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ABSTRACT

In a simple stationary setting with constant interest rate, we derive pricing for-
mulas for defaultable bonds with stochastic recovery rate using a replication
argument. Replication is done by using an insurance contract (i.e. a kind of
credit default swap), the price of which is determined by a dynamic premium
calculation principle. We consider two cases, a linear one, where pricing amounts
to solving an inhomogeneous linear ODE, and a super-linear case where a
Riccati ODE has to be solved.

KEYWORDS

Credit insurance, credit default swaps, random measures, term structure for
defaultable bonds, dynamic premium calculation principle.

1. INTRODUCTION

On an abstract level insurance markets and financial markets are quite similar.
Both types of markets can be modeled in a semimartingale setting and a no-
arbitrage property (no-free lunch with vanishing risk) can then be characterized
by the existence of an equivalent martingale measure (EMM), see Delbaen
and Schachermayer (1994). Especially if price processes are not continuous,
EMMs are typically not unique (if they exist at all). In order to price a non-
attainable contingent claim, say a non-deterministic payment Y at some ter-
minal (stopping) time T, usually an EMM Q is chosen and the price process
for the claim Y is defined by EQ [Y |Ft ], t ≥ 0. This method allows to extend an
existing market without creating arbitrage opportunities. The problem is of
course how to choose the EMM Q. The fact that one actually has to choose
an EMM without having a canonical way how to do this, is often hidden by
saying something like ‘working under risk-neutral probabilities...’. One way is to

choose an EMM Q such that it optimizes some criteria, e.g. such that 
qdP

dQ resp.

its relative entropy w.r. to the objective probability measure P is minimal,
see Delbaen et al. (1997) and the references therein, resp. Frittelli (2000) and
Delbaen et al. (2002). A related, well-known and extensively studied way is to
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consider an expected utility maximization problem and choose Q as a solution
for the corresponding dual optimization problem, see e.g. Kramkov and Scha-
chermayer (1999) and Schachermayer (1999). In applications one often chooses
a parameterized class of probability measures equivalent to P and determines
parameters by fitting prices calculated under the implied EMM to prices
observed in the market. This approach bears the dangers of making an incom-
plete market look like a complete one: Having sold a non-attainable derivative
at such an implied price, there is no guarantee that there is a good way to hedge
the resulting risk!

In any case, there seems not to be a generally agreed on way of choosing
an EMM for pricing in a non-complete market setting. Even worse, given the
enormous size of the set of all possible derivatives one can not expect to establish
a liquid market for all derivatives. This does not exclude that for any single
derivative one can find someone who is willing to sell it as an OTC deal. In
this setting prices might be found applying (utility) indifference arguments.
They will then in general depend on the sellers portfolio and will not be lin-
ear in the payoff. This situation is actually very much the situation one faces
in a real-world insurance market, where e.g. insurance policies can typically not
be traded and contacts might be irreversible (at least for some period of time).
Possibly for this reason the illusion that an insurance market could be complete
never came up and to our knowledge there does not exist a generally accepted
way for pricing insurance contracts. On the other hand, insurance contracts are
a very natural way to extend a non-complete market and price non-hedgeable
risks. Premium calculation principles have been intensively studied (see e.g.
Goovaerts et al. (2003) and references therein), but the focus of actuarial math-
ematics seems to have rather been the study of the probabilities of ruin given
some insurance premium.

The purpose of this paper is twofold. Firstly, we introduce dynamic pre-
mium calculation principles (DPCPs). Essentially, we propose to split up a
classical insurance contract running over a certain period of time into a stream
of insurance contracts covering a risk over an infinitesimal time interval. These
contracts will be priced by using an instantaneous version of the classical pre-
mium calculation principles. We have little to say about which principle is the
‘best’ one, the advantage of our approach is rather that it allows the buyer of such
contracts to exactly replicate in a self-financing way certain contingent claims.
(Self-financing here means (as it always does) just that all payments made or
received are taken into account in the involved cumulative cash-stream processes).
To be more precise, for certain contingent claims (e.g. defaultable credits) with
cumulative cash-stream (ZC

t )t ! [0,T ], 0 < T < 3, we will replicate –ZC
t in a self-

financing way with vanishing initial value, using instantaneous insurance con-
tracts with cumulative cash-stream (ZI

t )t ! [0,T ]. The insurance contracts then
exactly off-set ZC

t and the total cumulated cash-stream ZC + ZI vanishes at
time T, i.e. Z I

T = – ZC
T . In other words, at time T we are exactly in the same

situation as if no transaction had been made at all. This off-setting condition
determines a relation between the parameters (risk premiums) of the insurance
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prices and ZC
0 . Given the insurance prices there will then exist a unique ZC

0 such
that exact off-setting of ZC

T becomes possible. ZC
0 is then a risk-free price for

the cumulated cash stream ZC over (0,T ], completely independent of any risk
preferences an investor might have.

