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ABSTRACT

In distinction to the Borch’s model of a reinsurance market, this paper treats
the problem of optimal risk exchange in an insurance market where treaties are
allowed between the insurer and each insured only, not among insureds them-
selves. A characterization of the Pareto-optimal contract is found. It is shown
that the indemnity function in the contract is of a coinsurance kind. We also
present a way of finding Pareto-optimal contracts under individual rationality
constraints. The obtained results are compared with those of the known model
of risk exchange in a reinsurance market.
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1. INTRODUCTION

This paper is devoted to a problem of Pareto-optimal risk sharing between an
insurance company (insurer) an a group of n potential insurance purchasers
(insureds) where an insured stands as a separate decision maker in bargaining
with the insurer so that any treaties among insureds themselves, including the
pooling of their risks, are not allowed.

Most of previous works on risk sharing in insurance have tended to fall into
one of two categories. The first comprises research on optimal risk exchange
between an insurer and a single insured. Arrow (1971) found that a policy with a
deductible is optimal for the model with a premium containing a fixed percen-
tage loading. Raviv (1979) extended this result to a model with a more general
function of operating expenses. Holmstrom (1979), Landsberger and Meilijson
(1990) established optimality of a deductible policy respectively in the case of
moral hazard and in the case of preferences described by so-called star-shaped
utility functions.

In the second category are results on Pareto-optimal risk exchanges in a rein-
surance market, stemming from Borch’s works (1960a, 1960b, 1990). His theo-
rem characterizing Pareto-optimal risk exchanges in a reinsurance market was
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extended to a constrained case in Gerber (1978). The Borch’s risk exchange
model of reinsurance, considered as a special kind of n-person cooperative game,
has been developed by Lemaire and Baton (1981), Lemaire (1979, 1990a) where
such game theory characteristics as the Pareto-optimal payoffs, core, bargain-
ing set, value of the game were investigated. In an review by Aase (2002), the
model was considered in a more general setting, including the competitive
equilibrium notion, risk allocation problems in incomplete financial markets.
A range of applications of the above-mentioned Borch’s theorem were discussed
in Lemaire (1990b). Borm et al. (1998) investigated risk exchange in an insurance
model, regarding it as a cooperative game with restrictions on forming coali-
tions and assuming only exponential utility functions of the agents and expo-
nentially distributed losses. Risk exchanges in an insurance market where the
premiums are defined by the mean value principle were studied in Golubin
(2006) from a view-point of application of the Nash’s and Kalai-Smorodinsky’s
solution concepts to the corresponding bargaining game.

Our setting differs from the classical model of risk exchange in a reinsur-
ance market: In the suggested model, each insured is independent of the other
insureds in the sense that he shares his risk with the insurer only, not with the
other insureds. Such an isolation of an insured seems natural in the context of
insurance market since we consider individual insurance buyers, not (re)insur-
ance companies for which mutual agreements on risk allocation are affordable.
We assume premiums paid by the insureds to be chosen jointly with indemnity
functions. Thus the Pareto-optimal contract to be found is a pair consisting of
an n-dimensional vector of premiums and a set of n indemnity functions. Our
main purpose is to derive necessary and sufficient conditions for Pareto opti-
mality, that is, to derive an analogue of the Borch’s theorem for the insurance
market model. Then we employ the found results for a constrained problem
where individual rationality expectations of the agents are met.

The outline of the paper is as follows. In section 2 the notation and assump-
tions for the insurance market model are given. Section 3 presents a way of
characterizing the set of Pareto-optimal contracts in the model. An optimal-
ity equation determining the Pareto-optimal policies and premiums (i.e., the
contracts) is derived as well as its variants involving the risk aversion functions
of the agents. It is shown that the Pareto-optimal indemnity functions are
always of the form of coinsurance policies. The optimal contract turns out to
be dependent on probability distribution of initial insureds’ risks, in distinc-
tion to the Borch’s result on risk exchanges in reinsurance markets. In section
4 we study a problem of finding Pareto-optimal contracts under the constraints
of individual rationality of the agents. We prove the existence and uniqueness
theorem and show that in essence the problem reduces to the unconstrained
problem with modified Pareto multipliers.

2. THE MODEL DESCRIPTION

Consider a market consisting of n + 1 agents: an insurer and a group of n insureds.
The individual insureds’ losses Xj, j = 1,…,n are nonnegative stochastic variables
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defined on the same probability space (W,F, P ). We assume the losses to be
independent, which seems natural in the context of the insurance market under
consideration. The distribution function of Xj is denoted by Fj (x) def P{Xj ≤ x}.
The support1 of Fj (x) is assumed to be a bounded interval supp Fj = [0,Tj ] or
infinite interval supp Fj = [0,∞).

The agents’ preferences are represented by their utility functions ui(x), mean-
ing that X (i Y if and only if Eui(X ) > Eui(Y ). We assume smooth increasing
and strictly concave utility functions, more exactly, u�i (x) > 0 and u �i (x) < 0 in
the relevant domains, for all i = 0,…,n.

