
RUIN PROBABILITIES FOR TWO CLASSES OF RISK PROCESSES

BY

SHUANMING LI1* AND JOSÉ GARRIDO2

ABSTRACT

We consider a risk model with two independent classes of insurance risks.
We assume that the two independent claim counting processes are, respectively,
Poisson and Sparre Andersen processes with generalized Erlang(2) claim inter-
arrival times. The Laplace transform of the non-ruin probability is derived
from a system of integro-differential equations. Explicit results can be obtained
when the initial reserve is zero and the claim severity distributions of both
classes belong to the Kn family of distributions. A relation between the ruin
probability and the distribution of the supremum before ruin is identified.
Finally, the Laplace transform of the non-ruin probability of a perturbed
Sparre Andersen risk model with generalized Erlang(2) claim inter-arrival times
is derived when the compound Poisson process converges weakly to a Wiener
process.
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1. INTRODUCTION

Consider an insurance surplus process 

U(t) = u + ct – S(t), t ≥ 0, (1)

where u is the initial surplus, c is the premium rate, and {S(t); t ≥ 0} is the aggre-
gate claim amount process. In this paper, we assume that S(t) is generated by
two classes of insurance risks. Usually such models are studied in the context
of correlated risks. Our purpose is different here. We look at the impact on the
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surplus of the introduction of extra variability. Here it takes the form of the
aggregate “shocks” (or claims) from the first class, independently added to the nat-
ural random variability of the aggregate insurance claims from the second class.

Actuarial models often perturb the aggregate insurance claims with diffusions.
By contrast, our perturbation, in the first class, is a jump process similar to that
of the insurance claims in the second class. The diffusion perturbation can still
be obtained as a limit case of our model (see Section 6).

More specifically, here 
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where the {Xi}i ≥1 are the i.i.d. positive claim severities from the first class, with
common distribution function P(x) and density p(x), while the {Yi}i ≥1 are the
claim severities from the second class, also assumed i.i.d. positive, but with
common distribution function Q(y) and density q(y). Denote by mX and mY,
respectively, the means of X and Y, and by p(s) = e sx

0

3 -# p(x)dx and q(s) =
e sx

0

3 -# q(x)dx their Laplace transforms.
The claim number process {N1(t); t ≥ 0} is assumed to be Poisson with

parameter l. The corresponding exponential claim inter-arrival times are
denoted {Wi}i ≥1. By contrast, {N2(t); t ≥ 0} is a renewal process with i.i.d.
claim inter-arrival times {Vi}i ≥1 that are generalized Erlang(2) distributed, i.e.
the sum Vi := Li1 + Li2 of 2 independent random variables, where the {Li1}i ≥1
are i.i.d. exponential random variables with parameter l1, while the {Li2}i ≥1 are
i.i.d. exponential with parameter l2 (possibly different from l1).

We finally assume that {Xi}i ≥ 1 and {Yi}i ≥ 1 are mutually independent, also
independent of N1 and N2, and that c > lmX + [l1l2 / (l1 + l2)] mY, providing a
positive loading factor, q, such that 1/ (1 + q) = [lmX + l1l2 mY / (l1 + l2)] / c.

Now define

T = inf{t ≥ 0 : U(t) < 0} (∞, otherwise),

to be the ruin time, and

C(u) = �(T < ∞ | U(0) = u), u ≥ 0,

to be the probability of ultimate ruin (with F(u) = 1 – C(u) being the survival,
or non-ruin, probability).

The Erlang distribution is one of the most commonly used in queuing the-
ory, which is closely related to risk theory. See for example, Asmussen (1987,
1989). More recently, a number of papers have discussed how to adapt the
methods and results from the classical risk model to those of a Sparre Ander-
sen model, with Erlang or generalized Erlang distributed claim inter-arrival
times, see Dickson (1998), Dickson and Hipp (1998, 2001), Cheng and Tang
(2003), Li (2003), Li and Garrido (2004), Gerber and Shiu (2003a,b, 2005) and
the references therein.
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Yuen et al. (2002) consider the non-ruin probability for a risk process
involving two dependent classes of insurance risks. It can be represented as a
surplus process with two independent classes of risks, for which one claim
number process is Poisson and the other is a Sparre Andersen process with
Erlang(2) claim inter-arrival times. Explicit results are given only for exponen-
tially distributed claim amounts. Their model can be reduced to the one pro-
posed here.

