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ABSTRACT

There is a growing interest in the use of the tail conditional expectation as a
measure of risk. For an institution faced with a random loss, the tail condi-
tional expectation represents the conditional average amount of loss that can
be incurred in a fixed period, given that the loss exceeds a specified value. This
value is typically based on the quantile of the loss distribution, the so-called
value-at-risk. The tail conditional expectation can therefore provide a measure
of the amount of capital needed due to exposure to loss. This paper examines
this risk measure for “exponential dispersion models”, a wide and popular
class of distributions to actuaries which, on one hand, generalizes the Normal
and shares some of its many important properties, but on the other hand, con-
tains many distributions of nonnegative random variables like the Gamma
and the Inverse Gaussian.
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1. INTRODUCTION

Insurance companies set aside amounts of capital from which it can draw from
in the event that premium revenues become insufficient to pay out claims.
Determining these amounts needed is not an obvious exercise. First, it must
be able to determine with accuracy the probability distribution of the losses
that it is facing. Next, it has to decide on the optimal risk measure that can be
used to determine the amount of loss to cover with a high degree of confidence.
This risk measure which may be denoted for instance by ‡, is technically defined
to be a mapping from the space of loss random variables L to the real line R.
In effect, we have ‡ : L � X → ‡(X ) � R. Artzner, Delbean, Eber, and Heath
(1999) developed the axiomatic treatment for a “coherent” measure of risk
and in that seminal paper, the authors claimed that a risk measure must share
four axioms: subadditivity, monotonicity, positive homogeneity, and translation
invariance. See their paper for definitions of these axioms. The tail conditional
expectation of a continuous loss random variable X shares these axioms.
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Assume for the moment that an insurance company faces the risk of los-
ing an amount X for some fixed period of time. This generally refers to the total
claims for the insurance company. We denote its distribution function by FX (x)
= Prob(X ≤ x) and its tail function by F“

X (x) = Prob(X > x). Note that although
our setting applies to insurance companies, it is equally applicable for any insti-
tution confronted with any risky business. It may even refer to the loss faced
by an investment portfolio. We define the tail conditional expectation of X as

TCEX (xq) = E(X |X > xq) (1)

and we can interpret this risk measure as the mean of worse possible losses.
It gives an average amount of the tail of the distribution. This tail is usually
based on the q-th quantile, xq, of the loss distribution, which is defined for 0 <
q < 1 as

xq = inf(x |FX(x) ≥ q). (2)

For random variables with strictly monotonic distribution functions, it is
uniquely defined as xq = FX

–1(q) and this happens, for example, for a random
variable with continuous distribution function and nonnegative support. The
formula used to evaluate this tail conditional expectation is

X
X ,TCE x

F x
xdF x1

X q
q xq

=
3

#_
_

]i
i

g (3)

provided that F“
X (xq) > 0, where the integral is the Lebesgue-Stieltjes integral.

Tail conditional expectations for the univariate and multivariate Normal fam-
ily have been well-developed in Panjer (2002). Landsman and Valdez (2003)
extended these results for the class of elliptical distributions which contain the
familiar Normal distributions. These results have been limited in scope because
these authors considered only symmetric distributions. In this paper, we develop
formulas for tail conditional expectations of loss random variables belonging
to the class of exponential dispersion models. This class of distributions has served
as “error distributions” for generalized linear models in the sense developed by
Nelder and Wedderburn (1972). This includes many well-known discrete dis-
tributions like Poisson and Binomial as well as continuous distributions like
Normal, Gamma and Inverse Gaussian, which are, except for Normal, not
symmetric. Several of these distributions have nonnegative support and pro-
vide excellent fit for modelling insurance claims or losses. It is not therefore
surprising to find that they are becoming popular to actuaries. For example,
credibility formulas for the class of exponential dispersion models preserve the
property of a predictive mean; see Kaas, Dannenburg and Goovaerts (1997),
Nelder and Verrall (1997), Landsman and Makov (1998) and Landsman (2002).

