
PORTFOLIO CHOICE AND ESTIMATION RISK.
A COMPARISON OF BAYESIAN TO HEURISTIC APPROACHES*

BY

ULF HEROLD AND RAIMOND MAURER

ABSTRACT

Estimation risk is known to have a huge impact on mean/variance optimized
portfolios, which is one of the primary reasons to make standard Markowitz
optimization unfeasible in practice. This issue has attracted new interest in the
last years, and several approaches to incorporate estimation risk into port-
folio selection have been developed only recently. In this article, we review these
approaches as well as some older ones and compare them in an empirical out-
of-sample study. The approaches can be classified along two criteria. First, we
can differentiate heuristic approaches (restricting portfolio weights and employ-
ing simulation techniques) and those based on Bayesian statistics (shrinking the
portfolios towards a pre-determined target). Second, the assumptions about the
return-generating process differ, either assuming returns to be IID distributed
or to be partly predictable. The central result of our empirical study is that all
of the IID approaches, whether they account for estimation risk or not, are not
superior to simple investment strategies like holding the market portfolio. A risk-
adjusted outperformance is possible only if sample means are substituted with
conditional expected return estimates. Furthermore, the Bayesian approaches
reduce turnover and stabilize portfolio weights.
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I. INTRODUCTION

Estimation risk is known to have a huge impact on Markowitz (1959) mean/
variance (MV) optimized portfolios. It leads to unstable and extreme portfolio

Astin Bulletin 36 (1), 135-160. doi: 10.2143/AST.36.1.2014147 © 2006 by Astin Bulletin. All rights reserved.

* The authors profited from the comments of two anonymous referees. The authors also thank
Thanh H. Vo for excellent research assistance. This research project was supported by the German
Investment and Asset Management Association and the E-finance lab at the Goethe-University Frank-
furt.

8464-05_Astin36/1_06  29-05-2006  14:57  Pagina 135



weights over time and along portfolios on the MV efficient frontier. MV opti-
mized portfolios lack of diversification and show poor out-of-sample perfor-
mance. Hence, estimation risk is one of the primary reasons to make standard
MV optimization unfeasible in practice. Michaud (1998, p. xiv) summarizes this
fact using the term “Markowitz optimization enigma” and, in a paper reviewing
the dialogue between theory and practice in financial economics, Banz (1997,
p. 389) concludes, “I believe that (...) estimation risk is one of the great
neglected areas of modern finance”. This issue has attracted new interest in the
last years, and several approaches to incorporate estimation risk into portfo-
lio selection have been developed only recently. The approaches can be classified
along two criteria. First, we can differentiate heuristic approaches and those
based on Bayesian statistics. Second, the assumptions about the return-gener-
ating process differ, either assuming returns to be independently and identically
distributed (IID) or to be partly predictable.

The objective of the heuristic approaches is to produce more diversified
portfolios. This is achieved either by introducing constraints on portfolio
weights or by performing simulations and averaging over the MV efficient port-
folios obtained in these simulation trails. On the other hand, Bayesian statistics
is used to quantify estimation errors and incorporate them into the portfolio
selection process. The idea of Bayesian inference is to combine extra-sample,
or prior, information with sample data. The portfolio is shrunk towards a pre-
determined shrinkage target, depending on the degree of noise in the sample.
The most popular approach is the Bayes/Stein estimation procedure developed
by Jorion (1985, 1986) which employs a statistically motivated prior. He sets
expected returns to a common value in the prior and shrinks towards the min-
imum-variance portfolio. In contrast, Pastor (2000), Pastor /Stambaugh (1999,
2000) and Wang (2001) start with an economic prior. They suggest to incorpo-
rate asset-pricing models into portfolio selection and shrink towards the opti-
mal portfolios implied by that asset-pricing model.

These approaches operate under the classical assumption of IID returns
(“unconditional strategies”). In investment practice and in modern financial
economics, this classical assumption about the return-generating process is
called into question. Instead, expected returns are assumed to be time-varying
in a predictable fashion. Instrumental variables like dividend yields or term
spreads are employed to predict expected returns (“conditional strategies”).
However, the estimation risk issue is still a severe problem, as the parameters
of the predictive regressions or other types of forecasting models need to be
estimated from the data. A possibility to account for the parameter uncertainty
that is attached to the coefficients of the forecasting model is to apply Bayesian
regression models and shrink the optimal portfolio, based on the conditional
expected return estimates, again either towards the minimum-variance or the
market portfolio.

The objective of this paper is to review the approaches mentioned above and
compare them in an empirical out-of-sample study, using a long history of U.S.
data and a shorter history of EMU stock returns. The existing literature that
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compares some of the approaches reviewed above comes up with different results.
Chopra et al. (1993) and Jorion (1985, 1991) find the Bayes/Stein procedure
superior to standard MV analysis. In contrast, Fletcher (1997) and Grauer/
Hakansson (1995) cannot confirm the better performance of shrinkage esti-
mators. Michaud (1998) shows in a Monte Carlo simulation experiment that
simulation-based approaches (called “resampled efficiency”) slightly increases
the Sharpe ratio compared to standard MV optimization. Fletcher/Hillier (2001)
cannot find that resampling systematically enhances out-of-sample performance.
Neither of these studies applies the Bayesian approach of shrinking towards
the market portfolio. What differentiates our research further from this literature
is that we do not evaluate performance figures only but also examine turnover
and portfolio weight statistics to obtain information whether the approaches
are feasible in investment practice.

Our article is closely related to a recent paper by DeMiguel/Garlappi/Uppal
(2005). They investigate a similar set of unconditional strategies and perform
an extensive empirical study with a variety of data sets. The main distinction
to our analysis is the choice of portfolio selection models in the context of
time-varying expected returns. DeMiguel et al. examine two models outlined
in the book of Campbell /Viceira (2002) that employ multi-period dynamic
optimization and incorporate hedging demands. These models have been orig-
inally designed for investors with a long horizon – in fact, the two models
assume that investors live infinitely long. DeMiguel et al. include these models
in their backtest with monthly data and evaluate the monthly returns produced
by these models. So they apply these models for short-term portfolio manage-
ment.

In contrast, we investigate conditional strategies based on predictive regres-
sions. We have chosen this model because a backtest is commonly set up in a
“myopic” way: The investor has an investment horizon of one period (one month),
and the performance results of the strategies are consequentially compared on
the basis of one-month returns. The predictive regressions estimate the expected
return for the next period and hence operate with an investment horizon of one
month. This enables a fair comparison to the unconditional strategies that are
also based on one-month horizons. Furthermore, we incorporate estimation risk
via Bayesian regression models. In contrast, DeMiguel et al. do not account
for estimation risk in their conditional models. Two minor differences are that
we have chosen a broader set of state variables and assets for the conditional
models and that we check for statistically significant differences in the Sharpe
ratios with the more general GMM test while DeMiguel et al. employ the clas-
sical Jobson/Korkie (1981a) test procedure.