The insurer and an insured are negotiating to conclude a treaty on risk
exchange between them. A peculiarity of the model is that any coalitions within
the group of insureds are not allowed, so each insured stands as a separate
decision maker in bargaining with the insurer. An insurance contract is identi-
fied with a pair (P,I ), where P = (P1,…,Pn) is a vector of premiums paid by
the n insureds, and I = (I1,…,In) is a set of Borel-measurable functions called
indemnity functions or policies defined on [0, ∞) and satisfying 0 ≤ Ij (x) ≤ x for
j = 1,…,n. The constraints mean that an indemnity payment Ij (Xj) to the j-th
insured is always nonnegative and not greater than the loss size Xj. Thus the
summary risk taken by the insurer is jj 1= In! (Xj). Once a contract (P, I) is cho-
sen, the expected utilities of final capitals of the insurer and the j-th insured
are J0 [P,I ] def Eu0(w0 + s ss 1= P In

-! (Xs)) and Jj [P,I ] def Euj(wj – Pj – Xj + Ij (Xj)),
j = 1,…,n. Here wi, i = 0,…,n, denote the initial capitals of the agents. Notice
that each of the last n functionals representing insureds’ utilities depends on
the corresponding individual premium and indemnity function only, Jj [P,I ] ≡
Jj [Pj,Ij ].

By definition, a contract (P, I ) is called Pareto-optimal if there is no other
contract (P, I ) such that Ji [P, I ] ≥ Ji [P, I ] for i = 0,…,n, and at least one of the
inequalities is strict. In other words, under such a contract any agent cannot
improve his utility without worsening the utility of at least one other agent.

By the same reasonings as that in Borch (1960) and Wilson (1968), or in
Gerber (1978), it is easily shown that the set of Pareto-optimal solutions can
be obtained by maximization of a weighted sum of the agents’ utilities. In our
case, this method results in the following: fix a vector k = (k0,…,kn) such that
k > 0 component-wise and k 1i

n

0
=! , then maximize the functional

,k J P Ii i
i

n

0=

! 6 @

over the set of insurance contracts (P, I ). For convenience we rewrite the prob-
lem above as

maximize J [P, I ] ≡ J0 [P, I ] + jj Jd
j

n

1=

! [P, I ], (1)
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where dj > 0, and maximum is taken over P ∈ Rn and I = (I1,…,In) : 0 ≤ Ij (x) ≤ x
for j = 1,…,n. As is known (see, e.g., Gerber (1978)), due to concavity of all
the functionals Ji in (1) the n-parameter family of maximizers {(Pd, Id)}d > 0 con-
sists of all Pareto-optimal contracts (excluding, possibly, corner solutions
related to the cases where one or several weights are zero).

Remark 1.
Several approaches to single out a “best” solution from the set of Pareto-opti-
mal ones are known by now. First of all, it seems reasonable to narrow the set
of Pareto-optimal contracts by using individual rationality principle. Accord-
ing to it, each of the agents does not accept a contract if it lessens his initial
utility. In our notation this means Ji [P, I ] ≥ Ji [0,0], i = 0,…,n, since every pre-
mium and indemnity function are zero before making a contract. Within the game
theory approach, the insurance market model may be seen as a bargaining game
discussed in Nash (1950), with the pay-offs being the expected utilities Ji [P, I ].
Following this way, one can use either Nash’s (1950) or Kalai-Smorodinsky’s
(1975) concepts for the game solution (see also Borch (1960a, 1960b), Lemaire
(1990a), and Golubin (2006) for related insurance applications). Despite a dif-
ference in underlying axioms, both the concepts assume that the agents act
rationally, which means that an optimal contract should be Pareto-optimal
and individually rational for all the parties. The same is true for a notion of
competitive equilibrium that is discussed in Aase (2002) in view of a reinsurance
market.

Further we focus only on constructing the set of Pareto-optimal contracts
{(Pd, Id)}d > 0 via treatment of (1) and then employing individual rationality con-
straints. Application of the game theory concepts as well as equilibrium notion
are left beyond the scope.

3. CHARACTERIZATION OF PARETO-OPTIMAL CONTRACTS

The next theorem gives a characterization of the Pareto-optimal contract (P, I ) =
(Pd, Id) (below we will omit the subscript d for convenience) in the form of nec-
essary and sufficient conditions for optimality in (1). To formulate it, we need
a notation E [Y |X ] that stands for a stochastic value called the conditional
expectation of Y with respect to a sigma-algebra s(X) generated by the sto-
chastic value X. Remark that the conditional expectation can also be represented
as E [Y |X ] = ƒ(X) P -a.s., where ƒ is an appropriate Borel-measurable function
(see Tucker (1967)). Denote, respectively, by

A = w0 + ssP I
s

n

1

-
=

! (Xs) and Bj = wj – Pj – Xj + Ij(Xj) (2)

the final capitals of the insurer and j-th insured under a contract (P, I ).

Theorem 1. A contract (P, I) solves (1) if and only if

E [u�0(A) |Xj ] = dju�j(Bj), j = 1,…,n P – a.s. (3)
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Moreover, (3) is equivalent to a pair of conditions (4)-(5):

E [u�0(A) |Xj = 0] = dju�j (wj – Pj), j = 1,…,n, (4)

and jj

j

j

j

j
X

E u A X u B

u B
I

d

d

j j

j
=

+0
� �

�
�^

] ^

^
h

g h

h

: D

P – a.s. (5)

with initial condition Ij (0) = 0, for j = 1,…,n.

