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ABSTRACT

We consider several one-period reinsurance models and derive a rule which
minimizes the ruin probability of the cedent for a fixed reinsurance risk pre-
mium. The premium is calculated according to the economic principle, gener-
alized zero-utility principle, Esscher principle or mean-variance principles.
It turns out that a truncated stop loss is an optimal treaty in the class of all
reinsurance contracts. The result is also valid for models not involving ruin
probability. An example is the Arrow model with the Kahneman-Tversky value
function.
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1. INTRODUCTION

Suppose an insurer decides to buy a reinsurance contract written on the total
claim amount basis, i.e. the reinsurer covers R (X) and the cedent covers X –
R(X), where R(X) is a compensation function and X is a non-negative random
variable on a given probability space (W, S, �), which represents the total claim
size of a portfolio at the end of a fixed time period. The following rules are
most common:

• quota share R (X) = bX, 0 < b < 1,

• stop loss R (X) = (X – a)+, a > 0,

• limited stop loss R (X) = min((X – a)+, l ), a, l > 0,

where a+ = a1(a > 0). Other types of (re)insurance contracts can be found
e.g. in Verlaak and Beirlant (2003). Throughout the paper, we denote by 1(c)
the indicator function, i.e. 1(c) = 1 if the condition c is true and 1(c) = 0 if it
is not. To simplify notation, we write R =X (resp. R ≤ X) if the probability that
R ! X (resp. R > X) is zero.
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One of the rational approaches to choosing (re)insurance contracts is to
minimize the ruin probability of the cedent in a discrete time model (Schäl,
2003, Schäl, 2004) and in a continuous time model (Gaier et al., 2003, Schmidli,
2001, Schmidli, 2002, Taksar and Markussen, 2003, Hipp and Vogt, 2003,
Hipp, 2004). The results on controlling the probability of ruin in models without
reinsurance can be found in Grandell (1991), Rolski et al. (1999) and Asmussen
(2000) among others.

Another approach relies on maximizing dividend payments. See Pechliva-
nides (1978), Højgaard and Taksar (1999), Asmussen et al. (2000), Højgaard
and Taksar (2001), Hipp (2003), and Gerber and Shiu (2004). The third method
of constructing optimal contracts is based on maximizing stability measured
by the variance or other functionals. See Rantala (1989), Rytgaard (2004),
Kaluszka (2004bc) and the papers cited therein. The last (but not least) method
relies on maximizing the expected utility of wealth or the return function (Højgaard
and Taksar, 1998, Irgens and Paulsen, 2002, Irgens and Paulsen, 2003, Hipp and
Plum, 2003).

However a serious limitation of these approaches is that the optimal con-
tracts are derived only in narrow classes of (re)insurance treaties, e.g. quota
share or excess-of-loss. What is more, the premium of the reinsurer is mostly
calculated via the expected value principle. The aim of the paper is to partly
fill this gap. We consider a few one period models and derive a rule which
minimizes the probability of the cedent’s ruin over the set of all policies
for a fixed reinsurer’s premium. The premium of the reinsurer is calcula-
ted according to the economic principle, generalized zero-utility principle,
Esscher principle or mean-variance principles. The ruin probability is neither
a concave nor convex functional. Therefore a completely different method from
that of Kaluszka (2004a) was applied in the paper. We found that an optimal
rule is not a stop loss or quota share but either a truncated stop loss of the
form

R (x) = (x – a)+1(x < b) = < <
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with 0 ≤ a < b < ∞ or a combination of truncated stop loss with stop loss.
A truncated stop loss is also optimal in models not involving ruin probability
(see Theorems 8 and 9 of the paper). This contrasts with the approach frequently
used in the actuarial literature. The hypothesis is that the rule (1.1) may also
be optimal in the class of all rules in discrete time models.