The central result of our empirical study is that all of the approaches that
operate under the IID setting, whether they account for estimation risk or not,
are not superior to simple investment strategies like holding the market port-
folio, the equally-weighted portfolio or the minimum-variance portfolio which
refrain from estimating expected returns at all. In this regard, DeMiguel /Gar-
lappi/Uppal (2005) come to the same conclusion. We find that a risk-adjusted
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outperformance is possible only if sample means are substituted with condi-
tional expected return estimates using exogenous information. This is “good
news” for investment practice and encourages active managers to stay on the
search for valuable exogenous information. Here, the findings of DeMiguel et
al. are disappointing: their conditional strategies do not turn out to add value
so that the recommendation for the investor is to naively diversify (assign equal
weights). Another result of our empirical study is that in any case – for condi-
tional and unconditional strategies –, the Bayesian approaches reduce turnover
and stabilize portfolio weights.

The paper is organized as follows. Section II briefly summarizes the impact
of estimation risk on MV optimized portfolios. Sections III to V contain a
description of each of the approaches we review. Section VI gives the results
of the various out-of-sample studies, and the last Section concludes.

II. IMPACT OF ESTIMATION RISK ON MV OPTIMIZED PORTFOLIOS

Markowitz (1959) mean/variance (MV) efficiency is the classic paradigm of
modern finance for allocating capital among risky assets. Markowitz shows how
to construct efficient portfolios. The MV objective function is given by

w�m – l
2 w�Sw, [1]

where w is the N ≈ 1 vector of portfolio weights, m is the N ≈ 1 vector of
expected returns, S is the N ≈ N covariance matrix of returns, and l denotes
risk aversion. In each period, the investor trades off expected portfolio return,
w�m, versus portfolio variance, w�Sw. He chooses his portfolio w to maximize
the value of the objective function given in [1]. The minimum variance fron-
tier comprises all portfolios that have minimum variance for a given level of
expected return. The MV efficient frontier is the upward sloping portion of the
minimum variance frontier.

Inputs are expected mean future returns for each asset, expected volatility
of returns around the future expected means and the matrix of expected cor-
relations of all returns. The optimization algorithm takes these inputs as
parameters of known probability distributions. However, in reality, they are esti-
mates of parameters of unknown probability distributions. Even if expected
returns, variances, and correlations were known with certainty, MV optimized
portfolios would not beat all other portfolios in every future investment period,
because return realizations will differ from their expected values (intrinsic risk).
Markowitz portfolios will be optimal on average. Estimating the unknown
parameters involves an additional source of risk: estimation error, or estimation
risk. So an asset’s total risk is composed of two components: intrinsic risk and
estimation risk.

The impact of estimation risk on optimal portfolios has been explored in
the previous literature. Chopra /Ziemba (1993) find that errors in means are
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about ten times as important as errors in variances, and errors in variances are
about twice as important as errors in covariances. Best/Grauer (1991) show
that optimal portfolios are very sensitive to the level of expected returns.
They note that “a surprisingly small increase in the mean of just one asset dri-
ves half the securities from the portfolio. Yet the portfolio’s expected return and
standard deviation are virtually unchanged” (p. 325).

When based on sample means and covariances, MV optimized portfolios
regularly exhibit a low degree of diversification. Only few assets are included
in the optimal portfolio. They show sudden shifts in allocations along the efficient
frontier and are also very unstable across time. As Michaud (1989) pointed out,
these unintuitive and extreme solutions are a consequence of optimizers being
“estimation error maximizers”. MV optimizers overweight those assets that have
large estimated expected returns, low estimated variances and low estimated cor-
relations to other assets. These assets are the ones most likely to have large esti-
mation errors. Consequently, Jorion (1985), using rolling-window estimates based
on actual data, and Jobson/Korkie (1981b), employing a simulation approach,
document poor out-of-sample performance of MV optimized portfolios com-
pared to non-optimized, heuristic approaches (equally-weighted portfolio and
market portfolio).

III. HEURISTIC APPROACHES TO INCORPORATE ESTIMATION RISK

1. Restricting portfolio weights

In investment practice, MV analysis is performed – if at all – only after includ-
ing a variety of weight restrictions. Some constraints must be taken into account
due to legal considerations (e.g., short-selling restrictions). But in their internal
guidelines, asset managers usually impose an extensive set of additional con-
straints. By construction, constraints enforce diversification, which in turn is
expected to improve out-of-sample performance. Using a simulation setup,
Frost /Savarino (1998) show that short-selling and upper weight restrictions lead
to an enhanced performance. Eichhorn et al. (1998) confirm this result and
furthermore come to the conclusion that constraints reduce volatility and short-
fall risk. In an out-of-sample study, Grauer/Shen (2000) find realized volatility to
decline, but only at the cost of realized return.

From a theoretical point of view, the question arises whether MV efficient
portfolios should be diversified at all. Green/Hollifield (1992) started this debate
by noting that even the minimum-variance portfolio (MVP), constructed from
individual stocks without constraints, usually exhibits extreme long/short posi-
tions. It should not be strongly affected by estimation errors as it does not
require any expected returns. Green /Hollifield (1992) argue that stock returns
exhibit a factor structure which is the reason for the extreme weights of the MVP.
When applying principal component analysis to the sample covariance matrix,
a dominant factor is found. This factor probably also exists in the structure of
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the population returns. Hence, even if we knew the true parameters, the MVP
will consist of extreme positions. They conclude that MV efficient portfolios
will not be diversified and that investors should invest in these portfolios to
achieve a significant risk reduction.1

Then, placing restrictions on portfolio weights is a mis-specification. How-
ever, the covariance matrix is also subject to estimation errors, and the con-
strained MVP often performs better than its unconstrained counterpart. Jagan-
nathan/Ma (2003) conduct an out-of-sample study to investigate which of
both effects – mis-specification by imposing the “wrong constraints” or esti-
mation errors – is predominant. They come to the conclusion that the impact
of estimation errors is the more important one and hence, restrictions are
justified.

Therefore, restrictions are an adequate means to reduce the impact of esti-
mation risk on MV efficient portfolios. The crucial point, of course, is how
to design them. Constraints must not be arbitrary. If constraints are set very
tight, they predetermine the optimal portfolio to a large extent, and the prob-
lem is just moved to a different level. How to determine constraints is not a
central issue of this paper but at least, we want to point out to a promising
solution which has been developed by Grinold /Easton (1998) and which is also
used by Jagannathan/Ma (2003). A useful way to assess the impact of the various
constraints one imposes is to recognize that mathematically, each constraint is
multiplied with a Lagrange multiplier and then enters the MV objective func-
tion [1]. The output of an optimization algorithm consists of the optimal weights
and, in addition, the value of the Lagrange multipliers. If a constraint is bind-
ing, its multiplier is different from zero.