Proof. An outline of the proof is as follows. Let us ignore, for a while, the
constraints 0 ≤ Ij (x) ≤ x and assume only Ij (0) = 0, j = 1,…,n. The idea is to
show that conditions of optimality in (1) over this wider set of admissible con-
tracts determine a contract (P, I ) such that 0 < I(x) < x for x > 0. Thereby, the
contract solves problem (1) we start from. First, we show the necessity of (3)
for the problem over the wider admissible set. Then we prove that (3) is equiv-
alent to (4)-(5). The latter pair of conditions imply that the contract (P, I ) is
admissible for the initial problem. The second part of the proof establishes
the sufficiency of (3) for optimality in (1).

1. Suppose that (P, I ) maximizes (1) subject to I (0) = 0. Let DP be an arbi-
trary vector in Rn and v(x) = (v1(x),…,vn(x)) be an arbitrary Borel-measurable
vector function such that v (0) = 0. Define Pl = P + lDP and Il = I + lv, where
l is a parameter, and consider a function J(l) def J [Pl, Il] (see (1)). By the
assumption, J (l) has a maximum at l = 0 therefore J�(0) = 0 or, equivalently,

D
s

n

1=

! Ps E(u�0(A) – dsu�s (Bs)) – E
s

n

1=

! {[u�0(A) – dsu�s (Bs)]vs(Xs)} = 0. (6)

Set DP = 0 and, for a fixed j, set vs(x) ≡ 0 for all s ! j. Then from (6) we have

0 = E{(u�0(A) – dju�j (Bj))vj(Xj)} = E{(E [u�0(A) |Xj ] – dju�j (Bj))vj (Xj)}.

As it holds for an arbitrary vj (x) such that vj (0) = 0, we can conclude that
E [u�0(A) |Xj ] – dju�j (Bj) = 0 a.s. with the exception for Xj = 0. To cope with the
latter case, set v(x) ≡ 0, DPj > 0, and DPs = 0 for all s! j. From (6), 0 = E(u�0(A) –
dju�j (Bj)) = E{E [u�0(A) |Xj ] – dju�j (Bj)}. Denote the expression in { } by Y. Since
EY = P{Xj = 0}E [Y |Xj = 0] + P{Xj > 0}E [Y |Xj > 0] and, as we have already
proved, E [Y |Xj > 0] = 0, we get P{Xj = 0}E [Y |Xj = 0] = 0. Thus, (3) must hold
for the maximizer (P, I ) in the considered problem.

Now show the equivalence of (3) and (4)-(5). For given Xj = x, (3) yields

E{u�0(w0+ Pj – Ij (x) + s sP I
!s j

n

-! (Xs))} – dju�j (wj – Pj – x + Ij(x)) = 0, (7)

where the expectation in the left-hand side is taken with respect to X1,…, Xj –1,
Xj + 1,…, Xn that are assumed to be independent of Xj . Denote the argument
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of u�0 in (7) by Aj (x) and the argument of u�j by Bj (x) (note that Aj (x) is a
stochastic-valued function). After differentiating (7) with respect to x and com-
bining the terms, we have

I�j (x) =
j

j

j

j

j

j

Eu A x u B x

u B x

d

d

j + �

�

0
� ]^ ]^

]^

gh gh

gh
(8)

for x ∈ supp Fj or, in other words, almost sure with respect to the marginal
measure Fj. Note that the initial conditions Ij(0) = 0, j = 1,…,n must hold by
assumption. Hence, it is proved that (3) implies (4)-(5). If we suppose (5) to
hold (i.e. (8) holds) then equality (7) is determined up to a constant in the right-
hand side of (7). If we couple (8) with a condition Eu�0(Aj (0)) – dju�j (Bj(0)) = 0,
which coincides with (4), we obtain that (7) is equivalent to this pair of condi-
tions, i.e., (3) and (4)-(5) are equivalent.

From (8) it follows that 0 < I�j (x) < 1, along with Ij(0) = 0 this gives 0 < Ij(x) < x
for x > 0. So (P, I ) is admissible in problem (1) and, hence, solves this problem.
Thus, we have shown that (3) is necessary for optimality in (1), and (3) is equi-
valent to (4)-(5).

2. Let (3) hold for some contract (P, I ). By the same arguments as above,
it is easy to show that J�(l) |l = 0 = 0 for any choice of an (admissible) direction
(DP,v). Since the goal functional J [P, I ] is concave in (P, I ), this implies that
(P, I ) is a maximizer in the problem with the only constraint I (0) = 0 and,
hence, (P, I ) is a maximizer in (1). ¡

Remark 2.
One can easily verify (by the same arguments as that in the second part of the
Theorem 1’s proof) that condition (3) remains sufficient for Pareto optimality
even if the individual risks Xj are not independent. In this case, however, equa-
tions (5) are not valid any longer and, hence, they cannot be used to prove the
necessity of (3), as that was done in the first part of Theorem 1. In the sequel
we are going to employ the optimality equations (5), therefore the independence
hypothesis is still assumed to hold.

