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ABSTRACT

We consider d identically and continuously distributed dependent risks X1, …,
Xd. Our main result is a theorem on the asymptotic behaviour of expected
shortfall for the aggregate risks: there is a constant cd such that for large u we

have di i1 1= =E X X u uci i # +- -d d! !8 B . Moreover we study diversification effects
in two dimensions, similar to our Value-at-Risk studies in [2].
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1. INTRODUCTION

One of the central topics in modern insurance mathematics and finance is the
search for new methods to calculate risk-adjusted solvency requirements for
companies. Such methods should in particular be able to cope with different
sorts of risks. Treating a particular kind of risk is still feasible using analytical
tools. The main issue is to model and compute the aggregation effects of differ-
ent, usually dependent risks.

In [2] and [13] a first step in this direction was undertaken. There d identi-
cally distributed dependent risks X1,…,Xd were considered and results of the
following type were obtained. (Note here that by A ~ B we mean that A/B → 1).

,P X u q P X ui
i

d

d
1

1$# + #- -
=

!= 6G @ as u → ∞, (1.1)

where the constant qd quantifies the diversification effect between the depen-
dent risks (for a precise statement see Theorem 3.2 in [2]).

From such analysis of the asymptotic behaviour of quantiles of the aggregate
risks we were able to deduce as a main result an asymptotic Value-at-Risk estimate.

However, even though being very popular, Value-at-Risk has some disadvan-
tageous properties, e.g. it is not a coherent risk measure (Value-at-Risk generally
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lacks the subadditivity property, cf. Artzner-Delbaen-Eber-Heath [3] or Alink-
Löwe-Wüthrich [2], Theorem 3.5 for b < 1). Therefore various efforts are under-
taken to look for more suitable, coherent risk measures. In many countries the
regulators tend to use expected shortfall or worst conditional expectation,
which in the case of continuous random variables are equivalent (see Acerbi-
Tasche [1]). We do not want to enter the discussion here, about “good” and
“bad” risk measures, we simply choose expected shortfall as our risk measure,
which is coherent under the assumption that our random variables have conti-
nuous marginals (cf. Acerbi-Tasche [1]). We consider (for small p’s) E [X |X ≤ up],
where up is the p-quantile of X. (To facilitate the analysis, we always assume
losses to be negative, i.e. we study lower tails.)

Moreover it was pointed out to us by an anonymous referee that without
much work the proof could be extended (and actually shortened) towards
moment estimates of the sum we are considering. Therefore, even though our
main interest lies in the analysis of expected shortfall (for which we need to
take k = 1 in Theorem 3.1 below), the proof also covers, for instance, the con-
ditional variance (for which we would consider the case k = 2).

This paper is organized as follows. In Section 2, we briefly describe our
model. Section 3 contains the formulation of our main results, while Section 4
is devoted to examples. Finally in Section 5 we give the proofs, which are
inspired by our previous results in [2]. We conclude this introduction with a
quick review on the concept of copulas.

1.1. Copulas

With expected shortfall as our risk measure, we concentrate on the case of
aggregating dependent risks. The dependency of the risks is modelled by
copulas. Copulas are simply a convenient description for families of dependent
random variables. The concept of copulas was introduced by Sklar [12]. The
idea is that the dependence structure of a finite family of random variables
is completely determined by their joint distribution function. For any d ≥ 2, a
d-dimensional copula is thus defined as a d-dimensional distribution function
on [0,1]d, with marginals that are uniformly distributed on [0,1].

With the concept of copulas we separate a multivariate distribution function
into two parts, one describing the dependence structure and the other one describ-
ing the behaviour of the marginals. Moreover, all distribution functions with
continuous marginals have a copula associated with them and vice versa. This
is the content of Sklar’s theorem [12] (see Joe [7], Nelsen [11] or Section 2 in [2]).

In this article we focus on a special family of copulas, the Archimedean ones:

Definition 1.1. Let d ≥ 2. Let f : [0,1] → [0,∞] be strictly decreasing, convex and
such that f(0) = ∞ and f(1) = 0. Define for xi ∈ [0,1], i = 1,…,d:
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The function f is called generator of Cf.
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In the case d = 2 this definition automatically implies that Cf is a copula. In the
case d ≥ 3, a further assumption is required for Cf to be a copula: If for all k
and x > 0 the k-th derivative of the inverse of f,

dx

d
k

k
f –1 (x), exists and satisfies

k
,

dx
d xf1 0k

k
1 $- -

] ]g g (1.3)

then Cf is a distribution function, and hence a copula (cf. [10] and [2]). Copu-
las of this type will be called (strict) Archimedean copulas.