Starting with the initial input variables (expected returns and covariance
matrix) which lead to an optimal portfolio under several constraints, the
Lagrange multipliers can be used to obtain a modified set of input variables
which yield the same portfolio in an optimization without any constraints.
Therefore, introducing constraints implicitly adjusts the expected returns and
covariances. Now, we can evaluate which constraints are most binding and
which expected returns (or covariances) are adjusted due to which constraint.
In a next step, we can ask whether we should relax some of the constraints or
whether our input variables actually are reliable.2 For those who want to work
with constraints (e.g., in order to control their portfolio managers), this pro-
cedure gives some guidelines on how to design them. The others can tackle the
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represent portfolios with a low level of specific risk due to diversification. Then they combine these
sub-portfolios so that the resulting portfolios shows a beta coefficient of zero. This portfolio has no
systematic and no specific risk but it exhibits extreme long/short positions because it is short in high-
beta-stocks and long in low-beta-stocks.

2 In fact, this procedure only works when expected returns are given in a quantitative form. In practice,
portfolio managers often only form market views or qualitative judgements. Herold (2003) provides
a Bayesian approach to translate this market views into optimal portfolios. This approach can also
be employed to design restrictions.
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problem directly – by explicitly adjusting the input variables. This is what the
Bayesian approaches amount to do.

2. Bootstrapping

A classical approach to account for estimation risk is the bootstrapping pro-
cedure by Efron (1979). Applied to portfolio optimization, this means to draw
repeatedly from the empirical return distribution, compute efficient frontier
portfolios based on these resampled returns, and than average over the port-
folio weights. This way the portfolios show desirable attributes: they exhibit a
higher degree of diversification, and their composition is less prone if a new
observation is added to the data set.

The idea to use resampling methods in the context of portfolio selection
and estimation risk goes back to Jobson /Korkie (1981b). Jorion (1992) also
employs this simulation technique to show the variability that is implicit in the
weights of efficient portfolios based on sample estimates. Resampling gives the
full distribution of portfolio weights and not just a point estimate as MV analy-
sis does. A special case is to resample from a multivariate normal distribution
(instead of the empirical return distribution). This is the suggestion of Michaud
(1998). We follow the more general bootstrap approach. For many data sets
(where stock index returns are approximately normally distributed), the results
are almost identical. Theoretical objections against the resampling procedure
are raised by Scherer (2002).

The bootstrapping procedure can be summarized as follows: First, we com-
pute the sample mean vector and the sample covariance matrix, m̂ and Ŝ, from
T observations, and calculate the MV efficient portfolio corresponding to a
given risk aversion coefficient, l, in the MV utility function [1]. Then we draw
T monthly returns from the data (with replacement). The returns are drawn
across the N asset classes to preserve the historical correlation structure. This
way, we obtain a new set of optimization inputs (m, S) from this statistically
equivalent sample, and again calculate the MV portfolio corresponding to l.
We repeat this step many times (we do it 500 times). Finally, we average over the
weights of all simulated portfolios. This averaging procedure ensures that the
weights still sum up to unity.

Resampling enforces diversification. This can be illustrated with the maxi-
mum return portfolio, i.e. the portfolio with l = 0. In classical MV optimiza-
tion, the maximum return portfolio consists solely of one asset class (under
short-selling constraints). With resampling, it is not always this asset class that
exhibits the highest mean return in a simulation trail. In each path, the maxi-
mum return portfolio consists of one asset class, but as this asset class varies
in the simulations, averaging over weights of the simulations will bring up a
maximum return portfolio which is exposed to several asset classes. There are
also less sudden shifts in portfolio weights along the bootstrapped efficient
frontier.
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IV. BAYESIAN APPROACHES UNDER THE IID SETTING

1. Bayesian setup

In Bayesian statistics, some prior information is introduced and combined with
the sample. More formally, let y� = (y1, y2, ..., yT)� be a sample of T identically
and independently distributed observations from an unknown probability den-
sity function (pdf), p(y |q), where q is the K ≈ 1 vector of parameters to be esti-
mated. The classical statistical perspective assumes that there exists some true
value of q. This true value is unknown but a fixed number. Using, e.g., Maximum
Likelihood techniques, an estimator q̂ is constructed from the sample observa-
tions, which maximizes the sample likelihood. In contrast, Bayesian statistics
treats q as a random variable. All information that is known about q before
drawing the sample is summarized into the prior pdf p(q). The posterior pdf
combines the prior pdf and the sample and is given by:

p(y | q) ∝ p(q) p(y |q), [2]

where p(y |q) is the likelihood function. From there, the predictive pdf of a
future observation, y, is obtained. It is the distribution of y conditional on the
observed data y and it is derived from the likelihood function of a future obser-
vation and the posterior distribution by integrating over q :

p(y | y ) = p# (y |q) p(q |y)dq. [3]

The idea to use Bayesian inference to incorporate estimation risk into portfo-
lio selection goes back to Barry (1974) and Klein/Bawa (1976). They impose a
diffuse or non-informative prior on the parameters q = (µ, S). The predictive
pdf is then given by the sample mean vector and by the sample covariance matrix
multiplied by a constant factor. Therefore, the compositions of the efficient fron-
tier portfolios do not change. However, the investor will choose a different port-
folio, one with less risk, i.e. he will move to the left on the efficient frontier.
As the impact of a diffuse prior is rather small and as it leaves the estimator for
the expected returns unchanged, it is not widely used. The Bayesian approaches
we review impose an informative prior. In this case, the sample means are
shrunk to the prior values, depending on the degree of estimation error in the
sample and on the precision of the prior.

2. Shrinking towards the minimum-variance portfolio

As estimates of expected returns are prone to estimation errors, Jorion (1985,
1986) shrinks the MV efficient portfolios towards the MVP. The MVP is less
vulnerable to estimation risk as it does not make use of any information about
expected returns. The rationale is that we can estimate the covariance matrix
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from the sample returns quite precisely, while estimation errors in the means
are tremendous (although there are still estimation errors involved when con-
structing the MVP, as we have discussed above). Jorion sets the prior means
to a common value across all N assets. He specifies the prior as

m ~ N(1N m0, S /f), [4]

where m0 is the expected return of the MVP and f determines the prior preci-
sion. Assuming returns to be multivariate normally distributed and assuming
the covariance matrix to be known, combining the prior with the sample like-
lihood function yields the posterior distribution with mean vector

mJ = Tf
f
+

1N m0 + T
T

f +
m̂, [5]

and covariance matrix

LJ = Tf
f
+

S . [6]

The posterior mean [5] is an average of the prior mean and the sample mean
vector. It turns out to be a simple and not a matrix-weighted average because
the prior covariance matrix is specified as proportional to the asset covariance
matrix in [4]. This linkage is also done by Pastor (2000), although it is hard to
economically justify that correlations between estimation errors are equal to
the asset correlations itself. Indeed, other Bayesian approaches for portfolio con-
struction assume the prior covariance matrix to be diagonal, e.g., see Black/Lit-
termann (1992) and Herold (2003).

The predictive pdf has the same mean as the posterior pdf and covariance
matrix S + LJ. Jorion (1986) further demonstrates that f can be estimated from
the data:

f̂ =
m m

,
m m

N
�1 1

2

N N
1

- -

+
-

0 0!_ _i i [7]

where the denominator measures the observed dispersion of the sample means
around the common mean.