Relation (3) in Theorem 1 resembles the Pareto optimality condition in the
Borch’s theorem characterizing risk exchanges among n agents in a reinsurance
market (see e.g. Borch (1960), Aase (2002)): d1u�1(Y1) = … = dnu�n(Yn) a.s., where
Yj = yj (XM) are functions of total initial loss XM = X1 + … + Xn. The basic dif-
ferences are the following. First, in our case the indemnity payment Ij = Ij(Xj)
is a function of the j-th insured’s loss only, not of the total loss XM — an indi-
vidual risks pooling is not allowed apriori. Second, the terms E [u�0(A) |Xj ] in
(3) depend on distributions of initial risks X1,…,Xn, unlike the Borch’s charac-
terization where the optimal risk exchange rules are not affected by distribution
of initial risk portfolio.

Concerning the form of Pareto-optimal indemnity functions, we see that
0 < I�j (x) < 1 and I (0) = 0 by equation (5). Thus, any Ij is a coinsurance policy
with no deductible. This does not seem surprising in view of Raviv’s result
(1979) who showed that in the case of risk exchange between the insurer and
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the only insured, the Pareto-optimal policies are coinsurance policies not involv-
ing deductibles if operating expenses are zero. A model of risk exchange based
on premium calculation as a function of the mean of indemnity payment gives
rise to deductible and so-called upper limit policies as was shown in Golubin
(2006). The moral hazard problem was analyzed in Holmstrom (1979) who
proved that this results in deductibles. However, all these “sources” of deductible
policies are not the case in our model of insurance market.

Note also that in the case of a risk-neutral insurer with utility function
u0(x) = x, equation (5) yields Ij(x) = x for all j as u�0 (x) ≡ 0. That is, the only
Pareto-optimal policy is full coverage of the losses, and the range of Pareto-
optimal premiums is determined by (4).

The next result gives two modifications of the Pareto optimality conditions
in Theorem 1 that employ the notions of risk aversion and risk tolerance func-
tions of the agents. Recall that the absolute risk aversion function of an agent
is r(x) = –

( )

( )

u x

u x

�
� and the reciprocal of it, r(x) = 1/r(x), is called the risk tolerance

function. Recall also that A and Bj stand for final (stochastic) capitals of the
insurer and j-th insured as defined in (2).

Corollary 1. A contract (P, I ) solves (1) if and only if (4) holds and

I�j (Xj ) =
jR X r B

r B

j j

j j

+0j^ ^

^

h h

h
a.s. (9)

with initial condition Ij (0) = 0, where

R0 j (Xj)
def – E [u�0(A) |Xj ] / E [u�0(A) |Xj ], j = 1,…,n. (10) 

Moreover, (9) is equivalent to

I�j (Xj ) =
j

j

jB X
X

r r
r

j 0

0

+ j

j

^ ^

^

h h

h
a.s. (11)

with Ij (0) = 0, where r0 j (Xj)
def 1/R0 j (Xj), j = 1,…,n.

Proof. From (3) we have dj = E [u�0(A) |Xj ] /u�j (Bj). Inserting this expression for
dj into (5) yields (9). Division of both the numerator and denominator in the
right-hand side of (9) by R0 j (Xj) rj (Bj) results in (11). ¡

Remark 3.
The function R0 j (x) introduced by (10) is the ratio of conditional expectations
– E [u�0(A) |Xj = x] and E [u�0(A) |Xj = x], but not the expectation of the risk aver-
sion r0(A) = –u�0(A) / u�0(A) under Xj = x. In this connection, R0 j(x) and r0 j (x)
can correspondingly be called a risk aversion ratio and a risk tolerance ratio of
the insurer with respect to j-th insured. The function r0 j (x) can be rewritten
as
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r0 j(x) = –Eu�0(Aj (x)) / Eu�0(Aj (x)),

with Aj (x) = w0 + Pj – Ij(x) + s sP I
!s j

n

-! (Xs) and the expectations being taken with
respect to X1,…, Xj –1, Xj +1,…, Xn. Equations (4) and (11) can then be rewritten
in the form of an equation

E{u�0(w0 + Pj + s sP I
!s j

n

-! (Xs))} = dj u�j (wj – Pj ) (12)

and a differential equation

I�j (x) =
jj j ( )w x x x

x
P Ir r

r

j 0

0

- - + + j

j

_ ]

]

i g

g
on x ∈ suppFj . (13)

If the group of insureds is homogeneous in the sense that the losses are inde-
pendent and identically distributed, w1 = … = wn, and u1 = … = un then the Pareto
multipliers dj can be set identical, and the optimal policies Ij (x) ≡ I(x) as well
as premiums Pj ≡ P become identical also. System (12) and (13) converts into
a pair of equations in which the risk tolerance ratio r0 j(x) does not depend on
the number j of the insured.