Using premium calculation principles for pricing has the advantage over
risk-neutral pricing that it allows to take into account more explicitly the risk
of (extreme) down-side outcomes. The price for this is of course in general
non-linearity of the valuation principle. DPCPs take down-side risk into
account while at the same time allowing in some important cases for replication
of contingent claims! The main idea of a DPCP is to split up the classical secu-
rity loading of insurance mathematics into a part that compensates for the
risk that an insurance claim occurs and a second part for the risk immanent
in the claim size given that an insured event occurred at an instant of time.
We allow the conditional claim sizes to be time dependent and the second part
of the security loading will then in general vary over time as well.

This method will facilitate the pricing of OTC insurance contracts, where
there is little or no diversification possible by selling many similar contracts for
independent risks. We belief that in a realistic situation it is not possible to define
the ‘true’ or ‘fair’ value of a derivative, there exist just too many plausible
choices for representing an investors preferences and risk aversions. Offering
a self-financing method, using a DPCP-priced stream of insurances, that allows
to exactly off-set at terminal time T the cumulated cash-stream generated by
a contingent claim up to time T, results into a completely risk-free (except for
default risk of the insurer) and therefore preference-independent way of pricing
in the extended market, i.e. relative to the prices of instantaneous insurance con-
tracts!

We hope that this approach will help the unification of financial and insurance
markets, which we think is only possible with a non-linear valuation principle.

Secondly, as an explicit example where our approach can be applied, we
consider credit insurance contracts, i.e. a type of credit default-swap (see e.g.
Bielecki and Rutkowski (2002)), in order to price defaultable bonds in continu-
ous time. Credit default swaps differ form our insurance contracts only inso-
far as usually payments are due at discrete points in time whereas we use a
continuous stream of payments. Furthermore, in our approach the insurance
payment in the case of default will include the cost of insurance up to default
time! Exact off-setting with discrete payments and insurance payments of only
notional minus recovery value of the credit will be much harder to achieve.
However, our point is rather that we propose a new pricing rational that
replaces the problem of having to choose an EMM from a very large set in
order to price the swap by the much simpler problem of choosing a DPCP.
(E.g. for vanishing interest rate and coupon, the default probability of the
credit w.r.t. to an EMM can be any value in (0,1), i.e. any price strictly between
zero and the notional of the credit is compatible with the no-arbitrage criterion.)
In other words, if one wants to do better than just fitting some parameterized
EMM to observed (e.g. credit default swap-) market prices (if such a liquid
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market exists in the first place), and use this fitted EMM for pricing of non-
attainable contingent claims, one way is to introduce new assets to the market.
Instead of extending the market by directly introducing credit default swaps,
we argue that introducing instantaneous insurance contracts is a good way to
enlarge a market in such a way that defaultable credits can be uniquely priced.
Insurance companies should be willing to offer such contracts for a large enough
risk premium, i.e. an appropriate DPCP. Even if instantaneous insurance con-
tracts are not actually traded, it is still possible to compare would-be prices with
observed prices and to determine which derivatives are relatively expensive
compared to others.

The self-financing off-setting argument based on DPCPs leads to explicit
formulas in this situation.

Possible applications of this approach are the following:

(1) Capital relief: It might be advantageous for a bank to get a single large
credit (partially) off the balance sheet and release risk capital by (partially)
insuring the credit, if the cost of providing risk capital exceeds the price
of an insurance. The idea is that an appropriate insurance contract can have
a strong effect on extreme quantiles of the return distribution of a credit
portfolio for a comparatively low insurance premium, while regulatory risk
capital requirements and refinancing interest rates, which depend on the
banks rating, can make too high quantiles of the return distribution quite
costly for a bank.