To keep things simple, if not stated otherwise, we assume that X has a dis-
tribution function F (t) = �(X ≤ t) of the form 

F (t) = p1(t ≥ 0) + (1 – p) f x dx1
t

0
# ] g (t > 0) (1.2)

in which 0 ≤ p < 1 and f is a positive density function on (0, ∞).
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2. MINIMIZING THE RUIN PROBABILITY

2.1. The economic principle

Let w0, P and p denote, respectively, the wealth of the cedent, the reinsurer’s
premium and the cedent’s premium at time 0. Assume the economic principle,
also called the adjusted distribution principle, is applied to calculate the rein-
surer’s premium, that is, P = �(Rƒ), where ƒ = ƒ(X) is a non-negative function
such that �ƒ(X ) = 1. The economic principle can be derived from expected
utility theory as applied to the problem of risk exchanges (see Bühlmann, 1980,
1984, Wang, 2003, Young, 2004). The function ƒ, called the price density, could
be understood as an alteration of the actuarially objective probabilities. The
premium P(R) = �(Rƒ) satisfies several desirable axioms like: A1) no unjustified
risk loading P(c) = c, A2) no rip-off P(R) ≤ supR, A3) scale invariance P(cR) =
cP(R), A4) translation invariance P(R + c) = P(R) + c, where c is a real.

Suppose the cedent wants to have a rule R which minimizes his/her ruin prob-
ability at time 1 for a fixed premium of the reinsurer:

min �(X – R > w) s.t. �(Rƒ) = P, L ≤ R ≤ U, (2.1) 

where w = w0 + p – P ≥ 0 and L = L(X), U = U(X) are given constraints such
that 0 ≤ L ≤ U ≤ X.

Theorem 1.
The rule R* = R*(X ) defined by
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is a solution to (2.1) with c > 0 being such that �(R*ƒ) = P.

Proof. Put R = {R; �(Rƒ) = P, L ≤ R ≤ U}. It is clear that for any c > 0
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The proof is complete. ¡
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Example 1. Assume the reinsurer’s premium is calculated via the expected
value principle with safety loading b > 0, which means that P = (1 + b )�R.
The cedent seeks a rule minimizing his/her ruin probability:

min �(X – R > w) s.t. �R = Pb, 0 ≤ R ≤ X, (2.3)

where 0 < Pb < �X < ∞. Hereafter, Pb = P / (1 + b). We assume that Pb < �(X – w)+,
otherwise R(X) = (X – c)+ with c ≤ w such that �R(X) = Pb is an optimal rule
and �(X – R(X) > w) = 0. The problem (2.3) was solved by Gajek and Zagrodny
(2003) via the Neyman-Pearson lemma (see Gajek and Zagrodny, 2004).
We were inspired by a well-known approach from the optimization theory.
Theorem 1 implies that a solution to (2.3) is the truncated stop loss:

Rb* = (X – w)+1(X < b*), (2.4)

where b* is a positive real such that �Rb* = Pb. If F is continuous on [w,∞) and
if 0 < P < min{w0 + p, (1 + b )�(X – w)+}, then the existence of b* follows eas-
ily from the Darboux property. In fact, by the dominated convergence, �Rb →
�(X – w)+ as b → ∞ and �Rb → 0 as b → w. From the Fubini theorem, we get
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so the function b → �Rb is continuous on [w,∞). Observe that if X has an atom
at x0 > w, then the function b → �Rb is not continuous at x0. In consequence,
there is no b such that (1 + b )�Rb = P for some P and we have to change the
reinsurer’s premium.

For concreteness, let X have the Pareto distribution with parameters 2,a,
i.e. F(x) = (1 – a2(a + x)–2) 1(x ≥ 0), where a > 0. Let 0 < Pb < a2 / (a + w) and let
P < w0 + p. A solution to (2.3) is the rule

* <R X w X A
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2.2. The generalized zero-utility principle

Suppose the cedent can buy a payment of R for a premium of P such that
� v(R,P) = 0, where an increasing and continuous function x → v(x,P) defines
the premium principle. Examples include the
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• mean-value principle P = u – 1 (�u (R)), where u is increasing and continuous,
• zero-utility principle �u (P – R) = u (0) with a utility function u,
• Swiss premium principle �u(R – zP) = u((1 – z)P) for some z ∈ [0,1] and some

increasing function u,
• Orlicz premium principle �c(R /P) = 1, where c is a Young function,
• net premium principle with cost c P = �R + �c (R), c being a nondecreasing

and continuous function on [0, ∞).

Gerber (1979), Goovaerts et al. (1984), and Goovaerts et al. (2003) studied
these principles in detail. Our problem is to determine the rule which minimizes
the ruin probability subject to a fixed reinsurance premium P :

min � (X – R > w) s.t. �v (R,P ) = 0, 0 ≤ R ≤ X. (2.6)

Recall that w stands for the wealth of the cedent at time 0.

