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ABSTRACT

The marginal approach to risk and return analysis compares the marginal return
from a business decision to the marginal risk imposed. Allocation distributes
the total company risk to business units and compares the profit/risk ratio of
the units. These approaches coincide when the allocation actually assigns the
marginal risk to each business unit, i.e., when the marginal impacts add up to
the total risk measure. This is possible for one class of risk measures (scalable
measures) under the assumption of homogeneous growth and by a subclass
(transformed probability measures) otherwise. For homogeneous growth, the
allocation of scalable measures can be accomplished by the directional derivative.
The first well known additive marginal allocations were the Myers-Read method
from Myers and Read (2001) and co-Tail Value at Risk, discussed in Tasche (2000).
Now we see that there are many others, which allows the choice of risk measure
to be based on economic meaning rather than the availability of an allocation
method. We prefer the term “decomposition” to “allocation” here because of
the use of the method of co-measures, which quantifies the component com-
position of a risk measure rather than allocating it proportionally to something.

Risk adjusted profitability calculations that do not rely on capital alloca-
tion still may involve decomposition of risk measures. Such a case is discussed.
Calculation issues for directional derivatives are also explored.

MARGINAL DECOMPOSITION OF RISK MEASURES

Insurers are finding it increasingly useful to have risk measures to quantify com-
pany risk and its components. Understanding risk sources can help in performance
measurement, strategic planning, pricing, and communication with regulators,
rating agencies, and securities analysts. We focus here on decomposing risk
measures by the business components that generate the risk. One possible
application is allocation of capital, which we discuss but do not particularly
advocate. Other ways to compute business component performance without
allocating capital can also benefit from being able to quantify the contributions
to company risk.

Sometimes a selected risk measure gets the label “economic capital.” For
instance, if a company has ruin probability of 0.0189%, it might decide that Value
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at Risk for the negative of earnings at probability level 0.02% is a relevant risk
measure, and call that economic capital. Then allocation of economic capital
is purely an issue of allocation of that risk measure. The methods below show
how this can often be done in a marginal additive fashion – that is the mar-
ginal impacts of the components on the company risk measure add up to the
risk measure itself. Alternatively, allocating the Value at Risk at probability
0.0189% would allocate actual capital. The term “economic capital” is a bit mis-
leading, as the fact that the discussion is about a risk measure can get over-
shadowed. Other risk measures could also be used in this context. For instance,
if actual capital is 3.8 times TVaR of negative earnings at 10%, 3.5 times TVaR
could be called economic capital. Again this is a risk measure and can be
allocated using the methods below. However the same approach would work
for actual capital, which may be more meaningful. We tend to use the term
“decomposition” rather than “allocation” for the methods we develop below,
as they look at how the risk is generated within the business units rather than
assigning risk to units proportionally to some measure.

Decomposition of risk measures starts with a risk pool (sum of random
variables) Y = SXj and a risk measure r(Y ) that expresses some aspect of the
risk inherent inY. The composition of this by the components Xj is a function
r (X) with r(Y ) = Sr(Xj). For an insurer, Y could be total claims, or it could
be some other account, such as change in capital, underwriting profit, etc.
Taking Y as the negative of earnings is often useful, as then large values are
bad and typical right-tail analysis is applicable. Some risk measures make more
sense with a specific choice of Y, but others are fairly general. The components
could be lines of business, or they could be marketing units, like all lines sold to
dairy farmers, or geographic, like all business in urban areas, etc. Y is assumed
here to be continuous, which for a pool of many individual losses is usually a
realistic approximation.

Section 1 describes the properties we focus on: decomposition and mar-
ginal impact. Marginal decomposition is easier if a company can make homo-
geneous changes to its business. This is discussed in section 2. Section 3
describes the decomposition methods used: co-measures and the directional
derivative, and their application in the case of homogeneous changes. Section 4
provides a few examples to illustrate the approach. Section 5 has some addi-
tional examples that all use risk measures related to insolvency. These may not
be practical for many companies in that insolvency is difficult to quantify, so this
section may be of more academic interest. Section 6 considers the non-homo-
geneous case, where growth is accomplished by adding discrete exposure units
that change the shape of the distribution. The co-measure decomposition is not
always marginal in this case, and marginal impacts are less likely to add up to
the entire risk measure. This is different for different risk measures: for some
the decomposition is far from marginal, for some it is close, and some have a
marginal decomposition even in this case. Section 7 considers performance mea-
surement without allocating capital, and Section 8 concludes. The appendices
address calculation and derivation issues.
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1. MARGINAL DECOMPOSITION OF A RISK MEASURE

If a risk measure for a company can be expressed as a sum over the business
units of related business unit risk measures, those are considered a decompo-
sition of the risk measure to the business units. For instance, the covariances
of Xj with Y sum over the j’s to the variance of Y, so the covariances are a
decomposition of the variance. The variances of the Xj ’s do not sum to the vari-
ance of Y unless the Xj ’s are all independent, so allocation of variance by the
variances of the components is not a decomposition absent independence, even
though it can be forced to add up with an off-balance factor.

Marginal impact can be incremental or total, that is the impact could be
that of a small change or of the entire business component. Here we adopt the
incremental approach. That is, the marginal impact of a business component
on a companywide risk measure is the proportional change in the overall risk
measure due to an incremental change in the volume of the business unit.

A decomposition of a risk measure is marginal if each business component
is assigned its marginal impact. The covariance decomposition of variance is
not marginal, as it can be shown that an incremental change in a component
increases the variance proportionally by double the covariance of the compo-
nent with the total.

If capital is allocated by a risk measure in order to calculate risk-adjusted
return by line (ratio of profit to allocated capital, which is equivalent to ratio
of profit to allocated risk), you would like to be able to conclude that grow-
ing a line with a higher-than-average ratio will increase the ratio for the whole
company. Growing any line is likely to increase the overall risk. But under
marginal decomposition, the increment in company risk is the growth increment
for the line times the risk allocated to the line. If that line has a higher than
average return on risk, the average return on risk for the whole company will
increase, as desired. This does not mean that the incremental risk from grow-
ing a line is all assigned to that line under marginal decomposition. In general,
it is not. Growing a line, even incrementally, reconfigures the decomposition.
Appendix 4 addresses this.

2. HOMOGENEOUS GROWTH

Growth of a business component is classified as homogeneous if the unit grows
by a scalar factor 1 + a. That is, G (x), the probability distribution of X after
the growth, is related to F(x), the probability distribution before the growth, by
G (x + ax) = F (x). Then the probability of an overall loss to the component of
x or less before the growth is the same as a loss of x + ax or less after the growth.
Here a can be positive or negative, and a reduction is called negative growth.

Homogeneous growth can occur by simple inflation to the component. Or if
the component has quota share reinsurance, reducing the share ceded can produce
positive homogeneous growth. Buying a new quota share can produce negative
homogeneous growth.
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However if a company aims to have positive growth it can often do so
only by writing new business, which does not always produce a scalar change.
The strongest results below are for homogenous growth, which is assumed for
now. Some of the results are expressed with derivatives, which for convenience
are defined by adding eX. They could equally well be expressed by subtracting
eX, which can always be achieved by increasing a quota share. So marginal decom-
position of the existing risk by derivatives is well defined for any insurer, but apply-
ing it to a positive growth strategy may require consideration of the non-homo-
geneous case as well.