(2) Contract changes: Assume a customer wants to change the redemption
scheme of a credit contract, e.g. change the coupon payments, the matu-
rity time, or the notional by paying off part of the loan before maturity.
Our method provides a formula to design a value neutral change of a credit
contract.

(3) Implied quantities: By fitting parameters to benchmark loans where mar-
ket prices are known, implied default probabilities can be calculated. E.g. if
for a company a term structure of defaultable bond prices is available,
implied default probabilities can be calculated.

In Section 2 DPCPs are introduced. In Section 3 two examples of credit insur-
ance are studied, one for the linear case and one for the super-linear case.

2. DYNAMIC PREMIUM CALCULATION PRINCIPLES

A premium calculation principle (PCP) assigns to a bounded random variable,
modelling the total claim amount, a real number representing the premium
charged for the corresponding insurance contract. Gerber (1979) discusses
desirable properties of PCPs in a static setting, Mikosch (2004) considers explic-
itly their evolution over time. For a unified approach and a recent overview see
e.g. Goovaerts et al. (2003).
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Any functional R : L3 = L3(W, F, P) " R will be called a PCP. Classical
examples of PCPs are the following, (X ! L3):

(1) Net principle: R (X ) = E [X ].

(2) Expected value principle: R (X) = (1 + l)E [X ], where l ≥ 0 is a safety loading.

(3) (Semi-) Standard deviation principle: R (X) = E [X ] + b XVar( )+ ] g, where
b ≥ 0 and Var+(X) := E [(X – E [X ] )+

2 ] is the so-called (upper) semi-variance.

Many PCPs have been proposed, see e.g. Wang (1996) for PCPs based on
Choquet integrals or distorted probabilities. Other PCPs have been constructed
by replacing XVar] g in the standard deviation principle with a (coherent) risk
measure, see Artzner et al. (1999) for the notion of coherent risk measures. For
simplicity we will consider only law-invariant functionals R , i.e. R (X) depends
only on the distribution of X!L3 and we set R (PX) := R (X) and E [PX] := E [X],
where PX denotes the image measure of P under X.

Let (Ti )i ≥ 0 be a non-decreasing sequence of stopping times describing the
arrival of insurance claims. We assume T0 = 0 and Ti + 1 > Ti on {Ti < 3} for all
i ≥ 0. For simplicity we assume limi"3Ti =3, i.e. explosion is excluded. Denote
by N := i 1= 13! [Ti , 3) the corresponding counting process and let N denote its
predictable compensator. Furthermore, let (Xi)i ≥ 1 be a sequence of non-nega-
tive bounded random variables with {Xi = 0} = {Ti = 3}. Xi describes the size
of the ith insurance claim occurring at time Ti, i ≥ 1. The total claim amount
process S is defined by S = ii 1= 13 X! [Ti , 3). (Ti,Xi)i ≥ 1 is a marked point process
with mark space R+, see e.g. Bremaud and Jacod (1977), Bremaud (1981), Last
and Brandt (1995) or Liptser and Shiryaev (2000). The corresponding jump
process equals the total claim amount process S which can also be described
by the following random measure m on (0, 3) ≈ R+ defined by 

m (w; dt,dx) := e
n 1$

! (Tn (w),Xn(w)) (dt,dx)1{Tn (w) < 3}, w ! W (1)

where ea denotes the Dirac measure located at a. Denoting by x the projection
W ≈ R+ ≈ R+ " R+, we have x * m = S. Let F0 be a sub-s-algebra of F and define
the filtration (Ft)t ≥ 0 as the natural filtration generated by S and F0, i.e. Ft :=
F0 / s(Ss, 0 ≤ s ≤ t) for all t ≥ 0. Let P denote the predictable s-algebra of W ≈
R+, generated by all left-continuous (Ft)-adapted processes and let B+ denote
the Borel s-algebra of R+.

Since R+ is a Blackwell space, see Jacod and Shiryaev (1987), Chapter II.1,
we can find a non-negative kernel K from (W ≈ R+,P ) into (R+,B+), with K(w,t;
(0, 3)) = 1 for all (w, t) ! W ≈ R+ and such that the predictable compensator
m̂of m is given by m̂(w; dt,dx) = K(w,t; dx) dNt(w) for all (w,t) !W ≈ R+. In gen-
eral we have K(Ti ,A) = P(Xi ! A|FTi

) for all A !B+ and i ≥ 1. In the setting
to be used later, where N will be a homogeneous Poisson process, independent
of the iid random variables (Xi )i ≥1, K(w, t,·) will simply describe the condi-
tional law of Xi given Ti = t for all t > 0 and i ≥ 1.