Let us compare the Pareto-optimal risk exchange given by Corollary 1 and
that given by the Borch’s theorem for the model in which treaties among
insureds are allowed. In both cases the initial risk portfolio of the (n + 1) agents
is (0,X1,…,Xn) – here we consider agents’ risks instead of their capitals (w0,
w1 –X1,…,wn –Xn). The Borch’s Pareto-optimal risk exchange under a weight
vector (1,d1,…,dn) results in a final risk portfolio Y = (Y0, …, Yn) where (see,
e.g., Wyler (1990) and Aase (2002)) Yi = yi(XM) are functions of the summary ini-
tial risk XM

def Xj
n

1
! , satisfying

y�i (x) = ri(wi – yi (x)){ r
k

n

0=

k! (wk – yk(x))}–1, i = 0,…,n, (14)

u�0(w0 – y0(0)) = d1u�1(w1 – y1(0)) = … = dnu�n(wn – yn(0)),

and .y 0 0i
n

0
=! ] g

(15)

In the insurance market model, the final risk portfolio Y consists of Y0 =
jIn

1
! (Xj) – jPn

1
! and Yj = Xj – Ij (Xj) + Pj, j = 1,…,n, where Ij and Pj are determined

by (12) and (13). By construction, Y0 = XM – jYn

1
! and, as y�j (x) = 1 – I�j (x), from

(13) we have

y�j (x) = rj(wj – yj (x)){rj (wj – yj (x)) + r0 j (x)}–1, j = 1,…,n.

Note that the argument x in (14) is related to the total initial risk XM = x, while
in the equation above the argument is related to the j-th individual risk Xj.
The right-hand side of (14) involves all the risk tolerances ri (·) in distinction
to the latter equation which in turn differs from (14) by that r0 j (x) depends on
(n – 1) distributions of risks Xs, s ! j. In the case of risk exchange between the
insurer and the only insured (n = 1), by the definition of r0 j (x) we, clearly, have
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r0 j (x) = r0(w0 + P – I(x)) and (12)-(13) become the same as (15) and optimal-
ity equation (14) with i = 0.

Remark 4.
For the Borch’s model of a reinsurance market, Wilson (1968) showed that the
Pareto-optimal risk exchanges are affine functions of total loss, i.e., yj (x) =
qjx + gj if the risk tolerances are affine with identical cautiousness, rj (x) = ax +
bj, j = 1,…,n. One might expect that a similar result remains valid for the con-
sidered model of an insurance market: under appropriate assumptions on rj(x),
the Pareto-optimal policies Ij(x) are affine or, more exactly, linear as Ij (0) = 0.
However, the situation is more complicated because the risk tolerance ratio
r0 j (x) in equation (11) depends, in general, on distributions of insureds risks.
Nevertheless, there are at least two cases where the linearity takes place.

1) Let the insurer and a j-th insured have exponential utility functions,
u0(x) = c0

–1(1 – exp(– c0x)) and uj(x) = cj
–1(1 – exp(– cjx)). Since rj(x) ≡ 1/cj and the

risk tolerance ratio r0 j (x) ≡ 1/c0, from (11) (as well as from (9)) we have I�j (x) =
cj / (c0 + cj) so that Ij(x) = qjx with qj = cj / (c0 + cj).

2) Let the insurer’s and j-th insured’s utility functions be quadratic, u0(x) =
– 2

1 c0x2 + x for x<1/c0, and uj(x) = – 2
1 cj x2 + x for x < 1/cj. Note that u�0 (x) ≡ – c0

and u�j (x) ≡ –cj, therefore from (5) it follows that Ij(x) = qjx with qj = djcj / (c0 +
dj cj). In distinction to the first case, the Pareto-optimal policy Ij(x) depends on
the Pareto multiplier dj.

Example 1.
Examine a model where all the agents’ utility functions are exponential, ui(x) =
ci

–1(1 – exp(–cix)), i = 0,…,n. Without loss of generality we can assume the
initial capitals wi = 0, since the i-th utility Ji [P, I ] depends on wi only through
a positive multiplier exp(–ciwi), which does not influence the contents of the
Pareto-optimal set {(Pd, Id)}d > 0 in spite of a change in its parametrization.

In general, a solution to equation (9) can be parametrized by P entering the
expressions for final capitals A and Bj. Then P is determined by (4) and, thus,
depends on the weight vector d. In the considered case, however, equation (9)
is I�j (Xj) = cj / (c0 +cj) and does not involve P. Therefore

Ij (x) =
j

j

c c
c

x
0 +

, j = 1, …, n,

are the only Pareto-optimal indemnity rule (as was already noted in Remark 4).
To obtain the premiums, rewrite (4) as

s j j ,exp expE c P c c
c X c Pd

!

s
s

s

s j

n

s

n

j0
01

- -
+

=
=

!!f ^p h* 4 or

js j j ,lna c P c Pd
!

s
s j

n

s

n

0

1

- = +
=

! ! (16)

where as
def

sln expE c c
c c X

s

s

0

0

+
c m( 2 < ∞.
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Subtraction of (16) from the s-th such equation yields

aj – as = ln ds – ln dj + csPs – cj Pj .

Expressing Ps from this equation and then inserting it into (16), we obtain

j j / ,ln lnc a d c a a cP d d1
j

j s s s
s

n
1

0

1

= - - + + +-

=

! ] g= G) 3 (17)

where we introduce d as defined by d –1 = c0
–1 + … cn

–1, and a = .as
s

n

1=

!

From (16) we can also find the summary premium

j j .lnc
d c aP d

!j

n

j
j

n

s
s j

n

1 0

1

1

= - +
=

-

=

! ! !f p (18)

The set of Pareto-optimal contracts {(Pd, I )}d > 0 consists thus of a single indem-
nity rule I and a range of premium vectors P = Pd defined in (17). As is seen
from (17), the premiums P depend on the distributions of the insured’s losses
Xj through the quantities aj = ln{E exp(c0 Ij(Xj))}, while the quotas cj / (c0 + cj)
in indemnity functions are determined by the risk aversion parameters only.
From (17) it follows that Pj decreases versus an increase in the insured’s weight
dj : a greater weight allows the j-th insured to reduce his premium Pj .