3. DEFINITION OF METHODS

Two methods for determining marginal decompositions are co-measures
and the directional derivative. Both of these are used to specify components’
contributions to risk measures. If a selected risk measure quantifies something
meaningful to the whole company, then management may like to know how
much each business component contributes to the risk measure. For this exer-
cise the risk measure’s value for each component on a standalone basis, or for
the company less the component, is not necessarily relevant. The focus is on
the impact the component has on the total company risk measure, not the
component’s standalone risk. Properties of risk measures such as coherence
are not needed for decomposition by co-measures. For example, VaR, which
is not a coherent measure, is shown in section 4 to have a marginal decom-
position.

3.1. Co-measures

Co-measures define r(X) when r(Y ) is expressed as a conditional expected
value:

r(Y) = E [Si hi(Y)Li(Y) | condition on Y ],

where the hi’s are additive functions, i.e., h(V +W) = h(V) + h(W), and the Li’s
are any functions for which this conditional expected value exists. Usually only
one h and one L are needed. It turns out that many risk measures can be
expressed in this form. The co-measure for component j for such a risk mea-
sure is the same formula but with Y replaced by Xj in the argument of the h
functions, which comprise the linear part of the formula.

That is, the co-measure r is defined by:

r(Xj) = E [Si hi(Xj)Li(Y) | condition on Y ],

By the additivity of the h’s this satisfies r(Y ) = Sr(Xj).
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As an example of a co-measure, excess tail value at risk (XTVaR) excess of level b,
can be defined as:

r(Y) = E [(Y – EY ) |Y > b ] 

Now h(X) is X – EX, L(Y ) = 1, the condition is Y > b, and r(Xj) = E [(Xj – EXj) |
Y > b ].

There may be more than one set of conditions and h and L functions that
define the same risk measure, each one leading to a different co-measure. In fact,
given a risk measure defined by L and h functions L1, h1, and another additive
function h2, setting L2 = L1h1/h2 gives L2h2 = L1h1, which defines the same risk
measure. Also note that making the definition a conditional expectation is for
convenience only. It could be simply an expectation, with the conditioning
being done with indicator functions put into L(Y ).

3.2. Directional Derivative

The marginal impact of the j th business component can be formalized by the
j th directional derivative defined as:

r (Xj) =
j

lim
Y

e
r e r

e 0

+ -

"

YX_ ]i g
. As mentioned above, e might be negative.

Euler showed (see Appendix 2 for details) that this derivative produces a decom-
position of the risk measure if r is scalable1, i.e., r[aY ] = ar [Y ]. That is, for a
scalable function r of several variables, the sum of its derivatives wrt each of
the variables is r itself. Thus for scalable risk measures in the case of homoge-
neous growth, additive marginal decomposition is produced by the directional
derivative.

Homogeneous growth is required here for eXj to be defined in the limit.
If growth is by adding in exposure units, and DXj is the smallest unit you can
add to component j, then the incremental proportional impact is [ r(Y+ DXj) –
r(y)] /D.

The strategic decision of growing a unit that has higher-than-average profit /
risk can be more formally treated in this framework. Say P is the overall
expected profit and Pj is that of the j th unit, and suppose P/r(Y ) < Pj /r(Xj), so
Pr(Xj) < Pj r(Y). Multiplying this by e and adding Pr(Y) gives Per(Xj) + Pr(Y) <
ePj r(Y ) + Pr(Y ). By the definition of r, the left hand side is Pr(Y+ eXj) in the
limit, so P/r(Y) < [P+ ePj ] /r(Y + eXj). Thus comparative to risk, the total com-
pany is more profitable with the incremental business.

Our approach is to find marginal decompositions of scalable risk measures by
the directional derivative. (Only one co-measure is marginal because derivatives
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are unique.) This co-measure is still a decomposition under non-homogeneous
growth, and is often still close to marginal, as discussed further in Section 6.

It may help to use L’Hopital’s rule to calculate the limit defining r (X ).
Taking the derivative of the numerator and denominator wrt e gives r (Xi) = 
r�(Y + eXj)| 0, where here the prime denotes the derivative wrt e. Although this
simplifies the calculation of the derivative, it can still get complicated. The
appendices discuss methodology for taking the derivatives. For the most part
derivatives in the text will be stated but not derived. The math might seem
clearer if Y is considered a weighted sum of the Xj’s, with weights wj that reflect
the amount of risk Xj taken. These could be 100% for every j if there is not a
quota share in place. Then the derivatives can be considered to be wrt the
weights, which are real numbers and in theory can change up or down by
changing the quota share percentages, even above 100%. This approach is taken
in Appendix 2 in order to apply Euler’s Theorem.

3.3. TVaR Example

For XTVaR, r(Y ) = E [(Y – EY ) |Y > b ] is not scalable if b is a fixed constant
amount. But if b is a fixed percentile of Y, say the �th percentile, then it is. Mul-
tiplying Y by a constant increases EY and every percentile of Y by the same
factor. You can write XTVaR as

r (Y ) = E [(Y – EY ) |F (Y ) > 1 – �]. Then

r (Y + eXi) = E [(Y + eXj – EY – eEXj) |F (Y + eXj) > 1 – �] and

r�(Y + eXj) |0 = E [Xj – EXj |F (Y ) > 1 – �], which is the co-measure.

The derivative is not obvious. Details are in Appendix 1.
One possibility for establishing a cutoff probability for tail risk measures

would be to use the probability of having any loss of capital at all. Then XTVaR
would be the average loss of capital when there is a loss of capital. Another
possible choice is the probability that capital is exhausted. The former is
arguably more relevant to capital allocation, in that it charges for any use of
capital rather than focusing on the shortfalls upon its depletion. To apply it,
suppose that total capital is 11 times the average loss of capital when there is
any capital loss at all. Then allocation by loss of capital would preserve this
ratio for all components. That is, each unit would get 11 times its average draw
on capital in those cases where total capital is reduced.

On the other hand, policyholders tend to be sensitive to impairment or
default. Studies2 suggest that they demand premium reductions one or two
orders of magnitude greater than the expected value of the default cost in
order to accept less than certain recovery. This is in part due to undiversified
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purchases of insurance. Thus the value of default has meaningful pricing effects,
and policyholder concerns become quite relevant to shareholders as well.

4. EXAMPLES OF MARGINAL DECOMPOSITION OF RISK MEASURES

This section illustrates the approach with marginal decompositions for VaR, stan-
dard deviation, an exponential moment measure, and spectral measures.