A NOTE ON CREDIT INSURANCE 351

9130-06_Astin_36/2_02  06-12-2006  12:03  Pagina 351



We are going to present a new way to construct PCPs by splitting up the
risk of the total claim amount into the risk that a new claim occurs and the
risk immanent in the particular claim sizes given that a claim occurred. The
idea is very simple: Let R be a functional that assigns a strictly positive real
number to any probability distribution on (0,3) and define the following cumu-
lative premium process V (in the interest free setting):

Vt := R
t

0
# (K(s,·))dNs . (2)

While e.g. in Mikosch (2004) PCPs are applied to the total claim amount St

which leads to an accumulated premium Vt = R (St) (from which an instanta-
neous premium density can be derived be differentiation), we think it is more nat-
ural to charge an instantaneous premium according to (2). In a non-stationary
setting the insured might end up paying insurance premiums over a period of
time where there is no risk at all, or in some states the premium cash-stream
might be quite small even so the risk, conditional on the state, is very high. For
an irreversible contract this is of course possible, and for some types of insurance,
e.g. health insurance, it might be desirable to have deterministic cash-streams.
However, in the case of insurance contracts that can be easily entered and can-
celled (by both sides), either the insurer or the insured would try to find a better
deal in the market, given the conditional risk. In a non-stationary setting this
results into non-deterministic insurance premiums, which means that the insured
carries part of the risk due to changes in the distribution of the insured risk.
On the other hand premiums would be more transparent since they then depend
on the actual risk over short period of time. This is not desirable e.g. for a
health insurance, but for OTC insurance contracts this fact will make it easier
to offer insurance in the first place, as well as lead to lower prices for buyers
that are willing to carry part of the risk.

2.1. Interpretation. More general, consider a marked point process (Ti,Yi)i ≥ 1

with E-valued marks (Yi)i ≥ 1 for some Blackwell space (E,B ), where B denotes
the Borel s-algebra of E. A simple insurance event is defined as the event
Is,t

i,B := {(Ti ,Yi ) ! (s,t] ≈ B} for 0 ≤ s < t, B !B and i ≥ 1. A simple insurance con-
tract Ci

H for Is,t
i,B is defined by a measurable claim size function H : (s,t ] ≈ B "

(0,3): In the event Is,t
i,B the insurer has to cover the claim Xi := H (Ti,Yi ). The

infinitesimal analog is as follows: In the event {(Ti,Yi) ! (t,t + dt] ≈ (y, y + dy]}
the insurer has to cover for the claim x = H (t, y). If R is the expectation oper-
ator on E times 1 + l, then the insurer is compensated for taking the risk
H (Ti,Yi )1It,t + dt

i,(y,y + dy ] by paying a premium of H(t,y) (1+ l)at over the time inter-
val (t, t + dt], where we assume N to be absolutely continuous with respect to
Lebesgue measure, i.e. Nt = s0

a
t# ds for a strictly positive predictable process a.

l can be interpreted as a risk premium for the intensity of the claim arrivals.
By an additive superposition of such simple insurance contracts we arrive at (2).
However, additive superposition of claims is problematic since it does not take
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the variability in Yi or the size of H(Ti ,Yi ) into account. Consider first the insur-
ance contract Ci

H for H = x1(t, t+dt] ≈ E that pays x > 0 currency units in the
event {Ti ! (t, t + dt]} in return for a premium x (1+ l)at paid over the time
interval (t,t+dt]. Classical PCPs are often assumed to be translation invariant,
i.e. R (X+ c) = R (X) + c for all c ! R. In our setting it seems more appropriate
to let the premium for Ci

H depend on x in a super-linear way, since for large x
the probability of ruin for the insurer (holding only contract Ci

H) will be strictly
positive, while it will be 0 for small x. We propose to compensate the insurer
for this type of ruin risk by charging a premium of (x(1 + l) + gx2)at with
g ≥ 0 over the time interval (t, t + dt] for the contract Ci

H. However, choosing
R (K (t, · )) = E [K (t, · )] (1 + l) + g (E [K (t, · )])2 would not take the variability of
K(t,·) around its mean into account. We therefore propose the following prop-
erty for R : Assume for all x > 0 that 

R (K(t, · – x)) = R (K(t, ·)) + x(1 + l) + gx2, (3)

where K(t,A – x) := 0 for all A ! B+ with A 3 (0,x]. Plausible examples for
dynamic premium calculation principles (DPCPs) are the following:

(1) Dynamic net principle: R (K(t, · )) = E [K(t, · )], (l = g = 0).