The rest of this paper is organized as follows. Section 2 recalls definition
and main properties of the class of exponential dispersion models. We consider
here both the reproductive and the additive forms of exponential dispersion
models. The distinction is necessary as there are exponential dispersion model
distributions that can only be expressed in one of the two forms. In Section 3,
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we derive the main formula for computing tail conditional expectations for
exponential dispersion models. In particular, we find that we can express the TCE
in terms of a so-called generalized hazard form later defined in Section 3.
Section 4 considers some familiar absolutely continuous distributions belong-
ing to this class, such as the Normal, Gamma, and the Inverse Gaussian.
In Section 5, we show that the “lack of memory” property of the Exponential
distribution is equivalent to a characteristic property expressed in terms of the
tail conditional expectation. The resulting expression provides for a unique
representation of the TCE for exponential distributions. Section 6 provides
some familiar discrete distributions belonging to the exponential dispersion
family, and derive TCE formulas for these distributions. Section 7 briefly
describes the computation formula for either the sum or the weighted sum of
random variables within the class. We conclude this paper in Section 8.

2. DEFINITION AND PROPERTIES OF EXPONENTIAL DISPERSION MODELS

The early development of exponential dispersion models is often attributed to
Tweedie (1947) although a more thorough and systematic investigation of its
statistical properties was done by Jorgensen (1986, 1987). This class of models
together with their properties is extensively discussed in Jorgensen (1997).
For the properties discussed below and for an in-depth investigation of these
properties, we ask the reader to consult this excellent source of reference on
dispersion models.

Let Q(x) be some s-finite measure on the real line R. Define the log Laplace
transformation of this measure by

,log expk x dQ xq q
R

= #] ] ]g g g

and define the parameter set

Q = {q ∈R | k(q) < ∞}. (4)

The family of probability measures

dPq = eqx – k(q)dQ(x), q ∈Q

defines the Natural Exponential Family (NEF), where k(q) is called the cumu-
lant. NEF, being a one-parameter model, generates two-parameter models in
the following manner. Let L be a subset of R+ = (0,∞) such that

> log expk x dQ xl l q qL 0
R

l= = *#] ] ]g g g& 0 (5)

for some measure Ql
*. It is clear that L is not empty, because 1 ∈L (when l = 1,

Ql
* = Q ). From (5) we get the family of probability measures
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dP *
q,l = e[qx–lk(q)]dQl

*(x), q ⊂ Q, l ∈L, (6)

which clearly contains two parameters: the parameter q which is named the
canonical parameter, and the parameter l which is called the index parame-
ter. This model is called the additive Exponential Dispersion family (EDF).
The random variable Y is said to belong to the additive Exponential Disper-
sion family (EDF) if its probability measure can be represented in the form (6)
and we write Y + ED*(q,l).

The transformation X = Y/l reduces to the so-called reproductive EDF which
has the form

dPq,l = e l [qx – k(q)]dQl(x), (7)

and we shall denote by X + ED (q,l). For further details, please see Jorgensen
(1997).

If the measure Ql in (7) is absolutely continuous with respect to a Lebesgue
measure, then the density of X has the form

fX (x) = el[qx – k(q)]ql(x). (8)

The same can be said about the additive form of EDF, in which case, Y has
density of the form

fY (y) = e[qy – lk(q)]q*
l(y). (9)

We now briefly examine some basic and important properties of the class of
exponential dispersion models.

Consider the reproductive form of EDF. We note that its cumulant gener-
ating function can be derived as follows:
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It follows that its moment generating function can be written as

MX(t) = exp{l [k(q + t /l) – k(q)]}. (10)

From these generating functions, it becomes straightforward to derive the mean
and the variance.