4.1. Variance and VaR

For some risk measures there is a natural definition as a conditional expected
value. (Unconditional is a special case of conditional with a condition that always
holds.) For these the co-measure is clear. For instance variance and value-at-risk
work quite easily:

r(Y ) = Variance (Y ) = E [(Y – EY )2 ], so L(Y ) = h (Y ) = Y – EY

r(Xj) = Cov (Xj,Y ) = E [(X – EXj) (Y – EY )]

and
r(Y ) = VaR�(Y ) = E [Y |F (Y ) = 1 – �] 

r(Xj) = Co-VaR�(Xj,Y ) = E [Xj |F (Y ) = 1 – �]

In both cases r(X) can be plausibly interpreted as the contribution of X to r(Y).
Variance does not meet the scalability criterion for decomposition by directional
derivative, as Variance (aY ) = a 2Variance (Y ), but value at risk does and gives
the same decomposition as above.

4.2. Standard Deviation

When there are alternative intuitively reasonable definitions of a risk measure as
a conditional expected value, then the derivative could help determine the preferred
decomposition. For instance, there are different ways to use co-measures to
express standard deviation. If you take h(X) = X and L(Y) = Std(Y) /EY, with
the condition Y = Y, you get:

r(Y ) = E [YStd (Y ) /EY ] = Std (Y )

Then r(Xj) = E [Xj Std (Y ) /EY ] = Std (Y )EXj /EY

This just spreads the standard deviation in proportional to the mean of the com-
ponents. Alternatively, you could take h (X ) = X – EX and L(Y ) = (Y – EY ) /
Std (Y ). Then:

r(Y ) = E [(Y – EY )2 /Std (Y )] = Std (Y ) and 

r(Xj) = Cov (Xj,Y ) /Std (Y )
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This decomposes the standard deviation in proportion to the covariance of
the component with the total.

The standard deviation is scalable so there should be a marginal decompo-
sition. Taking the derivative of Std(Y+ eXj) = [VarY + 2eCov(Xj,Y) + e2Var (Xj)]

†

gives at e = 0

r(Xj) = Cov (Xj,Y ) /Std (Y )

This agrees with the second form of the co-measure, so it provides h and L func-
tions that lead to marginal decomposition. Thus the total change in Std (Y )
brought about by a small change in Xj can be attributed to j by this procedure.

4.3. An Exponential Moment Risk Measure

Quadratic risk measures like standard deviation or semi-variance do not appear
very good at capturing market aversion to extreme loss risk. Tail risk measures
can do this but require a somewhat arbitrary choice of cutoff. Even then, weight
functions that add more weight to the tail probabilities seem to better capture risk
preferences than do the usual tail measures (see Venter, Barnett and Owen (2004)
for instance). Another useful alternative is the exponential moment, when it exists.

For example, let r(Y) = E(YecY/EY). This is scalable as r(aY) = ar(Y). Thus
it should have a marginal decomposition. The simplest co-measure is r1(Xj) =
E (Xje

cY/EY). Although these add up to r(Y ), this is not a marginal decomposi-
tion. Taking the directional derivative (straightforward if messy) yields the
marginal decomposition:

r(Xj) = r1(Xj) + c (EXj /EY ) E [YecY/EY(Xj /EXj –Y /EY )] 

Without the excess ratio factor (Xj /EXj –Y /EY ) the second term is an alloca-
tion of cr(Y ) by the ratio of means EXj /EY. The cr(Y ) term is dominated by
the large values of Y. When Y is large, the components of the company that
are contributing most to the large losses would have Xj /EXj >Y /EY, so the
excess ratio factor gives them an increase in allocation. The other components
would have a decrease in allocation.

To express the marginal decomposition as a co-measure, set h1(Y ) = Y,
L1(Y ) = ecY /EY + cYecY /EY /EY, h2(Y ) = – EY, and L2(Y ) = cY 2ecY /EY / (EY )2.
Evaluating the h’s at Y for the risk measure and at Xj for the co-measure then
reproduces the decomposition:

r(Y ) = E (YecY /EY) + E [cY 2ecY /EY/EY ] – E [cY 2ecY /EY /EY ] and

r(Xj) = E (Xj ecY /EY) + cE (XjYecY /EY) /EY – cEXjE [Y 2ecY /EY ] / (EY )2

= E (Xj ecY /EY) + c (EXj /EY ) E [YecY /EY(Xj /EXj –Y /EY )]

Marginal co-measures of risk measures that are functions of Y /EY are discussed
in greater generality in the final section of Appendix 1.
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This risk measure emphasizes large loss risk without requiring the selection
of a tail cutoff point. Calibration of c can be done by setting the risk measure
equal to capital or a fraction of capital, or by setting the random variable of
interest minus its mean to a reasonable fraction of capital. This can be done
with either claims or negative profit for Y. With Y = claims, r1 is always posi-
tive. With Y = negative profit, a line that has a profit when the company as a
whole has large losses could be assigned a negative contribution. That is rea-
sonable but may not meet all needs for allocated capital. There is some evidence
(e.g., Venter, Barnett, Owen (2004)) that the market value of risk transfer
requires exponential transforms at least in the far right tail, so this measure may
be related to the market value of the risk it is measuring. There is theoretical
support for such transforms as well, e.g., in Ballotta (2004) and Møller (2003).
If the risk measure is going to be used to express risk-adjusted profit, then hav-
ing it proportional to the market value of the risk would be useful.

4.4. Spectral Measures

A generalization of TVaR is obtained if one considers r = E [Y · j(F (Y ))] for
nonnegative scalar functions j. These are known as spectral measures. If j is
given by

/

,

, <
p

p q

q q p
j

0 1

1 1

#
=

-

-
^ h *

then you get TVaR with tail probability q. If j is an arbitrary step function, then
you get linear combinations of TVaR. For example,
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results in a measure r = (q /(q – r))TVaR(q) – (r /(q – r))TVaR(r). This might be
referred to as the risk of a “managed layer.” This measure is not coherent
because it ignores the risk in the upper r tail, and therefore fails subadditivity.
For example, (following Artzner et. al. (1999)), consider two independent ran-
dom variables on the interval [–1,2] with uniform density 0.9 from –1 to 0 and
density 0.05 from 0 to 2. Evaluated with q = 0.1 and r = 0.08, they each have
associated r = 0.2, but their sum random variable has r = 0.638, more than the
sum of their individual r values.

Another spectral measure is given by:

.expp
p q

j
ps s2

1
2
1 1 2

= -
- -

^
^

dfh
h
n p
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This can be interpreted as defining a “blurred” VaR. It, like VaR, is not coherent,
failing subadditivity. In the limit, as s → 0, the j function becomes a Dirac
delta-function at p = 1 – q and the risk measure r becomes the VaR.

In general, the co-measure is rj = E ⎣Xj · j(F(Y))⎦. If j is a step function, fol-
lowing logic similar to that used to derive the result for XTVaR with fixed per-
centage excess, this co-measure is seen to be the derivative. For smooth j, it
can also be shown that this is the derivative. If j is nondecreasing, then this risk
measure family consists of all coherent, law-invariant,3 comonotonic additive4

risk measures (Tasche 2002, Acerbi 2002, Kusuoka 2001). Examples above of
j functions that are not nondecreasing show that marginal decompositions
still exist for spectral measures that are not coherent.