(2) Dynamic expected value principle: R (K(t, · )) = (1 + l)E [K(t, · )], (g = 0).

(3) Dynamic (semi-) standard deviation principle: R (K(t,·)) = (1 + l)E [K(t,·)] +
g (E [K(t, · )] )2 + b ,K tVar( ) $+ ]^ gh, where b ≥ 0.

Replacing ,K tVar( ) $+ ]^ gh by an alternative convex risk measure (see Föllmer
and Schied (2002)) a large class of DPCPs can be constructed. More gener-
ally, R could be chosen to be time dependent in a P -measurable way.

2.2. Example. Assume for simplicity that N is a Poisson process with constant
intensity a > 0, so that Nt = at for all t ≥ 0, and that R (X ) = (1+ l)E [X ] +
g (E [X ])2 + (1 + l) R̂ (X ) for all X ! L3, where R̂ : L+

3
" R+ is a functional sat-

isfying R̂ (X + c) = R̂ (X ) and R (c) = 0 for all c ! R+. For example, one can use
for R̂ a functional of (X – E [X ])+, e.g. R̂ (X ) := b || (X – E [X ])+ || p for X ! L3

with p ! [1, 3] and b ≥ 0. Note that R (X + c) > R (X ) holds for all X ! L3 and
constants c > 0.

3. CREDIT INSURANCE

For general material on credit risk modelling, see e.g. Jeanblanc and Rutkowski
(2000), Bielecki and Rutkowski (2002), Duffie and Singleton (2003) and Lando
(2004). We take a look at a very special case, that is maybe most useful when
considering a stand-alone credit (instead of an entire credit portfolio) where
statistical problems are difficult and one needs a simple robust method for
pricing or comparing of different contracts.
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The approach we are going to present, is in the end based on martingale
representation result for random measures. References for this topic are Chou
and Meyer (1974), Jacod (1975) and Davis (1976). For a more systematic and
quite general treatment of this approach see Leitner (2005).

Let the risk-free short interest rate r ≥ 0 be a constant. Consider a single
credit contract of the following type: At initial time t = 0 an amount B > 0 is
paid out to the debtor. In return the lender is entitled to a fixed payment M ≥ 0
at maturity time 0 < T < 3 and a constant cash-stream c dt over the time inter-
val [0,T ]. However, we do not exclude the possibility of default: There exists
a stopping time t > 0 describing the time of default, i.e. {t < 3} = {t ≤ T} is
the event of default and {t = 3} is the event of no default. For simplicity we
assume t to have strictly positive intensity over [0,t / T ] and P(t = 3) > 0,
i.e. default does not occur with probability 1 and it can occur with a strictly
positive density at any time in [0,T ]. Furthermore, we assume that if default
occurs, the lender still receives a random recovery value XM where X is [0,1]-
valued and independent of t, but no further cash-stream c dt over the remain-
ing time interval [t,T ]. The filtration (Ft)t ≥ 0 we are using is the internal filtra-
tion generated by the marked point process (Ti ,Xi )i ≥1 where T1 = t, X1 = X and
Ti =3, Xi = 0 for all i ≥ 2, so that Ft+t = Ft for all all t ≥ 0 and Ft– = F0 is trivial.
In other words, randomness enters our model only via the stopping time of the
default event and the recovery rate.

