797 3.50556
14.1 0.210418 0.00599345 3.45753 3.52634
14.2 0.210526 0.00609513 3.54874 3.54716
14.3 0.210615 0.00619665 3.64152 3.56801
14.4 0.210685 0.00629801 3.73579 3.58889
14.5 0.210737 0.00639921 3.83143 3.60981
14.6 0.210774 0.00650025 3.92832 3.63076
14.7 0.210797 0.00660113 4.02628 3.65174
14.8 0.210809 0.00670185 4.12513 3.67275
14.9 0.210814 0.00680241 4.22464 3.69389
15.0 0.210815 0.00690281 4.32454 3.71488
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values of d, the situation is reversed again (see the two columns on the right
of Table 6).

This indicates that for every parameter setting and initial surplus u a crit-
ical value d*(u) exists such that for d > d*(u) the linear barrier strategy performs
better and for d < d*(u) the threshold strategy is to be preferred (while the level
of survival probability is not affected by the choice of d ).

Finally, in Table 7 we indicate a combination of parameters, for which
much more risk must be taken with the threshold strategy to achieve expected
dividends of the order of the linear barrier model.

5. CONCLUSION

The problem of determining the optimal dividend strategy that maximizes the
expected discounted dividend payments until ruin and at the same time does
not lead to ruin with a specified probability bound is currently out of sight.
An alternative approach is to formulate explicit strategies and to tune the
involved parameters in such a way that a given target in terms of profitability
and solvency is reached. For that approach explicit expressions in terms of the
model parameters are necessary. In this paper we showed how to obtain such
expressions for the Erlang renewal model. Using these explicit expressions, a
comparison of a barrier strategy that evolves linearly in time with a threshold
strategy (which depends on the surplus level) showed that the former can out-
perform the latter in terms of the usual optimization criteria (namely expected
sum of discounted dividend payments versus survival probability). This shows
that although a strategy that depends on time is perhaps less intuitive than
one depending on the surplus level, it may be preferable in some situations,
although most of the research literature is focussed on surplus-dependent
strategies. In particular the results of this paper show that one has to be very
careful about the choice of the dividend payout strategy.

Moreover, it should be kept in mind that even when ignoring the safety
aspect and purely looking at expected profits, the higher moments of the dis-
counted dividend payments under horizontal and threshold strategies in the
literature can be considerably large (see for instance Albrecher et al. [1]), making
the sole use of this optimization criterion somewhat questionable. One other
way to improve upon that might be a utility-based approach. However, iden-
tifying corresponding optimal dividend strategies is in general extremely difficult;
for recent progress in a diffusion framework see Hubalek & Schachermayer [22]
and Gerber & Shiu [18].
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