5. INSOLVENCY RELATED RISK MEASURES

This section gives some examples of marginal decomposition for risk measures
related to insolvency. Risk measures associated with insolvency are of theoret-
ical interest in that insolvency is an economically meaningful event. However
they may not be practical in that the probability of insolvency is difficult to mea-
sure in practice. A few such measures (formulations of expected policyholder
deficit, the default put option, and an analogue of the Myers-Read approach)
are reviewed here for their historical and theoretical interest. Efforts at
quantification appear worth continuing in order to bridge theory and practice.

5.1. Expected Policyholder Deficit and the Insolvency Put

Expected policyholder deficit, or EPD, can be formulated in different ways.
Most straightforwardly, if B is capital (or book value) and Y is the negative of
profit5, expected policyholder deficit is:

r (Y ) = Pr (Y > B ) E [Y – B |Y >B ]

This is not scalable because B does not scale. Other formulations below will
scale B as a function of losses to make EPD scalable.

The value of the default put option is EPD under a risk-adjusted probabil-
ity distribution that reflects the market value of the default:

r*(Y ) = Pr*(Y > B ) E*[Y – B |Y >B ]

384 G.G. VENTER, J.A. MAJOR & R.E. KREPS

3 “Law-invariant” means that two random variables with the same probability distribution end up with
the same risk measure.

4 “Comonotonic additive” means that if Y and X are two random variables with a nondecreasing
deterministic relationship between them, Y = f (X ), then r(X +Y ) = r(X ) + r(Y ).

5 The negative of profit is taken so that large is bad, as with losses.
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There are also alternatives for how to express EPD or the default put, even with
fixed B, as a co-measure. Basically for any a, you can set h(X ) = X – aEX and
L(Y ) = Pr (Y > B ) (Y – B ) / (Y – aEY ). Then:

r(Xj) = E [(Xj – aEXj) L(Y ) |Y > B )

= Pr (Y > B ) E [(Y – B ) (Xj – aEXj) / (Y – aEY ) |Y > B )

As examples consider a = 0 or a = 1. In the case a = 1, the allocation of the
default amount Y – B is the ratio of j’s excess loss over its mean to the com-
pany’s excess over its mean, conditional on default. When the allocation is
negative, j has more than its mean profit on average when the company depletes
capital, so j could be considered a capital contributor, and a negative allocation
would make sense.

For EPD more intuitive is the case a = 0. Then:

r(Xj) = Pr (Y > B ) E [(Y – B )Xj /Y |Y > B ] 

= Pr (Y > B ) E [Xj – BXj /Y |Y > B ].

Here j gets its own expected shortfall in company failure, which is allocation
from the customer viewpoint. This is an allocation of the expected shortfall the
customers are subject to, so makes particular sense as a basis for reduction in
the premium for the risk of insolvency. Sherris (2004) uses such an allocation
with transformed probabilities to allocate the default put option.

Taking a = B /EY simplifies things. Then L(Y ) = Pr (Y > B ):

r(Xj) = Pr (Y > B ) E [(Xj – BEXj /EY ) |Y >B ]

= Pr (Y > B ){E [Xj |Y >B ] – BEXj /EY}

This amounts to expressing the EPD risk measure as:

r(Y ) = Pr (Y > aEY ) E [Y – aEY |Y > aEY ]

For instance if book value is 15 times expected earnings, with EY < 0, then
a = –15. This form is scalable so would work for marginal decomposition, which
would give the same r as the co-measure. However capital would have to be able
to be adjusted for small changes in EY in order to keep B /EY constant. This
could be done by an agreement with capital providers, for example.

This decomposition can be viewed as first spreading capital by expected value,
so Bj = BEXj /EY. Then Xj’s share of EPD is Pr(Y >B) E [(Xj –Bj) |Y > B ]. This
could be negative if component j does not use up such capital in the average
of cases where the company goes under. This is not intuitively appealing,
however, as j could still have used some of its capital, so it is not necessarily
a capital contributor.

Various allocations can give negative capital to components. It seems log-
ical to avoid methods that give negative allocations to components that do not
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make profits on average when the company as a whole has a loss. When Y is
negative profit, the risk measure r(Y ) = Pr (Y > 0) E [Y |Y > 0] is the expected
capital drawdown, with the co-measure r (Xj) = Pr (Y > 0) E [Xj |Y > 0]. This is
j ’s expected draw on capital when capital is reduced, and if negative it can be
interpreted as an expected capital contribution. This risk measure is scalable
and the co-measure is the marginal impact.

Another scalable expression of EPD could be obtained by having a mech-
anism for adjusting capital to keep the probability of survival 1 – � = FY(B) con-
stant with small changes in Y. That is, B = FY

–1(1 – �). Then

r (Y ) = �E [Y – B | F (Y ) > 1 – �]

In this case the directional derivative gives (see Appendix 1):

r(Xj) = �[E (Xj |Y > B ) – E (Xj |Y = B )]

That sums up to �[E (Y |Y > B ) – E (Y |Y = B )] = �[E (Y |Y > B ) – B ] = �E (Y –
B |Y > B ) = r (Y ). This r can be formulated as a co-measure by taking h(X ) =
X – E (X |Y = B), L(Y) = Pr(Y >B) and the condition Y >B. This appears to be
a sensible way to express EPD as a risk measure for the insurer. The deriva-
tive is the change in EPD due to a small change in Xj, given that capital is
adjusted to keep the probability of ruin the same before and after the change.
The assignment to j is j ’s expected contribution to losses in default over what
its losses would be if capital were exactly used up but not defaulted. That is
the amount by which j is pushing the company into default. When the risk
measure is the expected amount of default for the whole company, this makes
sense as j ’s contribution. Also the expression in brackets is co-TVaR – co-VaR.

5.2. Myers-Read Approach

Adjusting capital to keep the probability of ruin constant is similar to Myers-
Read, but they would adjust capital enough to keep the value of the insolvency
put as a portion of expected claims the same before and after the change, and
charge each component by the change in capital needed to do this. Thus their
risk measure is capital itself, contingent on the insolvency put maintaining a
specific percent of expected claims, and the decomposition is the derivative of
the risk measure.

Both claims and negative profit are needed to express this measure. So keep
Y = SXj as negative profit and let C = SDj be the claims. Then denote the
Myers-Read capital as r(Y ), which is defined implicitly by6:

y y dy a cL c dcr Y C
r 0

- =
33

Y
Y

f ## ] ^ ]
]

g h g
g

6 @
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6 Myers and Read use this general criterion but their formulation also includes investment income,
which links the variables Y and C, and an explicit probability transform.
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where a is the desired ratio to expected claims, LC(c) is the density of C and
fY(y) is the modified density of negative profit used to price the option. The
criterion for capital can be expressed as Pr*[Y > r(Y)] E*[Y – r(Y) |Y > r(Y)] =
aEC, which can be solved for r(Y ) to yield the expression:

capital = r(Y ) = E*[Y |Y > r(Y )] – aEC /Pr*[Y > r(Y )].