As equation [5] shows, Jorion shrinks the sample means towards the MVP
mean return. The longer the sample history, T, the weaker is the shrinkage. In
the extreme, T → ∞, the investor will use the sample means, µJ = m̂, i.e. the esti-
mator includes the sample mean as a special case. At the other extreme, with
no uncertainty in the prior, f → ∞, the approach results in the MVP. In the
(more interesting) cases in between these extremes, the MV efficient portfolio
with risk aversion l is shrunk towards the MVP. In fact, the investor with risk
aversion l moves to the left on the original MV efficient frontier and chooses
a portfolio with a higher implicit lambda. Frost/Savarino (1986) provide an
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extension by expanding the prior on the covariance matrix. Their prior is that
assets have equal expected returns, equal variances and equal covariances.
Hence they shrink towards the equally-weighted portfolio.

The prior that Jorion chooses is statistically motivated. Stein (1955) has shown
that for multivariate normally distributed random variables, the sample mean
is not an admissible estimator (for N > 2). Stein further proves that shrinkage
estimators (which shrink the sample means towards a grand mean) have lower
risk under a quadratic loss function. Jorion uses a methodologically different
(Bayesian) approach, but his estimator also belongs to the class of shrinkage
estimators. Hence, his approach is also called “Bayes/Stein estimation”. In addi-
tion to Stein, Jorion considers the impact of estimation risk on portfolio variance.
Furthermore, he uses an empirical Bayes approach to obtain the parameters of
the prior distribution. A drawback of the Bayes/Stein approach is that its prior
assumption of equal expected returns is hard to be justified from an economic
point of view. This assumption is removed by the approach we consider next.

3. Shrinking towards the market portfolio

In a series of articles, Pastor (2000), Pastor/Stambaugh (1999, 2000) and Wang
(2001) have suggested to incorporate an asset-pricing model for asset alloca-
tion [hereafter called “the Pastor approach”].3 They combine the results of
mean/variance optimization and the implications of an asset-pricing model,
again using Bayesian inference. Their motivation is that mean/variance analysis,
on the one side, only utilizes the data and bases portfolio selection on the first
and second sample moments. It, however, completely ignores the potential use-
fulness of an asset-pricing model. Basing asset allocation only on an asset-pric-
ing model, on the other side, makes no use at all of the time series of returns.
In general, a model will neither be a perfect description of reality (by construc-
tion) nor will it be completely useless for decision making. To quote Pastor (2000,
p. 179):

“By definition, every model is a simplification of reality. Hence, even if the
data fail to reject the model, the decision maker may not necessarily want to
use the model as a dogma. At the same time, the notion that models implied
by finance theory could be entirely worthless seems rather extreme. Hence, even
if the data reject the model, the decision maker may want to use the model at
least to some degree.”

The approach developed by Pastor combines the sample information and the
implications of an asset-pricing model. It is flexible to accommodate single-
and multi-factor models. The implication of the CAPM is to hold the market
portfolio, while an APT model implies to invest in a combination of the factor
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portfolios. We consider only the CAPM. In this case, the prior expected excess
returns are set equal to the expected excess returns implied by the CAPM, as
given by

mCAPM = bmM , [8]

where b is the N ≈ 1 beta vector and mM denotes the risk premium of the mar-
ket portfolio. Hence, the expected excess returns are linked to the systematic
risk in the prior. As in Jorion’s approach, the posterior expected returns are a
weighted average of the prior expected returns and the sample means:

mP = wmCAPM + (1 – w) m̂, [9]

where m̂ now denotes the sample means of the excess returns (over the risk-free
rate) and w denotes the shrinkage factor. The sample means are shrunk towards
the implied CAPM excess returns, hence the tangency portfolio (the MV
efficient portfolio with the highest Sharpe Ratio) is shrunk towards the market
portfolio. The shrinkage factor is a measure for the weight which is assigned
to the CAPM and is given by

w =
/ /

/ ,
s T SR

s
s

s
12 2 2

2 2

+ +` j [10]

where SR is the Sharpe ratio of the market portfolio and s 2 is the average vari-
ance of the residual terms in the multivariate regression of the assets’ excess
returns on the excess returns of the market portfolio. s measures the dispersion
of the assets’ alphas, i.e. the deviation of the assets’ expected returns from the
values implied by the CAPM. It is a measure of the investor’s prior uncertainty
in the CAPM. Thus, the degree of shrinkage depends on how much confidence
the investor has into the validity of the CAPM and on the strength of the vio-
lations of the CAPM in the historical data. The optimal portfolio is approximately
a linear average of the market portfolio and the tangency portfolio with a frac-
tion of w invested into the market portfolio. This holds only approximately
because only the predictive mean is linear in w but the covariance matrix is
not.4

The prior precision, s, can be either exogenously specified or by means of
an empirical Bayes approach. Estimating s from the data will lead to a shrink-
age factor of 0.5, as Wang (2001) has shown, implying that the model and the
data have equal impact on asset allocation. We report results only for this
case, as our tests with different values for the shrinkage factors have given sim-
ilar results.
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V. BAYESIAN APPROACHES WHEN RETURNS ARE PREDICTABLE

1. Using Bayesian inference in predictive regressions

The Bayesian approaches summarized in the last section assume returns to be
IID distributed. However, there is a multitude of articles that model expected
stock returns as time-varying. Some examples are those by Fama /Schwert (1977),
Keim/Stambaugh (1986), Campbell (1987), Campbell/Shiller (1988), Fama/French
(1988, 1989), and Ferson/Harvey (1993). Time-varying expected returns do not
automatically violate the efficient market hypothesis but might be explained by
risk aversion changing over time; see Fama (1991) or Cochrane (1999).

If expected stock returns are time-varying, this also means that stock returns
are partly predictable, and it should be possible to design investment strategies
which exploit this predictability. Usually, the relationship between expected
returns and instrumental variables is captured by linear regressions, called “pre-
dictive regressions”. The asset excess returns are regressed on (lagged) instru-
mental variables. Many studies that investigate the economic implications of
return predictability within a MV portfolio optimization framework ignore
estimation errors; see, e.g., the seminal work of Solnik (1993), as well as Klem-
kosky /Bharati (1995), and Fletcher (1997). However, the coefficients of the pre-
dictive regressions must be estimated, they are subject to estimation risk. Fol-
lowing contributions of Beller et al. (1998), Connor (1997) and Herold/Maurer
(2004), we suggest to apply Bayesian multivariate regression models to account
for estimation risk in the predictive regressions.

More formally, let X = (1T Z ) be a T ≈ (K + 1) matrix that consists of a vec-
tor of ones, and of the T ≈ K matrix Z of the realizations of the instrumental
variables. The instrumental variables are lagged by at least one period. The multi-
variate regression – regressing the asset excess returns on the instrumental vari-
ables – is given by

r = XB + U, [11]

where r denotes the T ≈ N matrix of excess returns and B denotes the (K + 1) ≈ N
matrix of regression coefficients. N is the number of assets, and K is the num-
ber of instrumental variables. B contains the N intercepts in the first row and
the K ≈ N slope coefficients in the other rows. The matrix U stores the residual
terms which are assumed to be normally distributed:

vec(U ) ~ N(0, S � IT), [12]

where the N ≈ N matrix S includes the variances and covariances of the residual
terms and IT is the T ≈ T identity matrix.