By letting the index parameter l = 1, we get a one-parameter family which
reduces to the NEF, as already clearly described above. As pointed out, NEF
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generates EDF. An important subclass of NEF is called regular if the para-
meter set Q, defined in (4), is an open set [see Jorgensen (1997), Section 3.1].
The regular EDF has several interesting properties. In particular, the cumulant,
k(q), is a differentiable function of q, and one can write that the mean is

XE X t
K t

m k q�
t 0

2
2

= = =
=

]
]

]g
g

g (11)

and the variance is

X .Var X
t

K t
l k q�

t

2

2

0

1

2

2
= =

=

-
]

]
]g

g
g (12)

Moreover, the function t(q) = k�(q) is a one-to-one and increasing mapping
from Q → W, where W ⊂ R is the set containing all possible values of m, so that
the function

q = t –1(m), m ∈ W

is clearly well-defined. Notice that the above-mentioned interesting properties for
the mean and the variance hold even for a weaker condition on NEF which is

,x dP ,
S

q l 3=# for q ∈ Q \ int(Q),

where S is the support of the distribution and int(Q) is the set of all internal
points of Q. Such NEF satisfying this condition is said to be steep [see details
in Brown (1986), Chapter 3].

By defining the unit variance function

V(m) = k�(q) = k�(t–1(m)),

the variance in (12) can be expressed as 

Var (X ) = s2V(m) (13)

where s2 = l–1 is called the dispersion parameter. This reparameterization leads
us to write X + ED(m,s2) in terms of the mean and dispersion parameters.

Suppose X has an additive form, i.e. dP *
q,l = e [qx–lk(q)]dQl

*(x) as given in (6).
Then 

KX(t) = l [k(q + t) – k(q)]

and 

MX(t) = exp{l [k(q + t) – k(q)]}. (14)

It immediately follows that for the additive version of the EDF, we have the mean 

m = E (X) = lk�(q) (15)
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and the variance 

Var (X ) = lk�(q) = V(m) /s2 (16) 

where the unit variance function is given by 

V (m) = k�(t –1(m))

with again 

t(q) = k�(q).

We will similarly write X+ED*(m,s2) whenever X is represented in the additive
EDF form. Provided no confusion arises, we will sometimes write ED (m,l) or
ED (q,l) or ED (q,s2) for the family of reproductive exponential dispersion
models. Similar notations can be used for the additive form, except that a
superscript * is used to emphasize the form.

The EDF has been established as a rich model with wide potential applica-
tions. It extends the natural exponential family (NEF) and includes many standard
continuous and discrete distribution models such as Normal, Gamma, Inverse
Gaussian, Poisson, Binomial and the Negative Binomial. We consider these mem-
bers of the EDF in a later section.

3. TCE FORMULA FOR THE EXPONENTIAL DISPERSION FAMILY

Consider the loss random variable X belonging to the family of exponential
dispersion models in either the reproductive or the additive form. Let q be
such that 0 < q < 1 and let xq denote the q-th quantile of the distribution of X.
To keep the notation simple, we denote the tail probability function as F“ (· |q,
s2) emphasizing the parameters q and s2.

Theorem 1. Suppose that the NEF which generates the EDF is regular, or at least
steep. Then we have the following results:

• For X + ED (m,l), the reproductive form of EDF, the tail conditional expecta-
tion of X is

TCEX (xq) = m + s2h, (17) 

where s2 = 1/l and

h q2
2

= logF“ (xq | q,l) (18)

• For X + ED*(m,l), the additive form of EDF, the tail conditional expectation
of X is

TCEX (xq) = m + h. (19) 
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Proof. To prove (17), first note that because EDF is regular or steep, the cumu-
lant function k(q) is a differentiable function and one can therefore differentiate
in q under the integral sign the tail function 

, .F x e dQ xq lq
x

x

l q k q
l=

3
-

q
#_

]
]i

g
g5 ?

We can then write

) )

,
,

,

,
,

( ( / ,

logF x
F x

e dQ x

F x
x e dQ x

F x
xdP F x

TCE x TCE x

q q l
q l q

q l
l k q

q l
l k q q l

l k q m s

1

1 �

�

�

,

q
q

x

x

q
x

x

q
q

x

X q X q

l q k q
l

l q k q
l

q l

2

2
2

2
2

=

= -

= -

= - = -

3

3

3

-

-

q

q

q

#

#

#

_
_

]
]

_
]

]
]

_
] _

]

i
i

g
g

i
g

g
g

i
g i

g

5

6 5

<

7 7

?

@ ?