Compare the insurer’s situation in the presented setting with that in the
Borch’s model for the case of exponential utilities. For the insurance market
model, the components of the final risk portfolio are

j j j
j

j

j
, , ,..., .c c

c
X c c

c X j nY P Y P 1
j

n

j
j

n

j0
01 1 0

0=
+

- =
+

+ =
= =

! !

From (14)-(15) we get (see Aase (2002)) for the Borch model

M , , , ...,ln ln
c
d X c c

d
c i ng g d d

Y 0i
i

i i
i

s

s

s

n

0

= + = - + =
=i i
!

where, recall, d0 = 1 so that g0 = c0
–1d cs

n 1

1

-! lnds. Since c0
–1d = [1 + /c cs

n
01

! ] –1 <
cj / (c0 + cj) = [1 + c0 /cj ]

–1, the indemnity c0
–1d jXn

1
! taken by the insurer in the

Borch model is less (a.s.) than that ( )c c j
n

01
+! –1cj Xj in the former model. On

the other hand, the payment –g0 is evidently less than the summary premium
Pj

n

1
! (see (18)) paid to the insurer, the surplus c0

–1d jc a
!

n
ss j

n1

1

-! !` j depending
on individual loss distributions through as, s = 1,…,n. Thus, in the Borch model
the insurer is more discrete in the sense that he prefers to take a less summary
loss coverage and a less premium.

Such a comparison with respect to the related insureds in the two models,
unlike the previous case, does not give a relation with probability one. Although
the retained insured’s share of loss (c0 + cj)–1c0Xj in Yj is greater (a.s.) than the
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share cj
–1dXj retained by the j-th insured from his own initial risk in the Borch’s

model, the whole loss cj
–1dXM of the latter insured depends also on the other

risks Xs, s ! j. Difference between premiums Pj and gj of the insureds may
change the sign, based upon concrete values of as and cs.

Example 2.
Examine a case of quadratic utility functions related to a homogeneous group
of insureds. Here ui (x) = – 2

1 cix2 + x defined on (– ∞,1/ci), i = 0,1. Theorem 1
gives (see Remark 4) Pareto-optimal policies

I (x) = qx, where q = dc1 / (c0 + dc1), d ∈ (0,∞).

Condition (4) takes the form

– Ec0 sw nP Xq
s

n

0

1

1

+ -
=

-

!e o+ 1 = d (– c1(w1 – P ) + 1),

whence we obtain an equation for determining P:

P(dc1 + c0n) = c0(n – 1) qEX1 + 1 – c0w0 + d (c1w1 – 1). (19)

We see that if d is fixed and the number of insureds n → ∞ (thus, a weight
nd of the group as a whole increases to infinity) then from (19) it follows P →
qEX1 = EI (X1) — the limiting premium is equal to the actuarial value of insurer’s
risk.

Choose w0 = 1, w1 = 0, c0 = c1 = 0.01, n = 10, and EX1 = 5. For d = 0.5 we
will have I (x) = 0.333x and, by (19), P = 6.093; if the insured’s weight d increases
to d = 1 then the insurer’s share of risk becomes greater, I (x) = 0.5x, while the
premium decreases to P = 1.954.

4. INDIVIDUAL RATIONALITY

In this section we impose additional constraints on the set of admissible con-
tracts, namely, an admissible contract (P, I ) must now satisfy the individual
rationality conditions: Ji [P, I ] ≥ Ji [0,0], i = 0,…,n. Here the agents’s initial util-
ities before making a contract are: J0[0,0] = u0(w0) for the insurer, and Jj [0,0] =
Euj (wj – Xj), j = 1,…,n, for the insureds. Following the lines in the previous
section, our main objective is to find a characterization of the Pareto-optimal
individually rational contract, i.e. the solution to the problem

maximize J [P, I ] ≡ J0[P, I ] + jd
j

n

1=

! Jj [P, I ] (20)

subject to

J0 [P, I ] ≥ u0(w0), Jj [P, I ] ≥ Euj(wj – Xj), j = 1,...,n. (21)
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Proposition 1. For each fixed weight vector d > 0, problem (20)-(21) has a unique
solution.

The proof is given in Appendix.

Theorem 2. Let the Slater condition hold: there is a contract (P0,I 0) such that all
the inequalities in (21) are strictly satisfied under (P, I ) = (P 0,I 0). An admissible
contract (P, I ) solves (20)-(21) if and only if there exist li ≥ 0, i = 0,…,n such that

l0(J0 [P, I ] – u0(w0)) = 0,

lj(Jj [P, I ] – Euj (wj – Xj)) = 0, j =1,…,n, (22)

and condition (3) in Theorem 1 (or its equivalent (4)-(5)) holds with d�j = l

d l

1

j j

+

+

0
, j =

1,…,n.