The Maximum Likelihood estimator of the regression coefficients is given by

B = (X�X )–1X�r. [13]
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It is normally distributed as well:

vec(B) ~ N (vec(B), (S � (X�X )–1). [14]

Given the values of the instrumental variables at time T and the estimated
regression coefficients, the expected excess return of the next period can be
estimated:

E(rT + 1 | FT) = Bx�T , [15]

where FT denotes the information set available at time T and the 1 ≈ (K + 1) vec-
tor xT = (1 zT) stores the actual values of the instrumental variables. Usually,
these expected excess returns are interpreted as point forecasts and imported
to an algorithm for portfolio optimization.

Information variables that have shown forecasting abilities in the literature
are firm specific variables (e.g. the dividend yield or price-earnings-ratio)5 or
macroeconomic variables that reflect the business cycle (e.g. interest rates,
changes in interest rates, term and default spreads); see, among others, Ang/
Bekaert (2003), Chen et al. (1986), Fama (1991), Ferson/Harvey (1991, 1993),
Harvey (1995), Hodrick (1992). From an economic perspective, the former set
of variables can be motivated by valuation models like the dividend discount
model, while macroeconomic variables can be inferred from intertemporal asset
pricing models. Furthermore, the lagged market return is often included to
utilize the existence of autocorrelation effects (mean reversion or momentum).

To account for estimation risk or parameter uncertainty in the predictive
regressions, we apply Bayesian regression models. Using Bayesian techniques
in econometrics goes back to Tiao /Zellner (1964a, 1964b), Zellner /Chetty
(1965), and Zellner (1971). In Bayesian regression models, a prior distribution
of the regression coefficients and residual covariance matrix is specified and then
combined with the likelihood function (i.e., the distribution of the sample esti-
mates) to obtain the posterior distribution.

The natural-conjugate prior for B is given by 

vec(B) | S ~ N(vec(B0), S � C ), [16]

where B0 is the (K + 1) ≈ N matrix of the means and C is the (K + 1) ≈ (K + 1)
covariance matrix of the regression coefficients B. S is specified non-informative
(i.e., the so-called Jeffrey’s Prior). Then, the mean of the posterior distribution
of the regression coefficients is a matrix-weighted mean of B0 and B :

B = (C –1 + X �X )–1(C –1B0 +X�XB). [17]
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5 For recent discussions about the usefulness of dividend yields to predict risk premia, see Goyan/Welsch
(2003) and the literature survey by Rey (2003).
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2. Defining the shrinkage target 

The crucial question is how to specify the parameters B0 and C of the prior
distribution in equation [16]. We have chosen the same two shrinkage targets
as in the preceding section: the minimum-variance and the market portfolio.
They serve as “neutral” allocation for the investor – if he has no forecasts or if
the exogenous information is not reliable to him. To that end, the slope coefficients
are set to zero in the prior, implying non time-varying, non-predictable returns
and information variables having no impact on expected returns. The intercept
is set differently depending on the shrinkage target: When shrinking to the
MVP, the intercept is set to a common value across all regressions that is
equal to the expected return of the MVP. When choosing the market portfolio
as shrinking target, the intercepts are set to the implied market returns of the
assets, given by [8].6 This way, we ensure that the optimal portfolio is shrunk
towards the MVP in the first case and towards the market portfolio in the
second case.

A possibility to specify the prior covariance matrix C is to apply the “Min-
nesota Prior”-technique. This procedure has been developed by the University
of Minnesota and the Federal Reserve Bank of Minneapolis for Bayesian vector
autoregressive (VAR) models in the 70s and 80s; see Doan et al. (1984), Litter-
man (1986), and Todd (1984). The variances of the regression coefficients are
controlled by a “tightness parameter”, q, and scaled by the (inverse) variances
of the instrumental variables:

C = q2 .

s

s

s

0

0

0 0

k

2

2

2

h
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j
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1
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O
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[18]

C is a (K + 1) ≈ (K + 1) diagonal matrix with s0 = 1. In the limit, q → ∞, the
values of the Bayesian regression coefficients equal those of the ML estimators.
The prior specification in equation [18] is similar to Zellner’s (1986) “g-prior”,
where the variances of the regression coefficients are also controlled by a
“hyper parameter”. In the “g prior” however, the coefficients are not assumed
to be independent in the prior, but as correlated; the correlations are set equal
to those in the sample. This implies that all slope coefficients are scaled down-
wards by the same magnitude (they are multiplied by a parameter g0). In con-
trast, the prior in [18] shrinks the coefficients towards zero at different mag-
nitudes.
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6 A precise description of how to obtain the implied returns that lead to the market portfolio is given
in Kahn et al. (1996).
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VI. EMPIRICAL OUT-OF-SAMPLE STUDY

1. Unconditional strategies

We use one of the longest data sets available, the U.S. stock market, to back-
test the unconditional strategies, i.e. those strategies that follow the IID assump-
tion and estimate the input parameters from return data only. The conditional
strategies require a broader data set. Due to the limited availability of many
of the instrumental variables, we use a shorter history of Euroland stock mar-
ket indices in the next section.

We start with an investment universe of six size/book-to-market portfolios
and then continue with an extended data set of 30 industry portfolios and 25
size/book-to-market portfolios.7 The sample period is from 1/1950 to 12/2003
whereby monthly excess returns are calculated using the 3month T-Bill rate as
the risk-free rate of return. Based on this data set, we implement an “out-of-
sample” back-testing procedure, which is a prominent approach in evaluating
the impact of different investment strategies on portfolio performance under
realistic conditions; see, among others, Fletcher (1997), Jagannathan/Ma (2003),
Klemkosky/Bharati (1995), and Solnik (1993).

In each case, the out-of-sample period is from 1/1960 to 12/2003. We use
a rolling window of length T to estimate the optimization input parameters.
T is set to 30, 60, 90, and 120 months. E.g., for T = 30, portfolio weights are
first based on the estimation period from 7/1957 to 12/1959. Using the excess
returns of 1/1960, the first out-of-sample portfolio return can be calculated. Then
the estimation period is rolled one month forward, and the next portfolio
composition is based on 8/1957 to 1/1960. Regardless of sample size, T, this
procedure results in a total of 528 non-overlapping monthly out-of-sample
returns, which can also be considered as independent investment decisions with
a holding period of one month.