F

A A

# -

after noting that the mean is k�(q). After a re-arrangement of the terms, the
result should immediately follow. Suppose now X +ED*(m,s2), the additive
case. It can similarly be proven that
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with m as defined in (15). A re-arrangement will lead us to the desired result. ¬

The only difference with (19) and (17) is the additional factor of s2 or equiva-
lently, 1/l.

Let us notice that the function 

h x q2
2

=] g logF“ (x | q,l)

can be considered as a generalization of the hazard rate. In fact, if q is a loca-
tion parameter, i.e.
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F“ (x | q,l) = F“ x
s

q-
b l

for some distribution function F having the density f (x) (for example, Normal
distribution), then 

,h x
F x

f x

s
q

s s
q1

=
-

-

]

b

b

g

l

l

is exactly hazard rate. Clearly, the constant h in (18) is the generalized hazard
rate evaluated at xq, i.e. h = h(xq).

4. EXAMPLES – ABSOLUTELY CONTINUOUS

We now consider some examples of distributions belonging to the class of expo-
nential dispersion models. In particular, we give as examples the familiar Normal
(an example of a symmetric distribution), Gamma and Inverse Gaussian (exam-
ples of nonsymmetric distributions with nonnegative support), for the absolutely
continuous case, and Poisson, Binomial, and Negative Binomial for the dis-
crete case. For other examples, we suggest the reader to consult Jorgensen (1997).

Example 4.1. Normal. Let X+N(m,s2) be Normal with mean m and variance s2.
Then we can express its density as

.
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Thus, we see that it belongs to the reproductive ED family by choosing q = m,
l = 1/s2, k(q) = 2

1 q2 and ql(x) = ( p s2 )–1 exp(–x2/s2). Hence, the unit variance
function for Normal distribution is

V(m) = k�(m) = 1. (21)

Now denoting by f(z) = ( p2 )–1exp (– 2
1 z2) and F(z) =

3-
fz

# (x)dx, respectively,
the density and distribution functions of a standard Normal, we see that
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Reparameterizing back to m and s2, we find from (17) that the TCE for the Nor-
mal distribution gives

)(
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This gives the same formula as that derived in Panjer (2002) and Landsman and
Valdez (2003).

Example 4.2. Gamma. Let X+Ga (�,b) be Gamma distributed with parame-
ters � and b. We express its density as follows:

,
�

f x x e
b

G

�
� xb1= - -

]
]

g
g

for x > 0. (23)

With re-arrangement of the terms we get 

.exp log
�

�f x x xb bG

� 1

= - +
-

]
]

^g
g

h

Thus, we see that it belongs to the additive ED family by choosing q = –b,
l = �, k(q) = – log(–q) and ql(x) = x�–1(G(�))–1. Because t(q) = k�(q) = –1/q,
the unit variance function for the Gamma distribution is

V(m) = k�(t–1(m)) = m2. (24)

Note that both the Exponential and the Chi-Square distributions are special
cases of the Gamma distribution. By choosing � = 1 in (23), we have the Expo-
nential and by choosing � = n /2 and b = 1/2, we end up with the Chi-Square
distribution with n degrees of freedom. From the parameterization 

� = l and b = – q,

the Gamma density in (23) becomes 

, ( ) ,exp logf x x xq l l q l qG

l 1

= + -
-

] ]g g6 @

here emphasizing the parameters q and l. Therefore, we have
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Since m = – l /q, we have the TCE formula for a Gamma distribution:
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after reparameterizing back to the original parameters. In the special case where
� = 1, we have the Exponential distribution and
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which interestingly represents the lack of memory, a property well-known
about the Exponential distribution.

Example 4.3. Inverse Gaussian. Let X+ IG (l, m) be an Inverse Gaussian with
parameters l and m. The density for an Inverse Gaussian is normally written as 

2
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Clearly, we can write this density as 
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See Jorgensen (1997) for this form of the density. Thus, we see that it belongs to
the reproductive ED family by choosing q = –1/(2m2), k(q) = –1/m = – (–2q)1/2
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and ql(x) =
xp

l
2 3 exp (– x

l
2 ). Now observing that the m parameter can be expressed

as 

m = (–2q) –1/2,

then

d
d
q
m

= (–2q) –3/2 = m3,

and so the variance function is

V(m) = m3. (27)

It can be shown for the Inverse Gaussian that its distribution function can be
expressed as 
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FIGURE 1: Tail Conditional Expectations of Normal, Gamma, and Inverse Gaussian.