Here aEC is the value of the default put, so aEC /Pr*[Y > r(Y )] is the value of
the conditional expected shortfall given that there is a default. The most direct
co-measure decomposition of this is aEDj /Pr*[Y > r(Y)], which is j ’s portion
of the conditional expected shortfall, proportional to expected losses. Doing
this for E*[Y |Y > r(Y )] gives E*[Xj |Y > r(Y )]. The difference then distributes
capital by:

r(Xj) = E*[Xj |Y > r(Y )] – aEDj /Pr*[Y > r(Y )]

This may seem a bit convoluted, but it is also the decomposition from the direc-
tional derivative, so it is the marginal impact of a line of business on capital.
Although this is a decomposition of capital based on the insolvency put, it is
not a decomposition of the put value itself. If there is a linear relationship
between claims and loss, so Dj = h2(Xj), this decomposition can be expressed
as a co-measure, with h1(X ) = X, g1(Y ) = 1, and g2(Y ) = – a /Pr*[Y > r(Y )].

6. NON-HOMOGENEOUS GROWTH

For allocation purposes and taking directional derivatives, any company can
be assumed to have homogeneous growth opportunities, as that can be accom-
plished through quota share, at least for negative growth. However, strategic
planning often looks to grow business components by adding new exposure
units. Even reducing business is usually done by reducing exposure units rather
than by increasing quota-share reinsurance, unless the reduction is designed to
be temporary. For large profit centers, adding units is often quite similar to
homogeneous growth, but in other cases the differences can be large. Adding
a dollar of payroll or of sales to a book of business, when these are the expo-
sure units, is usually close to homogeneous growth, but adding a satellite launch
or super-tanker can be different. The following example, based on one from
Glenn Meyers, illustrates this point.

A company has two independent components (Lines 1 and 2), each with
negative binomial claim count and constant severity. Each has mean count of
v = 100. Line j has severity j and claim count variance v + v2/ (100j ), and loss
variance j2[v + v2/ (100j )] = j2v + jv2/100. These are 200 and 600 respectively.
The standard deviation of total company losses is 800† = 28.284. Since the lines
are independent, each one’s covariance with total losses is its own loss variance.
Allocating standard deviation by the co-standard deviation Cov (X,Y ) / Std (Y )
gives 7.071 and 21.213 respectively.
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Now suppose that the smallest possible increase for Line 1 is by 1%, so its
new mean is 101 and its variance is 203.01. The total standard deviation then
increases to 28.337 which is an increase of 0.05316. The marginal change pro-
portional to the change in mean (or exposure) of 1% is thus 5.316. For Line 2
this is 14.142. These are approximately 3⁄4 and 2⁄3, respectively, of the allocated
values. Since the risk here is basically frequency, and frequency variance tends
to increase by exposure, frequency standard deviation tends to reduce pro-
portionally to exposure when exposure increases. Thus the marginal change
when adding exposure is less than the marginal increase from a homogeneous
change. Allocation does not work as well as pure marginal analysis in this case.
Meyers points out that this is a small company problem. As the volume
increases in this example, the co-standard deviation allocation becomes very
close to marginal. For instance, with v = 10,000, adding one unit to v produces
proportional marginal impacts of 575 and 1157 for Lines 1 and 2 compared
to the co-standard deviation allocations of 578 and 1168.

This is an interesting example in that the lines are independent of each other
but the exposure units within a line are not. If they were, adding exposure
units would increase the claim count mean and variance by the same factor.
Such a case can arise in practice when the exposure units are conditionally
independent given some common factor that affects them all, like the weather.

The allocation of TVaR is fairly close to marginal even for this small
book. For instance TVaR at 80% for the company is 340.24 by simulation, and
this increases to 341.33 with an increase of 1 expected claim in Line 1. This over-
all increase of 1.09 is 109 proportionally, compared to the co-TVaR of approxi-
mately 115.

The exponential moment co-measure is also reasonably close to marginal even
with this small book of business. Taking c = 0.094431 makes E [YecY /EY ] = 330,
which is 10% over EY. The co-measure allocation can be found numerically
to be about 110 and 220. Increasing Line 1 by 1 expected claim increases the
overall moment to 331.20, which gives a proportional marginal impact of 120.

Thus just being scalable is not enough to guarantee that a risk measure has a
marginal decomposition with non-homogeneous growth, but some risk measures
are close to this even for a small book. Other risk measures have perfectly mar-
ginal decomposition for non-homogeneous growth even for a small book like this.

The mean of a transformed probability distribution is one such risk mea-
sure. In the case of non-homogeneous growth you can separately transform fre-
quency and severity. Suppose for instance that for the negative binomial model
above the transform maps a → 1.11a for each line. It is a good idea in trans-
forming probabilities to keep the same set of possible events, which in this case
would mean no change in the severity distribution. The risk measure is the
transformed mean. The co-measure is the transformed mean of the component.
So the co-measure for Line 1 is 111 and for Line 2 is 222, with a total risk mea-
sure of 333. When Line 1 increases by 1 the total risk becomes 334.11, which
gives a proportional marginal impact of 111, agreeing with the co-measure. Thus
this is a marginal decomposition even for non-homogeneous growth. If the
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risk measure were the mean, the marginal impacts would add up. The fact that
the transformed mean uses different probabilities does not change this.

Risk pricing can be done through probability transforms as well, so it should
be possible to find a transform that represents the market value of the risk. This
would be a risk measure with a direct economic interpretation. Venter (1991)
showed that covariance loadings can be expressed as probability transforms7,
so CAPM etc. are special cases of this approach.

A well supported transform for compound Poisson distributions is the fre-
quency-severity combined Esscher transform8, e.g., see Ballotta (2004) and Ven-
ter, Barnett and Owen (2004). This uses a constant c and transforms the severity
density fX (x) to f *

X (x) = fX (x)ex/c/E (eX /c) and the frequency l to lE (eX /c).
Each component or even peril within component could have its own c para-

meter and still preserve marginal decomposition. However it might also be
appropriate to transform the joint dependencies among the frequencies and
severities of the components, perhaps by doing copula transforms. There could
be such transforms that would not give marginal decomposition. For instance
if one line is dependent on the actual number of claims from another line,
adding business to one line could affect the expected losses of the other line,
so the transformed means would not be marginal. But if this is avoided there
could be quite a few possible dependencies included. For instance, parameter
change could be correlated, like the frequency per exposure unit for different lines
changing according to correlated stochastic processes, frequencies per exposure
unit and severities could be dependent, etc. There are a lot of possibilities for
joint transforms and working out the most appropriate is an open problem.

7. ALLOCATING FIRM VALUE

A typical application of allocation of a risk measure assumed throughout the
above is to express the capital of an insurer as a risk measure of the losses, and
then allocate the capital in proportion to the allocation of the risk measure. Then
risk-adjusted returns could be calculated using the return on allocated capital.

An alternative way of evaluating the value contribution of each component
would be to distribute firm value to component. For instance, if firm value can
be expressed as the risk-adjusted present value of future earnings, then it could
be written as an expected value of earnings under transformed probabilities:

V(Y ) = EQ(Y ), where now Y is not losses but earnings of the firm. Then:

V(Xj) = EQ(Xj) is j’s contribution to firm value.