The (non-discounted) cumulated cash-stream ZC for the lender is on [0,t/T)
given as 

Zt
C = –Bert + ce ( )r t st

0

-# ds = –Bert + cƒ(t), (4)

where ƒ (t) = r
e 1rt

- for all t ≥ 0 if r ! 0, resp. ƒ (t) = t for r = 0. Hence the total
balance of the credit contract at time T for the lender is given as 

Zt
C = –BerT + (cƒ(t) + XM ) er(T – t)1{t ≤T} + (cƒ(T ) + M )1{t =3}. (5)

Assume now, that instantaneous insurance contracts priced according to some
fixed DPCP are available in the market. We are going to design an insurance
contract that allows to determine B from r, c, M, t and X by a self-financing
exact off-setting argument. The contract is designed as follows: In return for
a premium cash-stream Ys ds, to be specified later, paid over [0,t /T ], with
accumulated value Vt := s

t

0
Y# er(t – s)ds, the insurer pays the amount Ct = Bert –

cƒ(t) – XM + Vt to the lender in the default event {t <3}. Yt is calculated from
Ct, the insurance payment given that default occurs at t ! (0,T ], according to
the definition of the DPCP on [0,t /T ). Note that on {t < t / T} the cost of
insurance Vt already payed over [0, t) is a part the insured amount Ct. As we
will see, this will facilitate exact off-setting considerably (in particular, compared
to the case of a standard default swap with discrete time payments). The cumu-
lated cash-stream ZI of the insurance contracts is given on [0,T ] as 
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ZI = –V t + Ct1[t,T ]. (6)

Denote by Zt = Zt
C + Zt

I the lenders total (non-discounted) cumulated cash-stream
generated by the combined credit and insurance contracts at time t! [0,T] (which
is trivially self-financing). On [0,t /T) we then have Zt = –Bert + cƒ(t) – Vt and
Zt = 0 on [t,T ] by definition of Ct. The total balance ZT at terminal time T is
thus given as 

ZT = –BerT + (cƒ(t) + XM – Vt +Ct)er(T – t)1{t ≤ T}+ (cƒ(T ) + M – VT)1{t = 3}

= (–BerT + cƒ(T ) + M – VT)1{t = 3}. (7)

Note that we can achieve (7) to hold for any B and any DPCP. If we can achieve
that in addition VT equals cƒ(T ) + M – BerT on {t = 3}, then ZT vanishes a.s.
and the insurance contract exactly off-sets the credit contract. Denote by Y,
V, C, ZC, ZI and Z the corresponding processes resulting from replacing B with
B > B in the definitions of Y, V, C, ZC, ZI and Z and assume ZT = ZT = 0. If
Yt >Yt for Ct > Ct holds on [0,t /T ) then Vt > Vt and Zt

I < Zt
I, hence Zt – Zt ≥

(B – B)ert on [0,t /T ). Now P(t >T ) > 0 implies ZT > TT on {t >T}, contra-
dicting our assumption. Furthermore, since the interest rate r was assumed to
be constant the market becomes deterministic over (t,T ] and since t is assumed
to have a strictly positive intensity over [0,t/T ], ZT = 0 can only be achieved
if Ct = Bert – cƒ(t) – XM +Vt holds on [0,t/T ]. Therefore, given the insurance
prices, i.e. in the market extended by instantaneous insurance contracts, in a
very strong indifference sense, –V0

C = B is the only fair price (and in this sense
it is the value in the extended market) of the credit contract (which is assumed
to be an irreversible investment and can not be traded in any way) right after
paying out B to the borrower. This value found by the self-financing exact off-
setting argument is risk-free in the sense, that at time T it will not make a dif-
ference to the lender whether the credit contract was entered and B was handed
out or no transaction at all had been made. The lender makes a profit of B – B
iff B < B is actually handed out to the borrower. This is a completely risk-free
profit and not a profit over some indifference price and therefore independent
of any preferences. Furthermore, on {t < t <3}, –Zt is a risk-free price at time
t ≥ 0 for the defaultable credit and the remaining cash-stream over [t,t /T ],
since after receiving –Zt in exchange for all the rights the credit contract entitles
to, the lender is back to the situation she would be in without having entered
the credit contract in the first place.