At each point of time, a total of twelve portfolios is optimized: the tangency
portfolios and optimal portfolios for risk aversions, l, of 2 and 15, respectively,
under the four approaches “classical MV optimization” (i.e., MV optimization
based on sample estimates), “bootstrapping” (bootstrapping returns and cal-
culating average weights over the optimal portfolios for the resampled returns),8

“Bayes/Stein” (shrinking towards the minimum-variance portfolio) and “Pas-
tor” (shrinking to the market portfolio). The reason to not only consider the
tangency portfolios, i.e the portfolio maximizing the ratio of excess return to
volatility (the risk adjusted performance measure proposed by Sharpe), is that
in particular the Bayes/Stein strategy aims at (implicitly) increasing risk aver-
sion and therefore it is desirable to control lambda explicitly. In our empirical

PORTFOLIO CHOICE AND ESTIMATION RISK 149

7 The data are taken from the website of Kenneth French. For a description of the construction of the
portfolios, we refer to the web site: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html.

8 At each point of time, 500 bootstrapped return series were generated with a length equal to T.
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study, it turns out that the implicit risk aversion of the tangency portfolio – that
is, the value of l in [1] that leads to the tangency portfolio – fluctuates widely
over time.

These optimized portfolios using information on the expected returns are
compared to each other and to strategies that refrain from estimating expected
returns at all: the minimum-variance portfolio (MVP), the equally-weighted port-
folio (EWP) and the U.S. market portfolio. The comparison of the different strate-
gies is based on the empirical Sharpe ratio. Furthermore, monthly turnover is
computed, and the weight structures are analyzed to obtain an indication which
strategy leads to more stable weights over time and hence, lower transaction costs.

For the first investment universe of six size/book-to-market assets, Figure 1
presents the monthly mean excess returns, volatilities, and Sharpe ratios of the
“naive” strategies EWP, market portfolio, and MVP and of the optimized
strategies. Short selling is not permitted in each case. The Sharpe ratios are
shown for the tangency portfolio as well as the two portfolios that are based
on the mean/variance utility function. The latter ones could also be compared
with respect to their “certainty-equivalent return” which is obtained by plug-
ging in the out-of-sample mean and variance in [1]. The ranking of the strate-
gies is materially not affected by either using the Sharpe ratio or the certainty-
equivalent return.

The MVP succeeds in having the lowest volatility. Its Sharpe ratio is below
that of the market and equally-weighted portfolio. The optimized strategies
manage to produce a slightly higher Sharpe ratio in most cases. However, this
increase is not statistically significance. Figure 1 reports the standard errors of
the Sharpe ratio estimates based on the GMM procedure developed by Lo (2002).
The standard errors are about one-third of the level of the Sharpe ratios.

Comparing the optimized strategies, it turns out that neither of the approaches
that incorporate estimation risk can improve on the sample-based mean-vari-
ance portfolios. The volatility is somewhat reduced, but the Sharpe ratio is more
or less the same. Increasing the rolling window length from 30 to 60 months
can increase the Sharpe ratio. Using an even longer estimation window has no
positive effect on performance. This could be an indication that the return dis-
tributions are not stationary, but we will investigate this issue in more detail
in the next section.

When we repeat the analysis with short selling allowed, the volatilities
sharply increase. The volatility for the optimized portfolios with high risk aver-
sion of 15 is still acceptable, but the volatility of in particular the tangency port-
folio explodes. The Sharpe ratios of the tangency portfolios deteriorate, often
getting negative, while the two strategies based on the mean/variance utility
function can increase the Sharpe ratio compared to the case without short-selling
in Figure 1. Hence, the tangency portfolio does not accomplish its objective to
maximize the Sharpe ratio in an out-of-sample context. But again, incorporat-
ing estimation risk cannot add value.

Finally, we implemented recursive estimation windows, starting with, e.g.
60 months, and then lengthening this window successively by one month when

150 U. HEROLD & R. MAURER
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FIGURE 2

TURNOVER AND WEIGHT STATISTICS FOR THE INVESTMENT UNIVERSE CONSISTING OF

SIX SIZE/BOOK-TO-MARKET ASSET CLASSES

a) Average turnover in % (one-way)

Classical

MV
Boot- Bayes /

Pastor MVP EWP
T Portfolio strapping Stein

30 TP 14.37 10.43 13.58 12.73 6.90 0.77
l = 15 12.22 9.64 11.64 8.38
l = 2 10.88 9.84 11.98 12.19

60 TP 8.24 7.07 8.10 8.23 3.25 0.77
l = 15 6.81 6.13 4.90 4.02
l = 2 7.48 7.07 7.89 8.80

90 TP 5.78 5.22 5.42 5.87 2.33 0.77
l = 15 5.19 4.78 3.74 3.00
l = 2 7.31 6.15 6.54 6.14

120 TP 4.54 4.42 5.25 4.88 2.01 0.77
l = 15 3.72 4.08 2.86 2.44
l = 2 5.69 4.96 5.12 4.30

b) Weights of tangency portfolios (in %)

Classical MV Bootstrapping Bayes/Stein Pastor

Mean Standard Mean Standard Mean Standard Mean Standard
T Asset weight deviation weight deviation weight deviation weight deviation

30 Small/Low 6.24 21.68 14.39 29.44 3.51 16.10 5.81 19.03
Small/Mid 10.77 26.70 8.05 12.55 11.41 26.37 11.11 25.84
Small/High 33.17 41.50 27.09 26.81 28.84 38.06 27.60 36.90
Big/Low 19.62 37.67 14.59 25.57 17.94 34.89 21.43 36.01
Big/Mid 13.47 29.17 15.58 21.23 19.21 33.30 18.20 29.84
Big/High 16.73 32.60 20.31 21.46 19.09 32.45 15.86 29.48

60 Small/Low 1.25 6.94 8.48 21.17 0.26 3.50 1.44 7.10
Small/Mid 3.27 14.23 6.18 8.07 5.50 17.64 4.97 17.07
Small/High 46.50 44.46 34.95 29.25 41.11 42.37 39.72 40.79
Big/Low 13.41 31.02 8.91 14.71 11.29 26.50 16.15 29.44
Big/Mid 12.72 27.09 16.70 22.88 17.83 33.47 15.25 29.13
Big/High 22.85 36.22 24.77 23.72 24.01 35.42 22.47 32.36

90 Small/Low 0.03 0.37 3.11 8.26 0.15 1.17 0.06 0.52
Small/Mid 1.77 7.63 4.41 5.71 1.12 6.02 2.03 6.97
Small/High 54.68 43.23 43.45 30.95 46.01 40.74 47.84 40.57
Big/Low 6.77 17.64 5.75 8.64 4.49 11.70 10.62 19.31
Big/Mid 15.27 30.85 19.01 26.07 21.18 36.27 18.45 31.39
Big/High 21.49 34.02 24.27 23.86 27.05 35.17 21.01 30.11

120 Small/Low 0.03 0.59 0.76 2.11 0.38 2.39 0.07 0.69
Small/Mid 0.65 3.23 3.40 4.09 0.39 2.13 0.77 2.99
Small/High 54.99 42.89 45.48 29.87 43.98 39.84 48.20 39.39
Big/Low 5.58 17.22 5.53 9.69 3.97 12.41 9.02 18.04
Big/Mid 16.12 32.32 19.53 27.37 22.06 36.19 19.41 32.58
Big/High 22.63 35.58 25.31 22.48 29.22 36.16 22.53 31.72

Panel a) displays the average monthly one-way turnover for the four strategies (classical MV,
bootstrapping, Bayes/Stein, and Pastor) and for three risk aversions (tangency portfolio, l = 15,
l = 2) as well as for the equally-weighted portfolio (EWP) and the minimum-variance port-
folio (MVP). The rolling window is varied from 30 to 60, 90, and 120 months. Short selling is
not permitted. Panel b) shows the means and standard deviations of the weights of the tangency
portfolios.
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rolling through time without discarding older information. This should dimin-
ish the impact of estimation risk but ignores that expected returns might be
time-varying. It cannot improve the Sharpe ratio. In fact, after the first couple
of out-of-sample months, the fluctuation in portfolio weights is low because
the impact of new information is limited.