The importance of Archimedean copulas in practice lies in the fact that they
are easy to construct, but still we obtain a rich family of dependence struc-
tures. Usually, Archimedean copulas depend on one parameter, only. This
makes it easier — though still very difficult — to estimate copulas from data.
One of the best studied Archimedean copulas is the Clayton copula with para-
meter a > 0. It is generated by f(t) = t –a – 1 and takes the form

CCl,a(x1,…,xd) .def (x1
–a + … + xd

–a – d + 1)–1/a. (1.4) 

The limit a → 0 leads to independence, while a → ∞ leads to comonotonicity,
i.e. complete positive dependence. For more examples we refer to Joe [7] and
Nelsen [11].

With the notion of a copula in our hands the main results in this article can
be described as follows. Assume the risks X1,…,Xd have the same continuous
marginal distribution function F and (X1,…,Xd) has an Archimedean copula.
Then we are able to compute the asymptotic behaviour of the expected short-
fall, i.e. we are able to compute the decay of
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for sufficiently small k ∈ �.

In this article we define expected shortfall as

– E (X |X ≤ u).

As in the case of extreme value theorems which were proved in [2] it is possi-
ble to distinguish three different cases with respect to marginal distribution
functions: the Fréchet case, the Gumbel case, and the Weibull case, of which
only the two (most) interesting ones, the Fréchet and the Gumbel case will be
considered here.
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2. THE MODEL

As already mentioned in the introduction we study a multivariate model
describing the diversification effect when aggregating d dependent risks. The
dependence structure will be given by an Archimedean copula, and losses are
assumed to be negative. More precisely our assumptions read as follows:

Assumption 2.1. We assume that the random vector (X1,…,Xd) satisfies:

1) All coordinates Xi are negative and have the same continuous marginal

F (x) = P [X1 ≤ x ].

2) (X1,…,Xd) has an Archimedean copula with generator f.

3) This generator f is regularly varying at 0+ with index –a, where a > 0.

The first condition is nescessary for our proof and seems rather restrictive, but
when one has different marginals, one could take the heavier tail and see our
same-marginal result as an upper bound for the various-marginal case.

For the last assumption let us recall the following definition (a standard ref-
erence on regular variation is Bingham-Goldie-Teugels [4]):

Definition 2.2. A function f is called regularly varying at some point x+ (or x –,
respectively) with index a ∈ � if for all t > 0

,lim f s
f st

ta
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=
. ]
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g
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(or ,lim tas x f s
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=- ]

]

g

g respectively).

3. RESULTS

In this section we formulate our central results. Depending on the extreme
value behaviour of the underlying risks, we distinguish two cases: the Fréchet
case and the Gumbel case.

3.1. Fréchet case

In the Fréchet case we look at (dependent) random variables that have a Fréchet-
type distribution: their marginal distributions are regularly varying at – ∞ with
paramater – b, for some b > 0. In our case we additionally assume that b > 1.
The latter assumption is needed in order for the random variables to have a
(finite) mean.

Theorem 3.1. (Fréchet case) Let k ∈ [0,∞), assume Assumption 2.1 and assume
that F is regularly varying at – ∞ with parameter – b, b > k. We have
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Remark 3.2. Note that the limit is constant in a and d.

Hence we find the following asymptotic behaviour for the conditional expecta-
tion (k = 1): As u → ∞ we have
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which is essentially the asymptotic behaviour of the conditional expectation of
the Pareto distribution (see Karamata’s Theorem, [5] Theorem A3.6). The
dependence strength comes now in via the following observation: For the
expected shortfall, conditioned on an event with probability p we obtain the
following result: Denote by – up the p-quantile of ii 1= Xd! . From the above theo-
rem and our results in [2], Theorem 3.2, as p → 0 we get
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dx1 … dxd. (3.4)

(Note here that the F in qd
F(a,b ) stands for Fréchet, and not for the marginal

distribution function.) For d = 2, qd
F(a,b) can be calculated explicitly, (see Theo-

rem 3.5 in [2]):