Let us notice that from (21), (24) and (27), the Normal, Gamma, and the
Inverse Gaussian distributions have unit variance function of the form 

V(m) = m p, (28)

for p = 0,2,3, respectively. Members of the EDF with variance function of the
form in (28), where p ∈R, are sometimes called Tweedie models. In Figure 1,
we compare the resulting tail conditional expectations of these three members
of the Tweedie family. The parameters in each distribution have been selected
so that they all have mean E(X) = 10 and variance Var (X) = 100. We can see
from the graph that starting from some level q, larger p in the Tweedie model
leads to larger TCE.

5. A CHARACTERIZATION PROPERTY OF THE EXPONENTIAL DISTRIBUTION

In the previous section, we have shown that for the exponential distribution,
the tail conditional expectation can be expressed as 

TCEX (xq) = xq + m, (29)

200 Z. LANDSMAN AND E.A. VALDEZ



and we associated this with the “lack of memory” property of the exponen-
tial distribution. In this section, we show that (29) is indeed equivalent to this
“lack of memory” property because (29) holds only for exponential distribution.
See Kagan, Linnik, and Rao (1973) for the importance of characterization prop-
erties in Mathematical Statistics. To evaluate this characterization problem, we
need the following lemma which gives a convenient representation of the TCE.

Lemma 1. The existence of the expectation of X guarantees the following repre-
sentation of the TCE:

)
)X

X

(
(

,TCE x x
F x

F x dx

X q q
q

xq
= +

3

# ] g

(30)

provided that F“
X (xq) > 0.

Proof. Because the expectation of X exists and assuming F“
X (xq) > 0, we have

)
)
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]

] ]

]

g
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Thus, the result follows. ¬

Theorem 2. Suppose FX (x) is a continuous distribution function in the internal
points of its support (a,b) with either finite or infinite endpoints. Then the repre-
sentation

TCEX (xq) = xq + �, for any q ∈(0,1), (31)

where � ! 0 is some constant not depending on xq, holds if and only if X has a
shifted exponential distribution and in which case, we have 

� = E (X) = m (32)

Proof. First notice that condition (31) automatically requires that b, the right
end of support of distribution FX(x), should equal b = ∞. In fact, if b < ∞, by
the definition of quantile in (2), there exists 0 < q0 ≤ 1 such that 

xq = b, for q ≥ q0 .
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Then, strictly speaking, TCEX(xq) is undefined for such q. Of course, one can
always naturally extend the definition for q ≥ q0 as

X

X

X

X X

,lim lim
F x

xdF x

F x

xdF x x F b F b
x b

0 0

p q p

x

p q p

q X
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q
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p p

0 0

0

0
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- + - -
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3

- -
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_
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] ] ]^

i

g

i

g g gh

if q0 < 1. In that case we would have � = 0. Thus, b = ∞. Now define U (z) =

XF
z

3
# (x)dx. As F“

X(x) is continuous, U(z) is differentiable. We can then write,
using Lemma 1, that for z ∈ (a,∞), we have 

TCEX (z) = z – U z
U z

�]
]

g

g .

Now using the representation in (31), we then have 

U z
U z

�]
]

g

g = – � for any z ∈ (a,∞) ,

or equivalently,

U z
U z�
]

]

g

g = – �
1 = – b

for any z ∈ (a,∞). This simple differential equation leads to the only solution
of the form 

U (z) = ke–bz, z ∈ (a,∞).

for some constant k ! 0. Since 

– U �(z) = kbe–bz = F“
X (z), z ∈ (a,∞), (33) 

it immediately follows that b > 0. Based on the restriction on the left end of the
support, FX (a – 0) = 0, and (33) follows that a > –∞, that is, a is finite and so
we have 

kb = eba.