In practice, it is also important to implement strategies which produce low
turnover. The three approaches that incorporate estimation risk can reduce
turnover compared to the sample-based mean/variance case; see Panel a) of Fig-
ure 2. For small sample sizes, the tangency portfolio has the highest turnover,
although its risk profile is between the two utility-based strategies. As expected,
a larger estimation window implies a lower turnover. The weight structures of
the tangency portfolios are displayed in the lower part of Figure 2. The mean
weights and standard deviations (over time) are fairly similar across the different
strategies.

It would be interesting to see whether incorporating estimation risk is more
important in an investment universe with more assets. Shrinking to a target
portfolio that has relatively constant weights (MVP or market portfolio) should
at least reduce turnover more than if only few assets are included. This is why
we have repeated the backtest for the case of 30 industry portfolios and 25 size/ 
book-to-market portfolios. Figure 3 shows performance results and turnover
for the non-optimized and optimized strategies. For space limitations, T is set
to 60 months and we report only the results for the tangency portfolios with-
out short selling.

The results are mixed. In the context of the industry portfolios, the opti-
mized strategies lead to Sharpe ratios below that of the market and minimum-
variance portfolio, while with size /book-to-market assets, they can increase
the Sharpe ratio. In neither case, the differences are statistically significant, as
the standard errors are again fairly large. The reason for the disappointing per-
formance of the approaches that incorporate estimation risk might be that the
returns are not IID distributed. This motivates for the inclusion of exogenous
information. In the next section, we replace the sample means by conditional
expected return estimates. Finally, we note that in particular the bootstrap
approach can reduce turnover, albeit the turnover is still considerably larger than
that of the MVP.

2. Incorporating exogenous information

The objective of the analysis in this section is twofold: First, to check the
robustness of the results we repeat the analysis for the unconditional strategies
(i.e. those based on the IID assumption of the return generation process) from
above using another investment universe. Second, to assess the importance of
incorporating exogenous information, we investigate conditional investment
strategies where the expected returns for the next period are derived from the
predictive regressions.
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The investment universe comprises the 10 Datastream sector indices for
Euroland. The sample consists of monthly data from 12/88 to 6/04 (187 obser-
vations).9 The performance indices are converted into excess returns, with the
3-month FIBOR proxying the risk-free rate. The instrumental variables com-
prise 10 macroeconomic variables and valuation ratios: the term spread between
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FIGURE 3

OUT-OF-SAMPLE RESULTS FOR THE INVESTMENT UNIVERSES CONSISTING OF 30 INDUSTRY PORTFOLIOS

AND 25 SIZE/BOOK-TO-MARKET ASSET CLASSES

Performance figures and turnover of naive and tangency portfolios for T = 60

a) Investment universe: 30 industry portfolios

Portfolio Volatility Mean excess Sharpe GMM std. Turnover
(in %) return (in %) Ratio error (in %)

Naive strategies
EWP 4.69 0.55 0.118 0.047 1.33
Market portfolio 4.26 0.63 0.147 0.044 0.00
MVP 3.49 0.49 0.141 0.049 6.34

Tangency portfolios
Classical MV 4.93 0.48 0.097 0.048 14.97
Bootstrapping 4.71 0.54 0.114 0.049 13.46
Bayes/Stein 4.61 0.45 0.098 0.048 14.29
Pastor 4.58 0.50 0.109 0.047 12.89

b) Investment universe: 25 size/book-to-market portfolios

Portfolio Volatility Mean excess Sharpe GMM std. Turnover
(in %) return (in %) Ratio error (in %)

Naive strategies
EWP 5.03 0.69 0.138 0.049 0.88
Market portfolio 4.25 0.64 0.150 0.044 0.00
MVP 3.93 0.53 0.134 0.050 6.66

Tangency portfolios
Classical MV 4.84 0.85 0.176 0.052 16.98
Bootstrapping 4.91 0.79 0.162 0.054 10.68
Bayes/Stein 4.73 0.81 0.172 0.052 17.01
Pastor 4.59 0.78 0.169 0.050 15.02

The table displays the (monthly) mean excess returns, standard deviations, Sharpe ratios, GMM
standard errors of the Sharpe ratios, and monthly turnovers for the naive and optimized port-
folio strategies. The rolling window is set to 60 months. Short selling is not permitted.

9 The Datastream indices start 12/73. The starting point 12/88 is due to the instrumental variables,
which were partly not available before.
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long-term bonds and the 3-month rate, the short-term spread between the 3-
month rate and 1-month rate, the default spread, oil price, industrial production,
Euroland inflation (CPI), OECD leading indicator, price-earnings-ratio (PER),
dividend yield, and lagged market excess return. The default spread is defined
as the yield differential between BBB- and AAA-rated bonds. Due to longer data
availability, the US default spread is used. Market return, PER, and dividend
yield refer to the Datastream EMU index, which is made up of the 10 sector
indices on a value-weighted basis. All variables are market-wide, none are indus-
try-specific. Industrial production, inflation, and OECD leading indicator are
lagged by 3 months to take account of the publication lag. All other variables
are lagged by 1 month.

The expected returns for the next period that enter the conditional strategies
are derived from the predictive regressions. At the beginning of each month,
the regression model is re-estimated, based on data available at that point in
time. Using the actual values of the instrumental variables, expected returns
are predicted. The estimation period to compute the regression coefficients
and the remaining input parameters is initially set to 30 months. The first esti-
mation period is from 12/88 to 6/91. Then, excess returns for 7/91 are pre-
dicted. The covariance matrix is also based on the period from 12/88 to 6/91.
Then, the estimation period is successively rolled one month forward, leading
to 156 out-of-sample returns for each strategy. The procedure is repeated with
an estimation window of 60 months. The out-of-sample period is then from
1/94-6/04 (126 months).

Figure 4 summarizes the performance and turnover statistics. The uncon-
ditional strategies are based on historical (excess) returns only. The conditional
strategies use the output from the predictive regressions. In the “raw forecasts”
strategy, the conditional expected returns are inputted to the mean/variance
optimizer, while in the two Bayesian strategies, they go through a refinement
process and are shrunk towards the expected returns implied by the minimum-
variance (“Bayes_MVP”) or market portfolio (“Bayes_MP”). Following Doan
et al. (1984), the tightness parameter, q, is set to 0.2. In each case, the objec-
tive function is to maximize the Sharpe ratio.