Let Ya have density fa = (1 + xa)–1/a – 1, a > 0 and x > 0, then
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2

1 1
= + + - -

^ `h j9 C (3.5)

For b > 1, q2
F(a,b) is increasing in a (see Theorem 3.5 in [2]). Hence we have found:

Corollary 3.3. Choose d = 2 and assume that (X1,X2) satisfies the assumptions
of Theorem 3.1. For p → 0 we have

E [X1 + X2 | X1 + X2 ≤ –up] ∼
,
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a

F
q

p
b

b
b1 F

1

2
-

-

^
e

h
o (3.6)

where the right-hand side of (3.6) is strictly decreasing in a.
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This shows that the right-hand side of (3.6) is decreasing in a, i.e. the bigger
a, the smaller the diversification effect. This is not surprising since a measures
the dependence strength in the tails (see Juri-Wüthrich [8]). In the bivariate
situation a coefficient for the dependence strength in the tails is the so-called
tail dependence coefficient l (see Embrechts-McNeil-Straumann [6]). For
Archimedean copulas we have l = 2–1/a (see [8], Theorem 3.9), which is increas-
ing in a.

3.2. Gumbel case

In the Gumbel case we look at (dependent) random variables that lie in the
domain of attraction of the exponential limit law for exceedances: there is a
c ≥ –∞ and a positive measurable function s 7 a(s) such that for t ∈ � one has
for marginals F that lim u↓c F(u + ta(u)) /F(u) = et.

Theorem 3.4. (Gumbel case) Under Assumption 2.1 and F of Gumbel type we have
that
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with qd
G given by
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In particular we get
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where Ya has probability density fa = (1 + xa)–1/a – 1 on x > 0.

Remark 3.5. Note that c2
G(a) is constant in a.

We can now do similar considerations as in the Fréchet case, assume that F is
strictly increasing, then as u↓c :
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where in the last step we have used formula (5.22) of [2]. (Note that here we
use ≈ instead of ~. A ≈ B can be read as (A – du) / (B – du) → 1.)

Denote by up the p-quantile of ii 1=
Xd! . Then as p → 0 we get
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hence expected shortfall can be approximated asymptotically.

Using Theorem 3.9 of [2] we find:

Corollary 3.6. Choose d = 2 and assume that (X1,X2) satisfies the assumptions
of Theorem 3.4. For p → 0 we have
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where we use [2], Theorem 2.9 for the equality and see that the right-hand side
of (3.13) is strictly decreasing in a.

3.3. Conclusions

In Corollaries 3.3 and 3.6 we are able to study the asymptotic behaviour of
expected shortfall, which gives upper and lower bounds for small p. The
remarkable thing is that the estimate only depends on the marginals F and on
the dependence strength a. I.e. in the Archimedean situation we can avoid the
difficulty of choosing an explicit model (copula) for the dependence structure.
All we need to estimate are the marginals and the (tail) dependence strength a
(or the tail dependence coefficient l = 2–1/a, resp.). As expected, the bounds
are decreasing for increasing dependence strength a, i.e. the larger the dependence
strength, the smaller the diversification effect.
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4. EXAMPLE

The results from the previous section can be used to estimate the expected
shortfall in cases where the assumptions of that section are met. In this sec-
tion we shall do the calculations for one such case. We shall also show the
accuracy of our estimate for another case.

4.1. How can we use this result?

First we revisit the example given in [2]. There we took two dependent motor
liability portfolios X1 and X2. As risk measure we considered Value-at-Risk at
a certain probability level. Using Value-at-Risk we studied then the diversification
effect when merging these two dependent portfolios to one big portfolio X1 + X2.
Here we examine the same example, but this time we choose expected short-
fall as our risk measure (which in our continuous setup is a coherent risk mea-
sure). Assume X1 and X2 have Archimedean copula generated by a regularly
varying function with index – a at 0+ (a > 0). Moreover assume that – X1 and
– X2 have translated Pareto marginals with translation V1 = 880 and V2 = 820,
i.e. Yi := – (Xi + Vi) is Pareto distributed with q = 80 and b = 3: for i = 1,2.