We consider a risk process with two independent classes of risks, one is a
compound Poisson process, the other is a compound renewal process with gen-
eralized Erlang(2) distributed claim inter-arrival times and Kn distributed claim
severities (see Willmot, 1999).

The paper is organized as follows. In Section 2, we obtain a system of inte-
gro-differential equations for the non-ruin probability F(u). Section 3 discusses
a generalized Lundberg fundamental equation and its roots. These allow, in Sec-
tion 4, to obtain and analyze the Laplace transform of the non-ruin probability.
Explicit results are given when the initial reserve is zero or when the claims
severity distributions for both classes belong to the Kn family. An illustrative
example with exponential severities is provided. Section 5, establishes a rela-
tionship between the ruin probability and the distribution of the supremum
before ruin. Finally, in Section 6, the Laplace transform of the non-ruin prob-
ability for a Sparre Andersen risk process perturbed by a diffusion is obtained
by letting the compound Poisson process converge weakly to a Brownian motion.

2. SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS

In the classical risk process, the ruin probability is time homogenous due to
the lack-of-memory property of the exponentially distributed claim inter-arrival
times, i.e. the ruin (survival) probability, independent of time t, is only a func-
tion of the initial surplus. However, for our risk process, the ruin probability
is no longer time-homogeneous, due to the Erlang(2) distributional assumption
for the inter-arrival times from the second class. As such, for the probability
of ultimate ruin C(u), defined in Section 1, we assume that a claim from the
second class occurs exactly at time 0.

The ruin probability, denoted by C(u,t), is a bivariate function of the cur-
rent reserve u and the length of time t, elapsed since the time of a claim from
the second class (the surplus process repeats itself at these points). We are
interested in the ruin probabilities at time zero (or at the time of a second class
claim occurrence) and the time of the realization of Li1, i = 1,2,…. The for-
mer is C(u,0) = C(u), the latter is defined by C1(u) = �[T< ∞ |L11 = t, U(t) = u ],
and F1(u) = 1 – C1(u) (note that C1(u) is independent of t, due to the the lack
of memory of L11). Then total probability formula gives

C(u,t) = C(u) �(L11 > t) + C1(u) �(L11 < t)
= e –l1t C(u) + (1 – e –l1t) C1(u).

Next consider the derivation of C(u) and C1(u). Let M = W1 ! L11 then
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Similarly, let Z = W1 ! L12, then
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By similar arguments, we have that (for u ≥ 0):
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Setting s = u + ct yields
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Differentiating with respect to u yields the following system of integro-differen-
tial equations:

,c u u u x p x dx ul l l lF F F F
u

1
0

= - - - + +� 1 1 #] ] ] ] ^ ]g g g g h g (7)

.c u u x q x dx u x p x dx ul l l lF F F F
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Integrating both sides of equations (7) and (8) from 0 to u, after some simpli-
fications, we obtain (for u ≥ 0):
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where P(x) = 1 – P(x) and Q(x) = 1 – Q(x) are the survival functions of P and Q,
respectively. By the monotone convergence theorem and the fact that F(∞) =
F1(∞) = 1, it follows from (9) and (10), that as u → ∞
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Another relation between F(0) and F1(0), as well as the solutions to the integro-
differential equations (7) and (8), are closely related to the root of a generalized
Lundberg’s equation. This is discussed in the next section.
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3. A GENERALIZED LUNDBERG EQUATION

Let T0 = 0 and Tk = jj 1= Vk! be the arrival time of the k-th claim from the
second class. Define U0 = u and for k = 1,2,…,
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to be the surplus immediately after the k-th claim from the second class. We seek
a number s such that the process {esUk ; k = 0,1,2…} forms a martingale. Here
the martingale condition is
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]^ ]^g h g h8 8B B , then (13) is equiva-
lent to 

g (s) = q (s), s ∈ �, (14)

which is a Generalized Lundberg Fundamental Equation.