Proof. The Lagrangian of problem (20)-(21) is

L [P, I; l ] = J0 [P, I ] + d j
j

n

1=

! Jj [P, I ] + l
i

n

0=

i! (Ji [P, I ] – Ji [0,0]). (23)

As is known (see, e.g., Bazaraa and Shetty (1979)), in the case of a concave
problem (20)-(21) under the Slater condition, a maximizer in it is also a maxi-
mizer of L [P, I; l ] over (P, I ) : 0 ≤ I (x) ≤ x for an appropriate vector l ≥ 0 that
satisfies the complementary slackness condition (22). Conversely, a maximizer
(P, I ) of L [P, I; l ] satisfying (21) is a solution to (20)-(21). In this sense, maxi-
mization of the Lagrangian is equivalent to solving the initial problem. After
rearranging terms in (23) and division by 1+ l0, the goal functional can be
written as J0 [P, I ] + jj 1=

dn �! Jj [P, I ], where d�j = (dj + lj) / (1+ l0). This coincides
with the goal functional in (1) if the weights dj in (1) are changed to d�j . ¡

One may roughly note that individual rationality constraints (21) lead to
the following change in the optimal (P, I ) = (Pd, Id). Let first, under some d, the
solution be an interior point for (21). If the weight, say, d1 decrease then, as
can be seen, J1 [Pd, Id ] also decreases up to a point where the constraint for J1
becomes binding. Further decrease in d1 causes a compensating increase in the
new weight d�1 introduced in Theorem 2 so that the solution (Pd�, Id�) of (1)
“glues” to the boundary, making the equality J1 [Pd�, Id�] = J1 [0,0] still hold. In the
case of a homogeneous group (see Remark 3) with a scalar Pareto multiplier d,
one may expect a range [dmin, dmax] such that any interior d defines an interior
solution to (20)-(21), and J1[Pd, Id] ≡ J1[0,0] for all d ≤ dmin, and J0[Pd, Id] = J0[0,0]
for all d ≥ dmax. We illustrate it in the example below.

Example 3.
Returning to Example 1, consider a particular case related to the homogeneous
group of insureds having identical exponential utility functions uj(x) = c1

–1 (1 –
exp(– c1x)), j =1,…,n. As we noted above, in this situation a contract (P, I ) con-
sists of a scalar P and a scalar indemnity function I (x), the Pareto multiplier
d ∈(0,∞).
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As was shown in Example 1, a unique Pareto-optimal policy is a linear function

I(x) = .c c
c x

0 1

1

+
(24)

Let us take this as a testing function I 0 in verification of the Slater condition in
Theorem 2. Then the minimum premium Pmin admissible for the insurer under
policy (24) is determined by Eu0(nPmin– In

1
! (Xj)) = u0(0) end equal to

Pmin = a1 /c0 (>0), where a1 = ln{E exp( c c
c c
0 1

0 1

+
X1)}. (25)

Equation E u1(– Pmax – X1 + I (X1)) = E u1(– X1) gives the maximum premium
admissible for the insured,

Pmax = (ln[E exp(c1X1)] – a1) /c1. (26)

Using Jensen’s inequality for the case of a strictly convex power function xd with
d = 1 + c1 /c0, we obtain [E exp(c1X1 /d)]d < E exp(c1X1) and, hence, Pmin < Pmax.
Therefore, choosing any P0 ∈ (Pmin, Pmax) suffices for the inequalities J0 [P, I ] >
J0 [0,0] and J1[P, I ] > J1 [0,0] to be satisfied under (P, I ) = (P0, I ).

Applying Theorem 2, from (17) in Example 1 we have that the Pareto-opti-
mal premium is

P = .
ln

c nc
n a d1

1 +
- -

0

1] g (27)

To determine the admissible range of P = Pd, note that the right-hand side of
(27) is a decreasing function in d that takes all values in (–∞,∞) when d runs
over (0, ∞). So the range of admissible Pd is [Pmin, Pmax] (see (25)-(26)). The set
of individually rational Pareto-optimal contracts is thus [Pmin, Pmax] ≈ I. Equat-
ing (27) to Pmin and then to Pmax, we get the corresponding boundaries dmax and
dmin. If the weight d ≤ dmin then Pd = Pmax, if d ≥ dmax then Pd ≡ Pmin.

Suppose the insureds’ losses Xj to be uniformly distributed on [0,1]. Choose
the insurer’s risk aversion coefficient c0 = 0.2, regarding c1 and n as parameters
(recall that w0 = … = wn = 0). Let c1 take values in {0.1, 0.5, 1.5}, then the
Pareto-optimal policy I(x) becomes 0.333x, 0.714x, and 0.882x respectively.
Values of Pmin and Pmax are determined from (25) and (26) where now a1 =
ln{d (exp(1/d ) – 1)} with d = (c0 + c1) / (c0 c1). The numerical results are sum-
marized in the table below. It is seen that Pmin and Pmax increase with an increase
in the insured’s risk aversion c1, while the number of insureds n affects the left
boundary dmin only (actually, dmin → 0 when n → ∞, as easily follows from (26)-
(27)).

Debreu and Scarf (1963) proved for a market model that the core of the
corresponding cooperative game shrinks to the point of competitive equilib-
rium as the number of players infinitely increase. It is not the case in Exam-
ple 3 because the interval [Pmin, Pmax] (that can be regarded as a “bid-ask spread”
in terms of a financial market) does not change with n. Application of the
game theoretical concepts, such as the Nash’s solution, will perhaps lead to a
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solution P*
n ∈ [Pmin, Pmax] whose limit as n → ∞ (if exists) bears a relationship

to notion of a market equilibrium.