P[Xi ≤ x] = P[Xi + Vi ≤ x + Vi ] = x V
q

i

b

- +^
d

h
n for x ≤ – (q + Vi). (4.1) 

We define expected shortfall for p ∈ (0,1):

ESXi
(p) = – E [Xi |Xi < up(Xi)], (4.2)

where up(Xi) is the p-quantile of Xi .

Hence we have for p = 0.5%
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portfolio 1 portfolio 2

translation Vi 880 820
mean E [– Xi ] 1000 940
up(Xi) –1347.8 –1287.8
ESXi

(p) 1581.8 1521.8

Now we merge these two dependent portfolios to one big portfolio and we
study expected shortfall as a function of the dependence strength a:

ESX1+X2
(p;a) .def –E [X1 + X2 |X1 + X2 < ua

p (X1 + X2)], (4.3)

where ua
p (X1 + X2) is the p-quantile of X1 + X2. Using Corollary 3.3 on (–Y1, –Y2)

(note that this random vector has the same copula as (X1, X2), and furthermore



identical marginals, which is nescessary in order to apply 3.3.), we see that we
have the following approximation as p → 0

ESX1+X2
(p;a) ∼
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b
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.def EX1+X2
(a). (4.4) 

In order to quantify the benefits gained by merging the portfolios we introduce
the diversification effect on expected shortfall.

Definition 4.1. The diversification effect on expected shortfall, as a function of
a is given by

Div.eff.ES(a) .def .
a

E E X X
E E

X X

X X X X

1 21 2
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(4.5)

If we evaluate EX1+X2
(a) for different a’s (p = 0.5%) we obtain the following table

(note that in the independent case we calculated the exact values, rather than
the approximated values):
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a indep. 0.5 1.0 1.5 2.0 3.0 4.0 ∞

–E [X1 + X2] 1940 1940 1940 1940 1940 1940 1940 1940
EX1+X2

(a) 2711 2918 3032 3066 3080 3092 3097 3104
Div.eff.ES(a) 33.7% 16.0% 6.2% 3.2% 2.0% 1.0% 0.6% 0%
Div.eff.VaR(a) 31.6% 17.8% 6.9% 3.6% 2.2% 1.1% 0.6% 0%

a = ∞ belongs to the comonotonic case (complete positive dependence), and
Div.eff.VaR(a) gives the comparison to the results obtained in [2] for Value-at-
Risk.

Not surprisingly, we see that the diversification effect decreases for increas-
ing dependence strength a. One also observes that the decrease is rather fast,
i.e. already introducing slight dependencies in the tails reduces the diversification
savings substantially.

For small a (i.e. close to the independent case), p should be even smaller
than 0.5% in order for the approximation to be sharp. This is not a serious
problem, however, since we can calculate the expected shortfall and the
diversification effect directly in the independent case. A more detailed account
of the accuracy of our approximation shall be given in the next subsection.

4.2. How accurate is the estimate?

Now we shall show the efficiency of our estimate for the case where X and Y are
random variables with a dependence structure described by a Clayton copula
and such that –X and –Y have Generalised Pareto distribution. The definitions
of these can e.g. be found in [5], Definition 3.4.9 on page 162 and [11], (4.2.1),
page 94. We shall recall them here:



FIGURE 2: The diversification effect as a function of a. The complete positive dependence coincides
with the x-axis.
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FIGURE 1: The approximated shortfall as a function of a.



Definition 4.2. –X and –Y have Generalised Pareto marginals Fb
GP. I.e:

Fb
GP(t) := P(X ≤ t) = P (Y ≤ t) = tb1

1
b

-
-

c m , ∀t ≤ 0, (4.6)

and X and Y have Clayton copula Ca
Cl, as given by (1.4)

This means that X and Y have joint distribution function F on (–∞,0 ]2 as
follows:

b ba, : , ,
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(4.7)

According to Theorem 3.1 and especially (3.2) we have in the bivariate case:

E (X +Y | X +Y ≤ – u) ~ – u b
b

1-
, (4.8)

for large u. In order to show the efficiency we calculate the value of E (X +Y |
X +Y ≤ – u). With some straightforward calculations we see:
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where Ja,b is given by:
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We fed this formula into the computer-algebra-package Maple to draw the fol-
lowing result (Figure 3) for the case where a = 1 and b = 2. The figure shows
the exact value of E(X +Y |X +Y ≤ – up), divided by our estimate – up b /(b – 1),
as a function of p (= P(X +Y ≤ – up)).