Note that s = 0 is a root of equation (14). The following theorem shows that
it also has one and only one positive real root, which plays a key role in the
following sections.

Theorem 1. The generalized Lundberg equation in (14) has exactly one posi-
tive real root, say, r.

Proof. It is easy to check that the equation
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Figure 1: Roots of Generalized Lundberg Equation

has two positive real roots, say s1, s2. Noting that c + lp�(s) ≥ c – lmX > 0, for
s ≥ 0, then

,s
c s cs s
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has one positive real root, say, s0. Thus g�(s) < 0, for s ∈ [0,s0) and g�(s) > 0, for
s ∈ (s0,∞), hence g(s) is decreasing for s ∈ [0,s0), while it increases for s ∈ (s0,∞).

Furthermore, we have that g(0) = q(0) = 1 and g�(0) =
c

l l

l l lmX
-

+ -

1 2

1 2] ]g g < – mY =
q�(0). It follows that g(s) = q(s) has only one positive real root, that we denote
by r (see Figure 1 below). ¡

Remark: By Rouché’s Theorem, the generalized Lundberg equation (14) has
one and only one root on the right half complex plane, i.e., r > 0 is the only
root on the right half plane.

4. LAPLACE TRANSFORMS

In this section, we derive the Laplace transforms for the non-ruin probabilities
in the integro-differential equations of Section 2, and then invert these Laplace
transforms for specific claim size distributions.

Define F̂(s) = e su

0

3
-# F(u)du and F̂1(s) = e su

0

3
-# F1(u)du to be the Laplace

transforms of F and F1, respectively. Applying a Laplace transform to both
sides of equations (7) and (9) yields 

1 [cs – (l1 + l) + lp(s)]F̂(s) = cF(0) – l1F̂1(s),
2 (15)
3 [cs – (l2 + l) + lp(s)] F̂1(s) = cF1(0) – l2q(s)F̂(s).
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Solving the above system of equations gives
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Since F̂(s) and F̂1(s) are finite for all s > 0, we have that both numerators are
zero at s = r, that is 

F(0) [cr – (l2 + l) + lp(r)] = l1F1(0). (18)

Note that substituting s = r in both numerators of (16) and (17) yields the same
result as in (18). The approach used here is exactly the same as in Lin (2003).
Therefore, equations (16) and (17) can be rewritten as
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Solving equations (11) and (18) yields
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We now consider the case where both claims size distributions, p and q, belong
to the Kn class, n ∈ �+ (see Willmot, 1999), that is
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where ai > 0, for i = 1,2,…,n, bj > 0, for j = 1,2,…,m while g(s) and h (s) are
polynomials of degree n – 1 or less and of degree m – 1 or less, respectively, with
h(0) = g(0) = 0. The class of Kn distributions, widely used in applied proba-
bility applications, includes in particular the Erlang and some phase-type dis-
tributions as special cases (as well as mixture of them).

In this case, equation (19) can be transformed to a rational expression, mul-
tiplying both numerator and denominator by [pn(s)]2 qm(s), that is
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where pn – 1 [s,r] := s
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with respect to r and pn[s,r] := s
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g g is the first order divided difference
of pn(s) with respect to r. Clearly, pn – 1[s,r] and pn[s,r] are polynomials of
degree n – 2 and of degree n – 1, respectively. The transform in (25) is related
to the Wiener-Hopf decomposition, an approach commonly used in risk and
queuing theory to identify the poles and zeros of transforms [see Cohen (1982)
for details and illustrative examples]. Since our transforms take the form of
ratios of polynomials, the problem here reduces to the use of partial fractions.

For simplicity, denote the denominator of (25) by D2n + m + 2(s). Then

D2n + m + 2(s) = qm(s) [(cs – l1 – l) pn(s) + lpn – 1(s)]

≈ [(cs – l – l2) pn(s) + lpn – 1(s)] – l1l2 [ pn(s)]2 qm – 1(s),

is a polynomial of degree 2n + m + 2 with leading coefficient c2. Thus the equa-
tion D2n + m + 2(s) = 0 has 2n + m + 2 roots on the complex plane, with all the
complex roots being in conjugate pairs. Noting that s = 0 and s = r are two of
the roots, then

D2n + m + 2(s) = c2s (s – r) s Ri
i

n m

1

2

+
=

+

%^ h, s ∈ �.