APPENDIX

The proof of Proposition 1.

Note first that an equality I1
j (x) = I2

j (x) is understood as a coincidence I1
j (Xj) =

I2
j (Xj) with probability one. By assumption, the utility functions uj(x), j = 1,…,n,

are strictly concave, therefore the functional jj 1= dn! Jj [Pj , Ij ] is also strictly con-
cave in (P, I ). Since J0 [P, I ] = Eu0(w0 + sP

s

n

1=
! – Is (Xs)) is concave, the goal

functional in (20) is strictly concave in (P, I ), which implies that if there exists
a maximizer then it is unique.

To prove the existence of a solution to problem (20)-(21), show first that
vectors P of admissible premiums satisfying (21) constitute a bounded set in Rn.
Since Jj [P, I ] = Euj(wj – Pj – Xj + Ij(Xj)) ≥ Jj [0,0] = Euj(wj –Xj) and Jj [P, I ] ≤ uj(wj –
Pj ), we have wj – Pj ≥ uj

–1(Jj [0,0]) where uj
–1 denotes the inverse of uj, or Pj ≤ wj –

uj
–1(Jj [0,0]) for j = 1,…,n. On the other hand, J0[P, I ] = Eu0(w0 + sP

s

n

1=
! – Is(Xs)) ≥

J0[0,0] = u0(w0) therefore w0 + sPn

1
! ≥ u0

–1(J0 [0,0]) = w0, or sPn

1
! ≥ 0. Thus the

set of admissible premiums is bounded.
Denote by P the set of admissible in (20)-(21) risk allocations (P, I (X)) where

I (X) def (I1(X1),…,In(Xn )) with 0 ≤ Ij (x) ≤ x. Fix any sequence (Pm,Ym) ⊂ P
and prove the existence of a subsequence (Pk,Yk) such that (a) Pk → P� and
(b) Yk & Y� (weak convergence) as k → ∞, for some P�∈Rn and Y�= I�(X ). In
view of the above-proved boundedness of Pm, (a) evidently holds. By Helly’s
theorem, convergence in (b) takes place but, in general, P{Y�1 < ∞,…,Y�n < ∞} ≤ 1.
Noting that Yj

k ≤ Xj a.s. and, hence, the distribution function F k(x1,…,xn) ≥
F (x1,…,xn), we have P{Y�1 < ∞,…,Y�n < ∞} = 1, i.e., Y� is proved to be a proper
stochastic vector. Since each component Y�j is measurable with respect to sigma-
algebra s(Xj) and 0 ≤ Y�j ≤ Xj a.s., the limit Y� can be represented as Y�= I�(X)
for some indemnity rule I�(x), i.e., (b) holds.

Consider a sequence (Pm, Im(X )) ⊂ P maximizing (20), that is,

lim
m " 3

J [Pm, Im] = J* def sup
,P I P!] g

J [P, I ].
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c1 n dmin dmax Pmin Pmax

0.1 10 0.948 0.951 0.167 0.169
0.1 150 0.912 0.951 0.167 0.169
0.5 10 0.748 0.776 0.361 0.376
0.5 150 0.494 0.776 0.361 0.376
1.5 10 0.387 0.467 0.448 0.502
1.5 150 0.085 0.467 0.448 0.502



By the reasonings above, there exists a subsequence such that

Pk → P*, Ik(X ) & I*(X ) as k → ∞. (28)

In order to show

J* = J [P*, I*] and (P*, I*) ∈ P, (29)

it suffices to prove that J0 [Pk, Ik ] → J0 [P*, I*] and Jj [Pj
k, Ij

k] → Jj [Pj
*, Ij

*] for all
j = 1,…,n. In turn, these convergences hold if the integrands in

, , ..., ,J P I u w P x dF x xk k
s
k

s
s

n

R

k
n0 0

1

1

n

= + -
=

+

0# !e ]o g7 A (30)

jj j,j jJ P I u w P x dP X I X xk
j j

R

j
k

n

#= - - -

+

k k# _ ^i h8 B # - (31)

are uniformly integrable with respect to the corresponding sequence of distri-
butions (Tucker (1967)). (Note that if all supp Fj are bounded then (29) is sim-
ply implied by (28) along with continuity and boundedness of the integrands
in (30) and (31) on the relevant supports, without employing the uniform inte-
grability.) Since u0 is increasing and concave, u0(w0 + P xs

k
s

n
s1

-
=

! ) ≤ 0 on {xs ≥
a, s = 1,…,n} if a is large enough. Hence 

, ...,u w P x dF x x0 s s
s

n

x a

k
n

1

1$ $+ -
$ =

0
k

0# !d ]n g

! +

, ...,u w P x dF x x 0s
k

s
s

n

x a

n
1

1 "+ -
$ =

0 0# !d ]n g

! +

as a → ∞.

Therefore  , ..., .lim sup u w P x dF x x 0
a k

s s
s

n

x a

k
n

1

1+ - =
" 3

$ =

k
0 0# !d ]n g

! +

The uniform integrability of the integrand in (31) is proved by the same rea-
sonings. Thus we obtain (29), which completes the proof. ¡
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