This gives us 

F“
X (x) = e – b (x – a) for all x ≥ a,

which implies X has a shifted exponential distribution. Equation (32) auto-
matically follows.

Now to complete the proof, consider the case where q0 = 1 and b < ∞. Then
one defines 

XU z F x dx
z

b
= #] ]g g
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and F“
X(b) = 0. This then contradicts with (33), which holds for z ∈(a,b]. ¬

Of course among nonnegative random variables with support (0,∞), the only
distribution applicable to the result in the theorem above is the canonical expo-
nential distribution with 

F“
X (x) = e – bx, x ≥ 0.

6. EXAMPLES – DISCRETE

In this section, we consider some examples of discrete distributions belonging
to the class of exponential dispersion models.

Example 6.1. Poisson. Let X + Poisson(m) be Poisson distributed with mean
parameter m. We express its probability function as follows:

! ,p x x
e mxm

=
-

] g for x = 0,1, ...

A re-arrangement of the terms gives us 

!p x x
1

=] g exp(x log m – m).

Thus, we see that it belongs to the additive ED family by choosing q = log m,
l = 1, k(q) = eq and ql(x) = 1/x!. Therefore, we have
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Since m = eq, we have the TCE formula for a Poisson distribution:

)
)
)

(
(
(

.TCE x
F x
p x

m 1X q
q

q
= += G (34)

where F“ (xq) = F“ (xq | q,1). Notice also that for the Poisson distribution, m =
Var (X), so we can also write 

)
)
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.TCE x
F x
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Var XmX q
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q
#= + ] g

In that sense, the Poisson distribution is analogue of Normal for a discrete case.

Example 6.2. Binomial. Let X + binomial (p,n) be binomial with parameters
p and n. Then we can express its probability function as 

n x n- .p x P X x
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By defining q = log[ p / (1 – p)], we can write this as
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for x = 0,1, ...,n. Thus, we see that it belongs to the additive ED family with 
l = n,k (q) = log (1 + eq) and ql (x) = n

xc m. Notice that we can actually write
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Noting that m = np for the binomial and reparameterizing back to m and s2,
we find from (19) that the TCE for the binomial distribution gives

)(
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Example 6.3. Negative Binomial. Let X + NB(p,�) belong to the Negative
Binomial family with parameters p and �. Its probability function has the form 
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Note that for a NB (p,�) random variable, its mean is m = �(1 – p) /p so that
reparameterizing back to m and s2, we find from (19) 
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Comparing the TCEX(xq) for Negative Binomial with Gamma as shown in
(25), we may conclude that the Negative Binomial is the discrete analogue of
Gamma.

7. TAIL CONDITIONAL EXPECTATION FOR SUMS

Consider the case where we have n independent random variables X1, X2, ..., Xn
coming from the same EDF family having a common parameter q but differ-
ent l’s. Consider first the additive case, that is, Xk +ED*(mk, lk) for k = 1,2,...,n.
The density is thus 

pk(x | q, lk) = exp[qx – lk k(q)] qlk
(x), for k = 1, 2, ..., n. (38)

Denote the sum by 

S = X1 + X2 + ··· + Xn

and denote by TCEX(xq | m,l) the tail conditional expectation of X belonging
to the EDF family either in the reproductive or additive form with mean para-
meter m and index parameter l.

Theorem 3. Suppose X1, X2, ..., Xn are n independent random variables from the
additive family (38). Then the tail conditional expectation of the sum is 

TCES(sq) = TCEX1
(sq | mS,lS)

where mS = k 1=
mk

n! , lS = k 1=
lk

n! , and sq is the q-th quantile of the distribution
of S.

Proof. By independence and using (14), the moment generating function of the
sum can be expressed as 

MS (t) = exp{lS [k(q + t) – k(q)]}

where we have expressed lS = k 1=
lk

n! . Thus, we see that the sum also belongs
to the additive Exponential Dispersion family with 

S + ED*(mS,lS).