Theorem 2.
If v(0,P) < 0 < �v((X – w)+,P) < ∞, then a solution to the problem (2.6) is the trun-
cated stop loss Rb* = (X – w)+1(X < b*), where b* is a real such that �v(Rb*,P) = 0.

Proof. The proof is quite similar to that of Theorem 1. The existence of b* follows
from the continuity of the function b → �v(Rb,P), where Rb = (X – w)+1(X < b).
Indeed, v(0,P) ≤ v(Rb,P) ≤ v((X – w)+,P). By the dominated convergence and (1.2),

lim
t b"

�v (Rt,P) = � lim
t b"

v (Rt,P) = �v (Rb,P)

for all b, as desired. ¡

Example 2. Assume the reinsurer’s premium is calculated according to the
zero-utility principle with a utility function, u, such that u� > 0. Suppose that
�u (P – (X – w)+) < u (0), where P > 0. From Theorem 2 it follows that the ruin
probability of the cedent is minimized by the rule Rb* = (X – w)+1(X – b*), where
b* is such that �u (P – Rb*) = u (0).

2.3. The Esscher principle

The mapping R → �(ReaR) / �eaR is known as the Esscher premium with para-
meter a > 0. The Esscher premium principle was devised by Bühlmann (1980).
For more information about this principle we refer the reader to Bühlmann (1980),
Goovaerts et al. (1984), Gómez-Déniz et al. (1999) and Embrechts (2000). The
criterion for selecting the optimal rule is the minimization of the ruin probability
provided a fixed reinsurer’s premium is calculated by the Esscher principle:

min �(X – R > w) s.t. P = Essa(R), 0 ≤ R ≤ X, (2.7)

where Essa(R) = �(ReaR) / �eaR.
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Theorem 3.
Assume 0 < P ≤ a–1 and assume 0 < � [((X – w)+ – P) exp(a(X – w)+)] < ∞. A solu-
tion to (2.7) is the truncated stop loss rule Rb* = (X – w)+ 1(X < b*) with b* being
such that P = Essa(Rb*).

Proof. Observe that P = Essa(R) iff � [(R – P)exp(aR)] = 0. Thus, for any c > 0
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The rest of the proof is similar to that of Theorem 1. Put c(b) = � [(Rb – P)
exp(aRb)] with Rb = (X – w)+1(X < b). Clearly, c(w) = –P < 0, c(∞) > 0, and c
is continuous. Therefore, there exists b* such that c(b*) = 0. ¡

Remark 1. Unless the assumptions of Theorem 3 are satisfied, other rules may
be optimal. For instance, if max(a –1, Essa(R0)) < P < Essa(R∞) with Rb = min
(X,P – a –1) + (X – w – P + a –1)+1(X < b), then there is b* such that EssaRb* = P
and the rule Rb* solves (2.7).

2.4. Mean-variance principles

Suppose the cedent wants to minimize the ruin probability for a fixed reinsurer’s
premium, say P, based on the mean and the variance of the compensated part
of the risk. Suppose also that the cedent wants to control his/her expected
gain and is willing to pay not more than P0 for reinsurance. As a consequence,
the following problem arises 

min �(X – R > w) s.t. R ∈R (M) (2.8)

where R (M) = {R; R = R(X), 0 ≤ R ≤ X, �R ≤ f (P0,�R), �R ≤ M}, and t →
f (P,t) is a decreasing function defining a premium principle. Examples of rein-
surer’s premium principles include the

• standard deviation principle P = �R + b�R; f = P – bt,

• variance principle P = �R + b�2R; f = P – bt2,

• mixed principle P = �R + a�R + b�2R; f = P – at – bt2,

• modified variance principle P = �R + b�2R / �R; f = ,
P P tb

2

42 2+ -

• mean value principle P = [�(R2)]1/2 = [(�R)2 + �2R]1/2; f = ,P t2 2-

• quadratic utility principle P = �R + c – (c2 – �2R)1/2; f = P – c + ,c t2 2-

where a, b, c > 0, �R means the standard deviation of random variable R and
�2R denotes the variance. Let b(m) be the solution to x w

w

b
-# ] gdF (x) = m in

b > w.
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Theorem 4.
Suppose 0 < M < �(X – w)+. The truncated stop loss RM = (X – w)+1(X < b(M))
is a solution to (2.8) provided �RM ≤ f (P0, �RM).