It is the co-value of the firm under the Q measure.
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It assumes that jump risk is inherently non-diversifiable and so is always priced.
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This is related to measuring financial performance of the business units
using economic value added in a capital consumption framework. Say for
instance that the cost to the firm of maintaining a business component is the
economic value of the component’s right to access firm capital if it needs to.
This was suggested by Merton-Perold (1993). The firm is essentially providing
the component a stop-loss cover attaching at the point its cash flows become
negative. This is a contingent claim. But the firm has a contingent claim on the
profits of the component, attaching if they are positive. The firm gets all the
profits or losses of the component so these two claims are complementary and
not contingent combined. The value of their difference is the economic value
added of the component.

The overall value of the firm is a risk measure of the firm. This can be esti-
mated in different ways – like expected future cash flows discounted at a rate
that reflects their risk, or expected cash flows under transformed probabilities,
discounted at the risk-free rate. The capital cost (value of the right to use cap-
ital) is greater for a component that would use the capital at the same time as
other units. The value of profits is greater for a component that has profits when
the rest of the company has losses. In any case, the value of the components
should sum to the firm value and consider the correlations. The co-measures
of the value calculation do just that. For instance in a simulation, scenarios
with a large drop in value contribute large negative value to lines with losses
and large positive value to lines with profits.

8. CONCLUSION

Decomposition of risk by co-measures is a quite general method, but has a
weakness of not having a unique solution, and it is not always marginal. When
decomposition by the directional derivative is possible (scalable measures),
doing this shows which formulation of the co-measure is marginal in the case
of homogeneous growth. For non-homogeneous growth the same co-measure is
often close to marginal. Transformed probability risk measures have a marginal
decomposition even in the non-homogeneous growth case and can be formu-
lated to approximate the market value of the risk being measured. One advantage
of using marginal decomposition is that growing the higher return-to-risk units
increases the return to risk of the entire company.

APPENDIX 1. TAKING DERIVATIVES

This appendix calculates the derivatives of some common risk measures. The
marginal co-measures for XTVaR, EPD (expected policyholder deficit), and risk
measures that are functions of Y /EY are derived, and an abstraction of the
Myers-Read approach is also developed. An alternative method of taking
derivatives is presented in Appendix 3.
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A1.1. Mathematical Preliminaries

It is convenient to use indicator functions. The indicator for x = 0 is denoted
d (x). It can be thought of as the limit of a normal distribution density with
standard deviation e as e → 0. Thus the d function integrates to one and is zero
for non-zero argument. The indicator for x > 0 is denoted Q(x). It can be thought
of as the distribution function with the d density, so its derivative is d(x).

We use capitals for the random variables, F for distribution functions, and
S = 1 – F. We are positing a joint distribution function F(x1,x2,…,xN) / F(x)
and a corresponding joint density function f (x1,x2,…,xN) / f (x). We implic-
itly assume the density is everywhere finite (no point masses). This assumption
could easily be relaxed in what follows.

The density for the total nY
n

N

1

/
=

X! is ndy y xY
n

N

1

= -
=

f ## !^ eh o f (x)dx.

This is just a way of writing the density of Y using the multivariate dis-

tribution of the X ’s. The mean of Y is nxm
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= ## ! f (x)dx = y# fY (y)dy and
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Another (bivariate) distribution which will turn out to be of interest is the 
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. An expression we will

encounter often is x# fk(b,x)dx = E [Xk |Y = b] fY (b). This is the mean value of

Xk given that Y = b times the density function for the total evaluated at b.

A1.2. XTVaR with Fixed Excess Point

The generalized XTVaR risk function excess of a fixed level b for any constant
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The co-measures sum to the total measure: r rn
n

N
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=
=

! .

The question is, if we think of r as r(Y ), what is meant by r(Y + Z )? Basically
it is the same functional form with another variable added. In the present case,
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where the joint density function now depends on the additional variable and

the survivor function is n (fz , .b z x b z d dzx xQ
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We are interested in r(e) = r(Y + eXk) and in particular want to evaluate the
derivative d

d
e r(e) at e = 0. As discussed in the main text, this is the derivative

in the direction Xk and represents the marginal contribution of that variable
to the whole. Note that we have not indicated explicitly the dependence on
k of r(e) but it is of course always present. Thus the case of interest is where
Z = eXk. One way of looking at this is that it is the same as the original with
a transformed variable Zk = (1 + e)Xk replacing Xk. The joint distribution func-
tion is

e , , ..., , , , ..., , , ..., , , , ...,F x x F x x e1k k k N k
k

k N1 2 1 1 1 2 1 1=
+- + - +

x z x x x
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Putting this into the equation for the risk measure and changing variables from

zk to xk = e1
k

+

z
we end up with 

en nc (c f ,x x b d S bx xr e e m m e eQk k
n

N

k
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= + - - + -
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and n (f,S b x b dx xe eQ k
n

N

1

/ + -
=

)x## !] eg o . Our convention will be S(b) /S(0,b)

in accord with previous notation.

A more formal way to get the same result with much less effort is to say that the
joint density function is ( (f f, .z zx x d e k= -) ) x^ h Doing the integration over z
directly leads to the above results.

We will now directly evaluate the terms in the derivative and then take
the limit. We need to write the terms so that the limiting process can be easily
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seen. The first term below separates out the elements of r(e) that are multiples
of e.
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The last two terms of the second expression sum to the last term of the first.
All three terms are now in a form where we may go to the limit e → 0. The
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For the limit, you can think of the integrand as a constant at y = b over a rec-
tangle of width ex, so the integral is ex times that integrand.

For the third term, similarly,
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Thus in the limit as e → 0 we obtain
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The first term is the co-measure, and the second term is proportional to the
expected value of Xk given Y = b. Given appropriate values for the constants, the
curly bracket could vanish. However in general the fixed threshold b keeps the
risk measure from being homogeneous, so the derivative is not the co-measure,
and the derivatives do not add to the risk measure. Now let us try the same
derivation in a simpler fashion, using the formal relation dx

d Q (x) = d (x). We
repeat the original form
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which is the result above, of course.
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A1.3. XTVaR with Fixed Percentage Excess

Let us try a somewhat different measure: We will use XTVaR excess of a fixed
probability, rather than a fixed amount. We define the statistic by the proba-
bility of the total being excess of it is a. Formally, b = FY

–1(1 – a) or more
explicitly in terms of the densities

n (fa S b x b d y b y dyx xQ Q
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When we introduce the additional variable to do the directional derivative, we
have 
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and so taking the derivative of this equation with respect to e we get
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since the second term is zero. In this case the directional derivative is exactly
the co-measure.