(This is similarly mentioned in Jorgensen (1997), Section 3.2, as a convolution
formula.) It becomes straightforward from Theorem 1 to prove that the tail con-
ditional expectation for the sum can be expressed as 

TCES (sq) = mS + h (39)

where the generalized hazard function ,logh F sq q lq S2
2

= _ i and sq is the q-th
quantile of the distribution of S. ¬
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To illustrate, consider the Gamma distribution case in Example (4.2). Let X1,...,
Xn be n independent random variables such that 

Xk + Ga(�k, b) for k = 1,2, ...,n.

From (25) and Theorem 3, taking into account lk = �k, we see that the TCE for
the sum is of the form 

)(
,

,
,

�

�
TCE s

F s

F s
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b1
S q S

q S

q S
=

+

_

_

i

i

where �S = k 1=
�k

n! .
Next, we consider the reproductive form of the EDF family, that is, Xk +

ED(m,lk) for k = 1,2, ...,n. The density is thus 

pk(x |q,lk) = exp[lk(qx – k(q))]qlk
(x), for k = 1,2, ...,n.

Unfortunately, we can only derive explicit form of TCE for a weighted sum of
Xi’s. As a matter of fact, we have the following result.

Theorem 4. Suppose lS = k 1=
lk

n! and Yk = wkXk where Xk +ED( m,lk) and wk =
lk /lS for k = 1,2, ...,n. Define the weighted sum

kk .Y w XS
k

n

k
k

n

1 1

= =
= =

! !

Then its tail conditional expectation is given by 

TCES (sq) = TCEX1
(sq | m,lS)

where sq is the q-th quantile of the distribution of S.

Proof. From (10), we have the moment generating function of Yk

MYk
(t) = MXk

(wkt) = exp{lk [k(q + t /lS) – k(q)]}

so that the moment generating function of S is given by 

MS(t) = exp{lS [k(q + t /lS) – k(q)]}.

Thus, by taking into account (10), we see S + ED(m,lS). (See also Jorgensen
(1997), Section 3.2, the reproductive form of the convolution formula.) Thus,
the tail conditional expectation of S immediately follows from Theorem 1. ¬

Notice that the usefulness of Theorems 3 and 4 immediately comes from the
fact that the TCE of the sum S (in the additive form) or the weighted sum S
(in the reproductive form) can be evaluated using the TCE of only one of the X ’s.
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To illustrate Theorem 4, consider the Normal distribution case in Exam-
ple (4.1). Let X1, ...,Xn be n independent random variables such that 

Xk + N(m, s2
k )  for k = 1,2, ...,n.

From Theorem 4 and the first item of Theorem 1, we see that the TCE for the
weighted sum S has the form

TCES (sq) = m +
/

/ /
,

m s

s f m s
s

F s

s
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1

q

q

S

S S

S
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8
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where s2
S = 1/lS = 1/ k 1=

/ s1 k
n 2! _ i, the harmonic mean of the individual vari-

ances. Note that for Normal distribution, we can also derive result for the
sum S since the Normal distribution N(mk, s2

k ) can also be considered as a
member of ED*(mk, lk) where lk = s2

k . The well-known TCE formula for sum S
(see for example, Panjer, 2002) given by 

TCES (sq) = m +
/

/ /

s

s
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s

F1

1
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S q S
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8
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immediately follows from Theorem 3.

8. CONCLUDING REMARKS

This paper examines tail conditional expectations for loss random variables
that belong to the class of exponential dispersion models. This class of distri-
butions has served as “error distributions” for generalized linear models in the
sense developed by Nelder and Wedderburn (1972). This class extends many
of the properties and ideas developed for natural exponential families. It also
includes several standard and well-known discrete distributions like Poisson and
Binomial as well as continuous distributions like Normal and Gamma, and this
paper develops tail conditional expectations for these members. We find an
appealing way to express the tail conditional expectation for the class of Expo-
nential Dispersion models; this TCE is equal to the expectation plus an addi-
tional term which is the partial derivative of the logarithm of the tail of the
distribution with respect to the canonical parameter q. We observe that this par-
tial derivative is a generalization of the hazard rate function. The results are
further extended for sums or weighted sums of random variables belonging to
the exponential dispersion family.
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