For all investment strategies, the sample covariance matrix, based on the last
T observations, is used. Since portfolio weights are much more sensitive to
changes in expected returns compared to risk parameters, and since we want
to evaluate different estimators for expected returns, it seems reasonable to use
the same covariance matrix for all strategies. Short selling is not permitted.

Consider first an estimation window of 30 months (Panel a in Figure 4).
The Sharpe ratio of the market portfolio is 0.10. The tangency portfolio as well
as the two unconditional Bayesian approaches (Bayes/Stein and Pastor) can
improve the Sharpe ratio a little, but the increase is again small. The minimum-
variance portfolio turns out to be best among the unconditional strategies.
Incorporating exogenous information and performing the predictive regressions,
the Sharpe ratio substantially increases. It takes on a value of more than 0.20
in the strategy based on the raw forecasts, almost twice as that of the tangency
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portfolio based on sample means. Due to the large GMM standard errors, this
increase is not statistically significant, however it definitely is economically:10

The average monthly excess return rises from 66 bp to 136 bp, or in annual
terms, the investor earns 840 bp more on the average in each year. The standard
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FIGURE 4

OUT-OF-SAMPLE RESULTS FOR THE INVESTMENT UNIVERSE CONSISTING OF 10 EUROPEAN SECTOR INDICES

a) Results for estimation window T = 30

Strategy Mean Volatility Sharpe GMM std. % negative Turnover
(in %) (in %) ratio error returns (in %)

Unconditional strategies
Minimum-variance 0.63 3.78 0.168 0.093 39.1% 6.19
Tangency portfolio 0.66 5.65 0.116 0.093 46.8% 22.24
Equally-weighted 0.65 4.98 0.131 0.093 42.9% 1.25
Market Portfolio 0.51 5.10 0.100 0.093 42.9% 0.44
Bayes/Stein 0.60 5.23 0.116 0.086 48.1% 19.67
Pastor 0.58 5.13 0.114 0.094 46.8% 11.39

Conditional strategies
Raw forecasts 1.36 6.40 0.212 0.083 39.1% 62.40
Bayes_MVP 1.19 6.55 0.182 0.079 36.5% 52.37
Bayes_MP 1.19 6.55 0.182 0.079 36.5% 52.38

b) Results for estimation window T = 60

Strategy Mean Volatility Sharpe GMM std. % negative Turnover
(in %) (in %) ratio error returns (in %)

Unconditional strategies
Minimum-variance 0.77 3.88 0.198 0.106 34.9% 4.18
Tangency portfolio 1.05 6.00 0.176 0.105 48.4% 14.99
Equally-weighted 0.71 5.23 0.136 0.102 42.1% 1.35
Market Portfolio 0.57 5.37 0.105 0.103 42.1% 0.48
Bayes/Stein 1.11 5.45 0.203 0.098 44.4% 15.87
Pastor 0.81 5.46 0.148 0.107 44.4% 7.79

Conditional strategies
Raw forecasts 1.39 7.05 0.198 0.093 36.5% 49.87
Bayes_MVP 1.49 6.75 0.222 0.097 37.3% 45.40
Bayes_MP 1.50 6.75 0.223 0.097 37.3% 45.69

Mean, volatility, and Sharpe ratio are monthly statistics.
“% negative returns” denotes the fraction of months where the excess return is negative.
“Turnover” is the monthly one-way turnover in percentage terms.

10 The GMM standard errors of the Sharpe ratio estimates are higher than in Figures 1-3 because the
number of out-of-sample periods is much smaller.
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deviation moderately increases from 5.65% to 6.40%. Also, the number of
months with negative excess returns is reduced.

The optimal portfolio based on the raw forecasts shows a quite large turnover.
Taking account of estimation risk in the parameters of the predictive regres-
sions leads to a slightly lower Sharpe ratio and reduces turnover. If we had max-
imized a mean-variance utility function with a moderate risk aversion (instead
of maximizing the Sharpe ratio) the turnover would have been much less.

Using a larger estimation window of 60 months, the results are qualitatively
similar albeit the differences are less pronounced (see Panel b). The Sharpe
ratios can be improved by substituting sample means with forecasts from the
predictive regressions. The two Bayesian conditional approaches now show the
highest Sharpe ratio. The choice of the shrinkage target does not seem to be
important because both Bayesian investment strategies lead to a very similar
risk/return profile. The reason is that the only difference is the different inter-
cept in the prior of the regression coefficients, B0. The slope coefficients of
the predictive regressions are shrunk towards zero with the same magnitude
under both alternatives. Choosing a smaller tightness parameter would lead to
substantial different performance statistics, but then the shrinkage target would
have a large impact at the same time.

VII. CONCLUSION

Large estimation errors in real-life financial data make MV optimization hard
to apply in practice. Several approaches have been developed under the IID set-
ting to incorporate estimation risk into portfolio choice. The heuristic approaches
aim at producing more diversified portfolios either by introducing constraints
on portfolio weights or by averaging over portfolio weights that have been
obtained through bootstrapping the return data. In contrast, the Bayesian
approaches directly adjust the inputs. It can be shown that imposing constraints
is equivalent to using a modified set of optimization inputs. Therefore, from a
theoretical standpoint, it is preferable to tackle the problem directly and use
the Bayesian approaches that explicitly adjust the inputs than to implicitly
change them through constraints. Furthermore, the Bayesian approaches have
a strong foundation in statistical decision theory.

In this article, we transfer those Bayesian approaches that operate under the
IID assumption to the setting where returns are partly predictable. We employ
Bayesian regression models to account for the estimation risk attached to the
coefficients in predictive regressions. In an out-of-sample study, we compare
the performance of these approaches and find a couple of interesting results.
First short-selling restrictions prove to be absolutely necessary to reduce port-
folio volatility and turnover. Second all of the approaches assuming IID returns
cannot improve on MV efficient portfolios. At least for the assets and time
period studied, they lead to portfolios which are fairly similar to MV optimized
portfolios in terms of the Sharpe ratio. We are not able to find them to be
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systematically superior to the market portfolio or minimum-variance portfolio
which refrains from estimating expected returns at all.

The disappointing performance of even “sophisticated” strategies like the
Bayesian approaches indicates that historical returns are not very useful for esti-
mating future expected returns. The IID assumption seems to be violated in the
data. Indeed, the conditional strategies that use instrumental variables to predict
stock returns can substantially improve the out-of-sample performance. Although
the increase in the Sharpe ratio is not statistically significant, it is economically.
It should also be possible to further enhance the performance of the conditional
strategies by choosing different instrumental variables (e.g., industry-specific ones
instead of market-wide variables) or by using non-linear forecasting models. In any
case, the approaches that incorporate estimation risk reduce volatility and turnover.
It seems to be advantageous to employ Bayesian models for portfolio construction.
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