3.1. Linear Case. We now use a DPCP as above in Example 2.2 in order to
determine the insurance premium cash-stream Ys ds to be paid over [0,t / T ].
Assume that the recovery ratio X is independent of t. Set â := (1 + l)a and
g := 0. We find the following expression for the premium density Yt on [0,t],
denoting by K (t, ·) the kernel describing the conditional claim amount distri-
bution of Ct given t = t :
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Yt = aR (K (t, ·))

= âE [Bert – cƒ(t) – MX + Vt ] + âR̂ (–MX )

= âVt + â (Bert – cƒ(t) – ME [X ] + R̂ (MX )),

where X := 1 – X is the fraction of loss. Note that on top of the losses caused
by the default event, the accumulated insurance premiums are also covered by
the insurance paying Ct on {t < 3}. In particular, the insurer can not use the
already earned premiums in order to build up a reserve! The insurer gains only
if no default occurs.

dt
d tV = Yt + rVt leads to an inhomogeneous linear ODE for Vt :

t

dt
dV

= (â + r)Vt + â (Bert – cƒ(t) – ME [X ] + R̂ (MX )). (8)

The variation-of-constants approach Vt = Wt e (â + r) t leads to 

t

dt
dW

= â (Bert – cƒ(t) – ME [X ] + R̂ (MX ))e– (â + r) t.

We find

Wt =
ra

a
-

+
( a
a r+ Bert – cƒ(t) –

a
c ert – ME [X ] + R̂ (MX )) e– (â + r) t + k,

for a constant k, hence 

Vt =
ra

c B
+

-b l ert +
ra

a
+

(cƒ(t) + ME [X ] – R̂ (MX )) + ke (â + r) t.

Now the terminal condition VT = cƒ(T ) + M – BerT implies 

k =
r ra

a
a

M c ME X MXR
-

+
-

+

- ^
e

h
o

6 @

e– (â + r)T.

We have V0 = 0 iff

B = M + (c – rM – â (ME [X ] + R̂ (MX ))) r
.

a
e1

a r T

+
-

- +] g

(9)

Note that B ≤ M iff c ≤ rM + aR (MX). We then find for the risk-free value of
the defaultable credit –Zt at time 0 ≤ t < t /T

–Zt = M + (c – rM – â (ME [X ] + R̂ (MX ))) r
.

a
e1

a r T t

+
-

- + -] ]g g

(10)
= M + (c – rM – aR (MX )) r

.
a

e1
a r T t

+
-

- + -] ]g g
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Equation (10) provides the term structure of defaultable credits. In the case
of a classical credit insurance, bought for an single initial payment at time t = 0,
and leading to the same result ZT = 0 as the DPCP-priced stream of insurances,
it were not clear what a risk-free value for the credit contract should be at time
0 < t < t / T. Furthermore, equation (10) allows risk-free pricing of modified
contracts: Any combination of c, M, R that leads to the same value for –Zt

defined by (10) at time 0 < t < t/T can be used for the modified contract, since
the resulting ZT always vanishes. Contract modifications which lead to –Z�t can
be made risk-free value neutral by a payment of Z�t – Zt at time t.

It is not hard the check (see e.g. Bielecki and Rutkowski (2002), Chapter 8,
and Leitner (2005)) that in the case R(MX) = 0, formula (10) corresponds to
risk-neutral valuation under an EMM that changes the intensity of t from a
to â without changing the expectation of X. R(MX) is here to be interpreted
as a non-linear risk premium charged as a compensation for the down-side
risk due to a random loss fraction. In the case that R̂ (MX) = MEQ [X – E [X ] ]
for some probability measure Q changing the law of X without changing the
law of t, we have R (MX) = (1+ l)(ME [X ] + MEQ [X – E [X ] ]) = (1+ l)MEQ [X ].
Formula (10) then corresponds to risk-neutral valuation under an EMM that
changes the intensity of t from a to â and the expectation of X to EQ [X ]. If
R̂ is a coherent risk measure, Q might depend on X. This implies the valuation
principle to be non-linear in general. This can be interpreted in the following way:
the choice of the pricing EMM depends on the contingent claim and can thus
take down-side risk explicitly into account. However, our approach allows for
self-financing replication in much more general situations, where down-side
risk is priced by e.g. taking higher moments into account as well. We then have
a truly non-linear valuation principle that can not be achieved by risk-neutral
valuation.

Assume e.g. that M equals the notional amount B and assume R̂ to be pos-
itive homogeneous. Setting c =: cM we find by solving equation (9) the follow-
ing expression for c:

c = r + (1 + l)E [X ]a + âR̂ (X ) = r + aR (X ). (11)

This can be interpreted in the following way: In addition to the short risk free
interest rate r, the borrower is charged a risk premium for expected losses of
(1 + l ) times expected loss E [X ] times default intensity a and a risk premium
âR̂ (X) for so-called unexpected losses due to the volatility in the loss fraction X.