Note that all Ri’s have a positive real part, since otherwise, –Ri would also be
a root of the generalized Lundberg equation (14), which is a contradiction to
the conclusion that it only has one root on the right half complex plane.
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Then (25) can be simplified to 
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where qm – 1[s,r] = s

q s q

r

rm m1 1

-

-- -

]

] ]

g

g g and qm[s,r] = s
q s q

r
rm m

-

-] ]g g are the first order
divided differences of qm – 1 and qm, respectively. For simplicity, let h2n + m – 1(s) =

[ pn(s)]2{ q

q

r

r

m

m 1-

]

]

g

gqm[s,r] – qm – 1[s,r]}, then inverting (28) yields

,u
c

u c d d e
p

l
r l l l r l

F F
F 0

i
R u

i

n m

0
1

2

=
- + +

+ + -

=

+

i2

1

2
1 !]

^ ^
]

]
dg

h h
g

g
n (29)

where d0 =
i 1= R

h 0

n m
m

2

1

+

+ -

i

n2

%

] g, di =
!,j j i1=R R R

h R

j i
n m

m i
2

1
-

-

-

+

+ -n2

i % ]

]

g

g , for i = 1,2,…,2n + m and F(u) is
given by (27).

Example 1. Let p(x) = �e– �x, q(x) = be– bx be exponential distributions, with

c = (1 + q) �
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l l b
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] g
9 C. Then p(s) = �

�
s+ and q(s) = sb

b
+ , hence (21) gives
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where r is the positive root of the equation:
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Setting c = 1.5, � = 1, l = 1, l1 = 0.5, l2 = 2 and b = 2, yields r = 1.96372, R1 =
0.21857, R2 = 0.79749 and R3 = 1.94765. Then F(0) = .21901, F1(0) = 0.12395
and 

F(u) = 1 – 0.77545e – 0.21857u – 0.00225e – 0.79749u – 0.0032e – 1.94765u,

F1(u) = 1 – 0.85013e – 0.21857u + 0.0101e – 0.79749u – 0.03602e – 1.94765u.
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Note that F(u) > F1(u) for any u ≥ 0, as expected, due to the fact that L11 + L12 ≥
L12. That is, the time to the first claim is initially longer than that at L11 = t.

5. SUPREMUM DISTRIBUTION BEFORE RUIN

For x > u ≥ 0, define 

, , < ,sup�u x U t x T U uG 0
t T0

3$= =
# #

] ] ]g g g( 2 (30)

to be the probability that the supremum value of the surplus process before ruin
reaches or surpasses a given level x when ruin occurs. Obviously G(u,x) = C(u),
if u ≥ 0 and u ≥ x. As in Section 2, for x > u ≥ 0, we define

, , < , ,sup�u x U s x T L t U t uG
t s T

1 113$= = =
# #

] ] ]g g g( 2

which means that G1(u,x) = C1(u) = 1 – F1(u), if u ≥ 0 and u ≥ x.

We next give a system of integro-differential equations for G(u,x) and G1(u,x).

Theorem 2. (Integro-differential equations system) G(u,x) and G1(u,x) satisfy
the following equations for x > u ≥ 0:
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with boundary conditions G(x,x) = C(x) and G1(x,x) = C1(x).

Proof: Considering the infinitesimal interval from 0 to dt, letting M = W1 ! L11
and using the law of total probability, one obtains
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Applying the above formulas to (33), subtracting G(u,x) from both sides, can-
celing out the common factor dt and letting dt → 0, proves that (31) holds.

Again, considering the infinitesimal interval from t to t + dt and letting
Z = W1 ! L12, then by the law of total probability, one has that
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Using a similar argument, gives (32) from (34). ¡

Comparing the above integro-differential equations for G(u,x) and G1(u,x) with
(7) and (8), we have the following result.