A1.4. Expected Policy-Holder Deficit

Here
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For the moment we leave open the question of whether b is fixed, defined by
a percentage, or has some other dependence on e. We have 
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The second term is immediately zero, so we may write

r�(0) = {E [Xk |Y > b ] – b�(0)}S (b)

In the case where b = FY
–1(1 – a) we know that b�(0) = E [Xk |Y = b ] and so the

directional derivative becomes r�(0) = {E [Xk |Y > b ] – E [Xk |Y = b ]}a. The sum
over all N variables is

a
n

N

1=

! {E [Xn |Y > b] – E [Xn |Y = b]} = a{E [Y |Y > b] – E [Y |Y = b]}
= a{E [Y |Y > b] – b} = aE [Y – b |Y > b] = r

A1.5. Myers-Read

This is an analogue to the Myers-Read approach, but does not consider every
element they address, such as investment income. Here we have a risk-adjusted
distribution in addition to the usual probability distribution. We use a super-
script * to indicated the risk-adjusted distribution and any quantities derived
from it, for example the density f *(x1,x2,…,xN) / f *(x). The risk measure r
is the capital. It satisfies the relation that capital is set to the level needed so
that the value of the default put is a times mean losses for a target small num-
ber a. That is, {E*[Y |Y > r ] – r}S*( r) = am which is also

ay f y dy y y dyr Y Y

r

- =

3

* f# #^ ^ ^h h h
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In terms of the actual underlying variables, this defining relation is 
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For the directional derivative we need
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We take the derivative of this relation with respect to e and evaluate at e = 0.
Putting the right-hand side first, we have
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since the term containing the delta function contributes zero. Solving for the
derivative, which is the proposed allocation to the variable Xk,
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Note that the mean of the kth variable mk is the true mean, not the risk-adjusted
mean. Summing these up, we get E*[Y |Y > r ] – *

a

S r
m
^ h

. Going back to the defi-
ning relation for r and solving for r, we get this same quantity and can see that
it is equal to the sum of the allocations.

A1.6. Functions of Y/EY

Take n n (fh Y L Y h x L x d h y L y y dyx xr E
n

N

n

N

Y
1 1

= = =
= =

) f## #! !] ] e e ^ ^ ^g g o o h h h6 @

We want h to be a linear functional: h (aX + bY ) = ah (X ) + bh (Y ) for all con-
stants a and b and all random variables X and Y. One example of this would be
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h(Y) = aY + bE [Y ] + cCov(Y,M) with M an external variable such as a market.
The function L is any integrable function. In the preceding examples L often gave
the conditional expectations, for example L(Y) = Q(Y – FY

–1(1 – a)) /a. It essen-
tially describes management’s attitude toward risk.

Let us see when we can get a marginal co-measure by differentiating with
respect to an increase of e in Xk. We will again have 
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k
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Since h is a linear functional, we have n e .h x h h xe k
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Let us look at a specific example, where L is any integrable function of the ratio

E Y
Yh =
6 @

. Then the marginal co-measure is 
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It is clear that when summed, the term in the curly brackets is zero. It is essen-
tially a correction to the simple co-measure to make it a marginal co-measure.

As an example, take the exponential L (h) = exp(ch) for c some constant.
This becomes
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APPENDIX 2. EULER RELATION

Here, we discuss the application of Euler’s Relation on Homogeneous Func-
tions to risk measures. In the body of the paper, we use the term “scalable” to
mean homogeneous degree 1.

A2.1. Euler’s Relation

Definition: A vector function f : �n → � is said to be homogeneous of degree d
if, for any scalar t, f (t ·X) = td · f (X).

Theorem (Euler): if f is a smooth function, homogeneous of degree d, then
∇f (X) · X = d · f (X). Here, the ∇ operator is the vector of partial derivatives;
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by convention it is a row vector whereas X is a column vector. Therefore, writ-
ten out in terms of components, this equation is i 1= xi

n

2
2! f (x1,x2,…,xn) · xi =

d · f (x1,x2,…,xn).

Proof: Take the derivative of both sides of f (t · X) = td · f (X) with respect to t.
On the left, use the chain rule to obtain dt

d f (t ·X) = ∇f · dt
d (t ·X) = ∇f · X. On the

right, d · td – 1 · f (X). Set t = 1 to complete the proof.

Comments: in particular, if f is homogeneous degree 1, f (X) = ∇f (X) · X. The
right hand side is sometimes called the “Euler Operator” applied to f and, in
that context, homogeneous functions are seen to be eigenfunctions of the Euler
Operator with eigenvalue d.

A2.2. Application to Risk Measures

A scalable risk measure r satisfies i it tr r$ $=
i i
X X! !_ _i i for any random

variables X. This is almost, but not quite, enough to be considered homoge-
neous degree 1 in the sense of Euler. The problem here is that r is not a func-
tion of a real variable but rather a functional of a random variable.

Under conditions of homogeneous growth, we may regard the vector r.v. X
as being “in the background” or fixed in the sense that its distribution (not its
value) is fixed, and use variable weights w to express changes in the argument
to r. Thus, we can write f (w) = i wr i$

i
X!_ i and the scalable risk measure is

now expressed as a function of the real-valued vector variable w. As it happens,
the initial value of interest is w = 1 = �1 1 … 1��, but that will change once incre-
ments are considered.

Thus, we have f (t · w) = it wr i$ $
i
X!_ i= t · i wr i$

i
X!_ i= t · f (w) satisfies

the hypotheses of the theorem as long as r is sufficiently smooth.
Applying the theorem, we get
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APPENDIX 3. INTEGRAL OVER THE SURFACE FORMULA

A3.1. The “IOS” formula 

An alternative approach to calculating derivatives of risk measures is by reference
to the “Integral over the surface formula” (Uryasev, [1995a, b; 1999]).

MARGINAL DECOMPOSITION OF RISK MEASURES 399

9130-06_Astin_36/2_04  06-12-2006  13:00  Pagina 399



Let the domain of integration be defined by I (c) = {x ∈ RN | g(x, c) ≤ 0} and
the boundary of this set by ∂I. Consider the volume integral

H (c) = ,z x dVc
I c

# ^

]

h

g

where dV denotes volume integration over all the x-elements.
There are two important parts here. First, the integrand z usually includes

a factor f (x), a probability density function. It may include other factors, how-
ever, if the integral is to represent a moment. Second, the volume I over which
the integration takes place is equally important. In the case of risk measures
with conditions, such as XTVaR or EPD, this domain will not be the entire RN

space. Either component, the integrand or the domain, may or may not be a
function of the parameter c with respect to which we want to differentiate.

If the constraint function g (which defines the domain I ) is differentiable and
the following integrals exist, then the gradient of H with respect to c is given by:

∇c H (c) =
x

c
c,

,
,

,z zx dV
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x dSc
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g c

c
I Ic c
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d
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]
^

^

]

^h

g
h

h
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h

where dS denotes (hyper)surface element and ||v || denotes vector norm.
This result is stated in terms of vectors and gradients (vector of partial deriv-

atives) so as to allow c to be a vector parameter. If it is merely a scalar, then
∇ just means the scalar derivative, and vector norm just means absolute value.

There are several important components to note on the right hand side.
First, notice that there are two terms, say ∇H = A – B . The first term, A, is a
volume integral. Intuitively, it makes perfect sense: the integrand z defined
within H is being differentiated with respect to c, and the result is being inte-
grated over the same domain as H. The second term, B, is more complicated.
It accounts for the fact that the domain of integration I itself might be a func-
tion of c. B is the integral of the same integrand z defined by H, but now it
is a surface integral over the boundary of the domain I. Moreover, the integrand
in B includes a factor involving ratios of derivatives to account for how fast
the boundary changes as c is varied.