We can now calculate the claim amount Ct, given t = t for t! [0,T ]. It turns
out that k = 0 holds and

Ct = Bert – cƒ(t) – XM + Vt

=
ra

c
+

– XM +
ra

a
+

(ME [X ] – R̂ (MX )) =: MC,

= XM + r
a

a
c rM MXR

+

- - ] g
=: MC,
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where the distribution of C > 0 does not depend on the time t. If the fact that
the insurer can not build up a reserve from the premium cash-stream had caused
a headache, we see now, that at least the insured amount and the premium
density are constant.

Consider now the case c = 0: For the forward rate rT define by B = M
exp ( – r dss

T

0
# ) for all T > 0, we then find 

rT = c (1 – â (R̂ (X ) – E [X ]) ra
e 1a r T

+
-

+] g ) –1
. (12)

3.2. Super-Linear Case. We now use a DPCP as above with g > 0 in order to
determine V. Assume that X is independent of t. We find the following expres-
sion for the premium density Yt on [0,t) :

Yt = â (E [B – cƒ(t) – MX + Vt ] + R̂ (MX )) + gE [(B – cƒ(t) – MX + Vt)
2]

= âVt + â (B – cƒ(t) – ME [X ] + R̂ (MX ))
+ g ((B – cƒ(t) + Vt)

2 – 2(B – cƒ(t) + Vt)ME [X ] + M 2E [X 2] )
= gVt

2 + Vt (â + 2g (B – cƒ(t) – ME [X ])) + â (B – cƒ(t) – ME [X ] + R̂ (MX))
+ g ((B – cƒ(t))2 – 2(B – cƒ(t))ME [X ] + M 2E [X 2] )

=: gVt
2 + g(t)Vt + h(t).

Again dt
d tV = Yt + rVt leads to a ODE for Vt, this time of Riccati type:

t

dt
dV

= gVt
2 + (g(t) + r)Vt + h(t) = t

g t r
g

g2

2

+
+

V ]
e

g
o + h(t) –

g t r
g4

2+]^ g h
. (13)

With the transformation Wt := Vt g +
( )g t
2 we reach the following normal form

of a Riccati ODE:

Wt� = Vt�g +
g t�

2
] g = Wt

2 + gh(t) –
g t r

4

2+]^ g h
+

g t�
2
] g . (14)

In our special case, it turns out that K := Wt
2 – Wt� is actually constant: We find 

K = a
4

2

+ g (c – âR̂ (MX )) – g 2M 2 Var(X ) + r ( a
2

2

+ g (B – ME [X ])).

In particular, we are in the lucky position to be able to solve the Riccati ODE
(14) explicitly. Assume g > 0 to be chosen small enough so that b2 := K > 0
holds. Separating variables and integrating (W 2 – b2)–1dW = dt, we find Wt =

b exp
exp

b k t
b k t

1 2
1 2

- +

+ +

]]

]]

gg

gg for some constant k. Choosing k = (2b)–1 log w b
w b

+
-

_ i – T for a
constant w > b we have WT = w and for all 0 ≤ t ≤ T
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.exp
exp

r w b w b b t T
w b w b b t T

2

2
t =

+ - - -

+ + - -
W

] ] ]^

] ] ]^

g g gh

g g gh
(15)

Furthermore, W0 = x is equivalent to 

.w b
b x x b e
b x x b e

bT

bT

2

2

= -
- + +

- - +
-

-

] ]

] ]

g g

g g (16)

Since VT = cT + M – B iff WT = w := g (cT + M – B) –
g T

2
] g = 2g (cT – B +

M
E X
2

1+ 5 ? ) – a
2 and W0 = V0g –

g
2
0] g we find V0 = 0 iff W0 = –

g
2
0] g, hence V0 = 0 

iff the following equation holds with x := –
g

2
0] g = g(ME [X ] – B) – a

2 :

,acT B M
E X

r
r x x r e
r x x r e

g2 2
1

2 rT

rT

2

2

- +
+

- = -
- + +

- - +
-

-

d
] ]

] ]
n

g g

g g6 @
(17)

from which quadratic equations for B resp. M or a equation for c is easily derived.
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