Remark 4.3. Taking u = 0, one immediately sees that for negative random vari-
ables X1,…,Xd typically

E (X +Y |X +Y ≤ – u) = E (X +Y ) ≠ 0 = u b
b

1
-

-
. (4.11)

So our estimate is not exact for u = 0 (or p = 1, which is the same in this case),
no matter what copula and marginal distribution one takes.
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FIGURE 3:
/u

E X Y X Y u

b b 1

#

- -

+ + -

]

^

g

h
as a function of P(X +Y ≤ – u), for a = 1 and b = 2.

This is not in contradiction with the results of [8] and [9]. Their results
state that the Clayton copula CCl (x,y) is the ‘limiting copula’ when one looks
at the quotient C(xe,ye) / C(e,e), and that the behaviour of the Clayton copula
itself is invariant. But here we condition on X +Y ≤ – u rather than X ≤ – u !

Y ≤ – u. So our estimate is slightly smaller than the real value, since we not only
condition on (and thus divide by) the probability that both X and Y are very
small, but also the probability that only one of them is very small. But as we
take a > 0 and thus positive dependency, this last probability is very small, but
large enough to show up in Figure 3.

5. PROOFS

Proof of Theorem 3.1

The main idea here comes from [2]. The main theorem of that article states that

, ,lim aF u P X u q b1
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for a certain constant qd
F(a,b ).

For simplicity, let us write S for ii 1=
Xd! . Let FS be its distribution function.

By the simple substitution s = – t we obtain
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With (5.1) we can now see that the distribution function FS is regular varying
at –∞ with parameter –b. We therefore may apply [4], Theorem 1.6.5 to the right
hand side of the above equation to obtain
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Proof of Theorem 3.4. For the lower bound note that
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has a positive argument in the integral. We define Yi(u) = (Xi – u) /a(u). Hence
for all e > 0
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From the Gumbel assumption on F and formula (5.22) in [2], we find that the
first term on the right-hand side in (5.5) satisfies
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It remains to study the integral. Choose M >1 and e < d and divide the integral
into two parts:

/

<

/

<

/

<
.

F u a u

P Y u z
dz

F u a u

P Y u z
dz F u a u

P Y u z
dz

e

e e

1

1 1

ii

d

ii

d
M ii

d

M

1

0

1

0

1

+

-

=
+

-
+

+

-

3

3

=

= =

#

# #

!

! !

]^

]

]^

]

]^

]

g h

g

g h

g

g h

g

8

8 8

B

B B

(5.7)

To the first term we apply the dominated convergence theorem, the second
term becomes arbitrarily small for large M.

Term 1. For z > 0
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Hence for all large u we have that
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Henceforth we have found an uniform upper bound, which implies that our
function is L1 on [0,M ]. There remains to prove pointwise convergence in z so
that we can apply the dominated convergence theorem to the first term on the
right-hand side of (5.7).

We introduce the events {Y1(u) < 1/e}.
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Lemma 5.3 of [2] states:
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When we apply this to the first term on the right-hand side of (5.10), we find
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To the second term on the right-hand side of (5.10) we give an estimate which
is similar to (5.12) in [2].
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Now we come to the last term on the right-hand side of (5.7). For M > 1,
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Next we consider the expectation in the expression above:
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where vM(u) = (M – 1)a (u) /d – u. Now we may use the that we are working
with marginals which have Gumbel type, henceforth (see [5], formula (3.3.34))
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where in the last step we have used that limu → ca�(u) = 0 (see [5], Theorem 3.3.26
and formula (3.3.31)).

Hence we find for all e < d and all M > 1 (see (5.12), (5.13), (5.14), (5.16))
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The function f1,e is increasing in e. Moreover
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which converges to 0 for e → 0. Hence we find (see (5.5), (5.6), (5.17))
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Exchanging the two integrations finishes to proof of the lower bound. The same
upper bound is found only considering the term coming from f1,e. This finishes
the proof of (3.7).

Now, for the case d = 2 we find
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Recall (5.39) from [2]:
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This proves the left equality of (3.10); for a proof of the right equality we
introduce g < 0 and generalize:
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Now we take g = –1/2 and find:
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which, together with (5.22) finishes proof of Theorem 3.4. ¬
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