Proof. Put R m = {R; 0 ≤ R ≤ X, �R = m} and put Rm = (X – w)+1(X < b(m)).
It is clear that Rm ∈ R m. Given c > 0, we have

min
R MR! ] g

�(X – R > w) ≥ min
m M0 # #

min
R R m!

� [1(X – R > w) + c (R – m)]

≥ min
m M0 # #

� min
R R m!

[1(X – R > w) + c (R – m)] = min
m M0 # #

�(X – Rm > w)

= min
m M0 # #

�(X ≥ b(m)) = �(X ≥ b(M)) = �(X – RM > w).

By the assumptions, Rm ∈ R m, which completes the proof. ¡

Example 3. Suppose the standard deviation principle is applied to calculate the
reinsurer’s premium and suppose the cedent is willing to minimize the ruin
probability. A solution to the problem 

min �(X – R > w) s.t. 0 ≤ R ≤ X, �R + b�R ≤ P0, �R ≤ M, (2.9)

is the truncated stop loss R = (X – w)+1(X < b), where b is such that �R = M
and �R + b�R ≤ P0.

Remark 2. A similar result can be formulated for the semi-variance principle
of the form P = �R + g(�+R), where (�+R)2 = � [(R – �R)+]2 is the semi-vari-
ance and g is an increasing and continuous function on [0,∞).

2.5. Reinsurance and investment

Let w ≥ 0 denote the cedent’s wealth at time 0 after paying the premium P for
reinsurance. At time 0, the cedent invests a part of his/her wealth, say aw, into
risky assets with a rate of return, r, being a random variable independent of X,
with a distribution function G and the continuous density g = G �. At time 1,
the wealth of the cedent is equal to

(1 – a)w + (1 + r)aw – X + R = (1 + ar)w – X + R.

For the premium calculation the reinsurer uses the expected value principle
with safety loading b > 0. The cedent not only seeks for a reinsurance rule
minimizing ruin probability, but also wants to known how much of wealth he
should invest into risky assets. Short sale is rejected, so the following con-
strained optimization problem arises 

min �((1 + ar)w – X + R < 0) s.t. (a,R) ∈ [0,1] ≈ R (2.10)

in which R = {R; R = R(X), �R = Pb, 0 ≤ R ≤ X}. To solve the problem (2.10),
we make the following assumption:
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A1. The density g is increasing on (–1, r0 ] and is decreasing on [r0, ∞), where
– 1 < r0 < ∞.

Let g –1 denote the inverse function to g on (–1, r0 ]. Define x (a,c) to be the
solution to the equation 

G aw
x w-

b l = G (g –1(acw)) + c (x – w – awg –1(acw)) (2.11)

in x > w + awg –1(acw) with a ∈ [0,1], c > 0, and acw < g(r0). Here and subse-
quently, we set a /0 = ∞ for a > 0 and a /0 = – ∞ for a ≤ 0. Let c (a) be the solu-
tion to c(a,c) = Pb , where 

c(a,c) = � [(X – w – awg –1(acw))+1(X < x(a,c))] (2.12)

for 0 < c < (aw)–1g(r0), 0 ≤ a ≤ 1.

Theorem 5.
Suppose 0 < Pb < � (X – w)+. Under assumption A1, a solution to (2.10) is the trun-
cated stop loss policy Ra*, where

Ra = (X – w – awg –1(ac(a)w))+1(X < x(a,c(a)))

and a* is an optimal investment strategy being a minimizer of a → �((1 + ar)w –
X + Ra < 0) over [0,1].