This ratio 
x

c

,
,

x
x

g c
g c

d

d

^

^

h

h
is probably the most difficult term to comprehend. The

numerator is the derivative of the boundary defining condition g with respect
to c, so it is the rate of change of g with respect to c. The denominator is
the norm of a vector of partial derivatives (or the absolute value of a scalar
derivative) of g with respect to the coordinates x of the random variable X. This
is the rate of change of g with respect to motion in the x space. By taking the
ratio of these two, we obtain the ratio that equates the effect of changes in c
with movements in the x space. In other words, the ratio is a measure of how
fast c moves the boundary of I (which is defined by g ).

Application of this theorem to risk measures will be shown by several examples.
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A3.2. Exceedance probabilities 

Let S(e,b) = Pr k iX be $ $+
i
X!# -. First, we shall compute the derivative of S

with respect to b at e = 0. Putting this problem into the IOS format, we have
c= b, H (c) = S(0,b), z(x,c) = f (x) (i.e. the joint p.d.f. of the Xi), and g(x,c) =
b – ii

X! . There are two terms to the solution for the gradient (in this case just
a one-dimensional derivative). Since z is not a function of c, the first term van-
ishes, and we are left with

x

d d
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This result can be shown to equal the probability density of Y = ii
X! at Y = b.

(The square root of N emerges from the Jacobian of a variable transformation
in getting the representation to include Y.)

Now consider the derivative of S with respect to e at e = 0. Rearranging what
is considered the parameter, the IOS formulation for this becomes: c= e, H(c) =
S(e,b), z(x,c) = f (x) (as before), and g(x,c) = b – e · xk – ii

X! . Again, the first
term in the derivative expression is zero, and we have
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A3.3. Value at Risk

The Value at Risk (VaR)r(Y ) at probability level q can be defined implicitly
by S(0, r(Y )) = q. To take the directional derivative of r with respect to Xk, we
can apply implicit differentiation to the equation S(0,r(Y)) – q = 0. This gives us
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Substituting the previously-obtained derivatives for S, we get
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This method is treated in more generality, and with more examples, in Major
(2004). For TVaR with quantile threshold, the first (“A”) term is nonzero and
the second (“B”) term is ultimately seen to vanish. In TVaR with fixed threshold,
both terms are important.
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APPENDIX 4. REALLOCATION OF CO-MEASURES

AFTER MARGINAL CHANGE

Even when the marginal change in a component is assigned to that component
as its risk contribution, actually making a marginal change in one component
can change the assignments to other components. This is investigated in this
appendix.

We can look on derivative co-measures as functionals of the random vari-
ables. When we introduce a homogeneous perturbation in a particular variable,
we can ask for the change not only in the risk measure itself, but in all the
co-measures. In general these changes are not zero for co-measures for vari-
ables other than the variable of perturbation. In important special cases, the
co-measure of the variable of perturbation gets more than the change of the
entire measure.

A4.1. Formulation

We work with the techniques and conventions of Appendix 1. Introduce the
notation r(e,k) for the risk measure with a homogeneous addition e to Xk.
Then lim d

drk
e 0

=
" e r(e,k). We can now introduce a change in the first variable and

look at the subsequent allocation to the kth variable rk(e,1). Because these are
co-measures, we know that k 1=

rk
N! (e,1) = r(e,1) and so

d d, ,lim limd dr e r e r1 1
k

N

k
e e01 0

= =
" "

=
e e 1! ] ]g g

We want to evaluate the marginal effect on the co-measures, namely dlim d
e 0" e

,r e 1k ] g. The naïve hope is that for k ! 1 it is zero, and that for k = 1 we get r1.
In general this is not true. We will do some specific examples, and repeat some
earlier work for clarity and for the sake of being self-contained here.

To clarify a bit, the naïve hope is fulfilled when the risk measure is r = E [Y ],
and so it also holds when the risk measure is the expected value under trans-
formed probabilities. For the mean, in the notation of this appendix, r (e,k) =
E [Y + eXk] and taking the derivative wrt e gives rk = E [Xk]. The derivative of
r (e,k) in the direction of any Xj, j ! k, is just E [Xj] and the derivative in the k
direction is E [Xk(1 + e)]. Thus rk(e,1) = E [Xk(1+ ed1k)], using indicator d1k = (1
for k = 1 and zero otherwise), and finally

1d ,lim d Er e d1k k
e 0

1=
" e X] g 6 @

This will also be true in the more general case for which r = E [h(Y)] with h(Y)

a linear functional. In what follows, the expression for d ,lim d r e 1k
e 0" e ] galways begins

with d1k r1 but has other terms.
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A4.2. Standard Deviation

The measure is 
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When we introduce a change in the k direction, we get
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Now, let us consider an increment in the first direction. Its allocation to the
kth component is the co-measure just above but with the first variable increased
by a factor of e.
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We still have explicitly that the co-measures add to the measure.
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We want to look at the change in the co-measures.
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If the first term were all that existed, the naïve expectation would be fulfilled.
We may also note that when k = 1 the second term is intrinsically positive,
unless X1 correlates perfectly with Y in which case it is zero.

Thus, the decomposition in the perturbation variable receives more than the
change in the overall risk measure. That is, its new allocation is greater than
its marginal impact. Since the sum over the second terms is zero, some of the
other decompositions must be negative.

A4.3. XTVaR

The risk measure is 
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with c and a fixed and y(a) implicitly defined by
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When we introduce an amount in the k variable, we get
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The second term is proportional to the derivative of a which is of course zero.
These are the results we had earlier.
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We may interpret the additional terms as proportional to a covariance matrix
limited to the hyperplane. It is not obvious how large these terms may be.

The notable point again is that the addition to r1 beyond the prior allocation
is intrinsically non-negative. This means that also under an XTVaR allocation
a component gets more than its marginal contribution to the previous risk.

A4.4. Function of Y /E [Y ]
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If we sum these over k, we are not surprised to get an exact and complete can-
cellation from the second line and
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Looking at the last form, it is at the very least not obvious that these derivatives
for k ! 1 are zero.
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For k = 1
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If the whole change in r were going to be in r1 then we would want the last terms
to be zero. We cannot say more without specifying the forms of h and L, but
generally speaking it would be surprising if the addition were not positive.
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We could take L(h) = A – B /h so that 2L�(h) + hL�(h) = 0 and then the whole
change in r is in r1, but this is a fairly restrictive and probably useless choice.
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A4.5. Function of F (Y )

The risk measure is, for j a smooth function
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When we introduce an amount in the k variable, we get
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The presence of the term in zk comes from going back to the basic notion of
the change being an additional variable with a delta function connection to the

MARGINAL DECOMPOSITION OF RISK MEASURES 409

9130-06_Astin_36/2_04  06-12-2006  13:13  Pagina 409



kth variable. The notation is rapidly becoming difficult, so we introduce auxiliary
functions. Let us again define the mean value of a variable on the hyperplane given
by the total being fixed. In section 2 we defined this for fixed survivor function value.
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For k = 1 the curly bracket in the second term is 

E [1 |Y = y ] E [(X1)
2 |Y = y ] – E [X1|Y = y ]2

and this is always positive. If j is monotonic increasing, then the contribution
is positive.
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