Theorem 3

,
, >

, ,
,u x

x x u

u u u x

if

if
G

C

C

0

0

x

u

F

F
$

$ $
=]

]

]
]

]
g

g

g
g

g
* (35)

1

1

1

,
, >

, ,
.u x

x x u

u u u x

if

if
G

C

C

0

0

x

u

F

F
$

$ $
= 1

1

]
]

]
]

]
g

g

g
g

g
* (36)

Proof: Clearly, the conclusion holds for u ≥ 0, u ≥ x. Since solutions to the inte-
gro-differential equations (31) and (32), with boundary conditions G(x,x) = C(x)
and G1(x,x) = C1(x) are unique, noting that C(u) and C1(u) satisfy equations
(7) and (8), then we can conclude that for x ≥ u ≥ 0, x

u

F

F

1

1

]

]

g

gC(x) and x

u

F

F

]

]

g

gC1(x)
satisfy (31) and (32), with their respective boundary conditions. ¡
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6. A SPARRE ANDERSEN RISK MODEL PERTURBED BY DIFFUSION

In this section, we obtain the ruin probability of a Sparre Andersen risk model
perturbed by diffusion as a limit case, when the compound Poisson process
converges weakly to a Wiener process. Although the perturbed model can be
analyzed directly, the ideas here give an alternative way to analyze risk models
involving Wiener processes (e.g., Gerber and Landry, 1998 and Gerber and
Shiu, 1998) using only techniques for classical and Sparre Andersen models.
Hereby, consider the following family of surplus processes:
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where all the assumptions are as in model (1), except for the premium rate
that is c + ce, the counting process N1 is now a Poisson process with parame-
ter le, and the claims from the first class are constant with value e, while the 
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Te = inf{t ≥ 0 : Ue(t) < 0 | Ue(0) = u},

to be the ruin time corresponding to risk model (37), while 

Ce(u) = �(Te < ∞), u ≥ 0,

is the ruin probability, Fe(u) = 1 – Ce(u) the corresponding survival probability,
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where ge(s) = s e s e1 1 1 1
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l l
l

l l
le e

1
+ - - + - -

+ - + -e ee e
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unique positive real root of the equation

ge(s) = q(s), s ∈ �. (40)

Now, for a fixed constant s, we choose e, le and ce such that
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The two conditions above give that le =
e
s

2

2

and ce = e
s2

. Then the cumulant
generating function of the shifted compound Poisson process cet – eN1(t) is
given by 
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If e → 0+, then � [ez (cet – eN1(t))] → e zs
2

2 2

= � [ezsB(t)], where {B(t); t ≥ 0} is a stan-
dard Wiener process. This shows that the process {cet – eN1(t); t ≥ 0} converges
weakly to the process {sB(t); t ≥ 0}, therefore the surplus process Ue(t) defined
in (37) converges weakly to the process:
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(41) is a Sparre Andersen model perturbed by a diffusion, in which the claim
inter-arrival times are generalized Erlang(2) distributed.

Furthermore, when e → 0+
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Finally, taking the limit of (39) when e → 0+ gives,
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The limit in (42) gives the Laplace transform of the survival probability F0(u)
for the perturbed risk model (41). In particular, if s = 0, then (42) simplifies to
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where s0 is the unique positive solution of the equation (l1 – cs) (l2 – cs) –
l1l2 q(s) = 0. Furthermore, if l1 = l2 = b, then (43) simplifies to
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We note that (44) is the Laplace transform of the non-ruin probability for the
Erlang(2) risk process, and can be found in Dickson and Hipp (1998).

7. CONCLUDING REMARKS

In this paper, we show how to calculate the ruin (or survival) probability for
a risk process with two independent classes of business, one is from the clas-
sical risk process, the other is from a generalized Erlang(2) risk process.

The results can be extended in various directions, for example, ruin prob-
abilities can be decomposed as the ruin probability caused by a claim from
the first class, or the ruin probability caused by a claim from the second class.
The model also can be extended to a risk process with two dependent classes,
or two independent classes, one being compound Poisson and the other gen-
eralized Erlang(n).
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