Proof. Since X and r are independent random variables, we have
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where 0 < c < g(r0) / (aw) and h(y) = G aw
x y w- -

` j+ cy. By a straightforward but
lengthy computation, we obtain that the minimum of h(y) is attained at 

y (x; a, c) = (x – w – awg –1(acw))+ 1(x < x(a,c)), (2.14)

where x (a,c) is defined at (2.11) (compare the value of the local minimum of
h(y) with h(0)). The solution x(a,c) to (2.11) exists and is unique since G is con-
vex on (–1, r0], concave on [r0,∞), and x → G (g–1(acw)) + c(x – w – awg–1(acw))
is the tangent line of G at g–1(acw) < r0. Moreover, the function x(a,c) is con-
tinuous and c → x(a,c) is decreasing for each a. The function c(a) is well-defined
if 0 < Pb < � (X – w)+. Indeed, by the dominated convergence, c(a,c) → 0 as c →
g(r0) / (aw) and

lim
c 0" +

c(a,c) = � (X – w(1 – a))+ ≥ � (X – w)+ > Pb ,
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where c is defined in (2.12). By (1.2), the continuity of x (a,c) and the domi-
nated convergence, c is continuous. Moreover, c → c(a,c) is decreasing. Indeed,

c2
2 c(a,c) = aw [F (w + awg –1(acw) – F (x (a,c)] c2

2 g –1(acw) +

+ [x(a,c) – w – awg –1(acw)] f (x(a,c)) c2
2 x(a,c) < 0

because c2
2 g –1(awc) ≥ 0, c2

2 x(a,c) < 0, and x(a,c) > w + awg –1(acw) (see (2.5)).
This implies that c (a) exists and the function a → c(a) is continuous.

Since �y(X;a,c(a)) = �Ra = Pb , we have

min
,a R] g

�((1 + ar)w – X + R < 0) ≥ min
a0 1# #

�((1 + ar)w – X + Ra < 0).

By the dominated convergence and the continuity of x(a,c) and c(a), the func-
tion a → � ((1 + ar)w – X + Ra < 0) is continuous on [0,1]. Consequently, h
attains its minimum which completes the proof. ¡

Remark 3. Suppose the random variable 1 + r has a lognormal distribution, i.e.
the distribution of ln(1 + r) is normal N(m,s2). Then G satisfies assumption A1
with r0 = exp(m – s2) – 1.

3. OTHER MODELS

3.1. Minimization of the variance of the cedent’s cover

The problem of minimizing the variance of the cedent’s cover was treated in
many papers (see e.g. Kaluszka, 2004ab, for a review of literature). Herein we
assume that the probability that the reinsurer’s cover will be greater than a
given level, say P, is fixed and equal to a. Under this constraint, we will study
the problem that consists in choosing a contract which minimizes the variance
of the cedent’s cover:

min �2 (X – R) s.t. �(R > P) = a, 0 ≤ R ≤ X, (3.1)

where 0 ≤ a <1. Observe that P can also be interpreted as a reinsurer’s premium
calculated according to the percentile principle (see Gerber, 1979, p. 69).

Theorem 6.
Suppose the distribution of X is given by (1.2) and suppose 0 < P ≤ F –1(1 – a) –
�X, where F –1(1 – a) means the (1 – a)-quantile of X. Then a solution to (3.1) is
as follows:

Rb* = (X – b*)+ – (X – b* – P )+ 1(X < F –1(1 – a))

with b* being a minimizer of � (X – Rb – b)2 over 0 ≤ b ≤ �X.
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Proof. Since �2(X – R) = min0 ≤ b ≤ �X �(X – R – b)2, it is enough to solve the problem

min �(X – R – b)2 s.t. �(R > P) = a, 0 ≤ R ≤ X. (3.2)

Set R = {R; �(R ≥ P) = a, 0 ≤ R ≤ X}. As in the proof of Theorem 1, we obtain
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Observe that F –1(1 – a) – b – P ≥ F –1(1 – a) – �X – P > 0. Since �(ybc0
(X) > P) = a for

c0 = (F –1(1 – a) – b – P)2, we have ybc0
(X) ∈R for all b. The proof is complete. ¡

3.2. Maximizing utility

In this section, the optimality criterion that we use is that the cedent’s expected
utility should be minimized subject to constraints on the reinsurer’s expected
net profit and the probability that the reinsurance payment will be greater than
a level L:

max �u(w – X + R) s.t. Pb = �R, �(R > L) = a, 0 ≤ R ≤ X, (3.3) 

where 0 ≤ a < 1 and u is a von Neumann-Morgernstern utility function of the
risk-averse cedent, that is u�(x) > 0 and u �(x) < 0 for all x. Recall that Pb =
P / (1 + b). The problem is a modification of the time-honoured Arrow’s prob-
lem (1963). Similar modifications have been suggested by Bühlmann in a
dynamic setting (see Gaier et al., 2003, and Hipp, 2003).

Theorem 7.
Assume X has the distribution function (1.2), assume w + L < F –1(1 – a) and
assume �Rw < Pb ≤ �R0, where Rb = (X – b)+ – (X – b – L)+ 1(X < F –1(1 – a)). Then
a solution to (3.3) is the rule Rb* in which b* is such that �Rb* = Pb .

Proof. Define c(b) = �Rb – Pb . By the dominated convergence, the function c
is continuous. Since c(0) ≥ 0 and c(w) < 0, there exists b* such that c(b*) = 0.
Put R = {R; �R = Pb , �(R > L) = a, 0 ≤ R ≤ X}. Clearly
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max
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where 0 < c1 < u�(w) and c2 > 0. The rest of the proof is analogous to that of
Theorem 1. ¡

Example 4. Suppose the reinsurer is willing to have a contract which obliges
him to cover 0 ≤ R ≤ min(X,L), where L is a positive real. From Theorem 7 it
follows that a solution to the problem 

max �u (w – X + R) s.t. Pb = �R, 0 ≤ R ≤ min(X,L), (3.4)

is the limited stop loss of the form

R = (X – b)+ – (X – b – L)+ = min(X – b,L),

with b being such that �R = Pb . This fact is well known.

3.3. Maximization of the dividend payment

Assume the expected value principle is used for the calculation of the rein-
surance premium. The dividends are paid at time 1 if the gain of the cedent
after reinsurance exceeds a given level, say c, where c may stand for the expenses
plus profit. Suppose the cedent’s objective is to maximize the expected dividend
payment �(p – P – X + R – c)+ for a fixed premium of the reinsurer:

max �(p – P – X + R – c)+ s.t. Pb = �R, 0 ≤ R ≤ X. (3.5)

Theorem 8.
If �[X1(X < p – P – c)] < Pb < �X, then a solution to (3.5) is given by Rb* = X1(X <
b*) in which b* > 0 is a real such that �Rb* = Pb .

Proof. The proof follows along the same lines as in Theorem 1. ¡

It is easy to check that there is a real P satisfying the assumption of Theorem 8
iff (1+ b ) � [X1(X < p – c – �X )] < �X.

3.4. The Kahneman-Tversky value function

The prospect theory of Kahneman and Tversky (1979) represents an alterna-
tive theory of decision making under uncertainty, as opposed to the standard
Morgenstern-von Neumann utility theory. Based on a series of experimental
observations, Kahneman and Tversky propose a value function defined on the
gains or losses relative to a reference point, instead of the absolute level of
consumption or wealth. Specifically, they state that the value functions are
(i) defined on deviations from the reference point; (ii) generally concave for gains
and commonly convex for losses; (iii) steeper for losses than gains. Prospect the-
ory has been widely supported by experimental studies of human behavior.
We find a solution to the Arrow problem with the expected Kahneman-Tver-
sky value function as an objective function:
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max �u (w – X + R) s.t. Pb = �R, 0 ≤ R ≤ X, (3.6)

where w is a reference point and u is an increasing and nondifferentiable at 0
function such that u+(0) < u –(0), u �(x) > 0 for x < 0, and u �(x) < 0 for x > 0.
Hereafter, u –(0) and u+(0) means the left derivative and the right derivative of
u at 0, respectively.

Theorem 9.
Assume 0 < Pb < � [(X – w)+1(X < b0)], where b0 solves the equation u (w – b) =
u(0) + u+(0)(w – b) in b > w ≥ 0. The truncated stop loss rule Rb* = (X – w)+1 (X <
b*) with b* such that �Rb* = Pb is a solution to (3.6).

Proof. For every u+(0) < c < u –(0), we have

max max�u w X R u w x y cy dF x cP
R y x

b
R 0

#- + - + - +
! # #

#] ^^ ]g h h g

in which R = {R; �R = Pb , 0 ≤ R ≤ X}. The maximum in y is attained at yc(x) =
(x – w)+1(x < xc), where xc is a solution to u (w – x) = u (0) + c (w – x) in x > w.
Observe that w < xc < b0, which implies 0 ≤ yc(x) ≤ (x – w)+1(x < b0) for all x.
Moreover, w ≤ b → � [(X – w)+1(X < b)] is a continuous function. As a result,
there exists b* such that �Rb* = Pb. ¡
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