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ABSTRACT

The present paper extends the “Erlangization” idea introduced by Asmussen,
Avram, and Usabel (2002) to the Sparre-Andersen and stationary renewal risk
models. Erlangization yields an asymptotically-exact method for calculating
finite time ruin probabilities with phase-type claim amounts. The method is
based on finding the probability of ruin prior to a phase-type random horizon,
independent of the risk process. When the horizon follows an Erlang-l distri-
bution, the method provides a sequence of approximations that converges to the
true finite-time ruin probability as l increases. Furthermore, the random hori-
zon is easier to work with, so that very accurate probabilities of ruin are obtained
with comparatively little computational effort. An additional section determines
the phase-type form of the deficit at ruin in both models. Our work exploits the
relationship to fluid queues to provide effective computational algorithms for the
determination of these quantities, as demonstrated by the numerical examples.
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1. INTRODUCTION

The present paper is concerned with the determination of the probability of
ruin in finite time in the Sparre-Andersen risk model and the stationary renewal
risk model (also known as the stationary Sparre-Andersen model).

Traditionally, the exact determination of finite time ruin probabilities, in
both the classical and the Sparre-Andersen risk models, has required the solu-
tion of rather complicated integro-differential equations. Explicit formulae for
the probability of ruin exist for a limited number of cases, such as the classical
model with exponential claim sizes. Even then, the form of the solution entails
the evaluation of Bessel functions (see, for instance, Drekic & Willmot (2003)).
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A popular alternative to working in continuous time in the classical model
was introduced by Dickson & Waters (1991), who discretise time, and develop
a recursion at successive time instants. As a result, one is able to avoid the solu-
tion of integro-differential equations. Stanford & Stroinski (1994) pursued a
recursive approach, without needing to discretise, for the classical model, and
this was extended for a limited selection of Sparre-Andersen models in Stanford,
Stroinski & Lee (2000). However, these two papers embed their recursions at
claim epochs, thereby obtaining a sequence of exact probabilities of being ruined
prior to the nth claim instant – a random quantity – rather than by time t. The
main problem with this approach is that one cannot infer finite-time ruin prob-
abilities, since claim occurrence times are correlated with the likelihood of ruin.

This difficulty was circumvented by Avram & Usabel (2003), who intro-
duced the concept of ruin prior to an independent exponentially-distributed
random horizon. This idea was extended in Asmussen, Avram & Usabel (2002)
to the case of ruin before an independent phase-distributed horizon. A sequence
of asymptotically-exact approximations is obtained when the horizon is Erlang-l
distributed, as the degree l approaches infinity. As the numerical examples
therein illustrate, a very reasonable approximation to the finite-time ruin prob-
ability is obtained, even for low order Erlang distributions, and this is further
enhanced by resorting to a Richardson extrapolation.

By contrast, no “accurate yet efficient” method for calculating finite-time ruin
probabilities currently exists in the Sparre-Andersen model. To our knowledge,
there are only two lines of thought that present accurate finite-time ruin proba-
bilities for the continuous-time Sparre Andersen model. Wikstad (1971) and
Thorin & Wikstad (1973, 1977) use an advanced root-finding approach to deter-
mine finite time ruin probabilities, while Asmussen & Højgaard (1999) present a
diffusion approximation for the finite-time ruin probability. Both of these are
substantially more complicated than the Erlangization approach presented here.
Furthermore, our results have the added advantage of being asymptotically exact.

The present work uses a probabilistic approach to analyze the structure of
the ruin probability in the Sparre-Andersen model with phase-type claims, and
exploits links to previous results due to Asmussen (2000) as well as results due
to da Silva Soares & Latouche (2002) in the field of fluid queues. It is this lat-
ter approach that leads to our most efficient computational algorithms for the
ruin probability.

The next four sections develop our probabilistic approach, following which
corollaries relating to the deficit upon ruin are given. Numerical examples are
given in section 7 to illustrate the method’s accuracy. We conclude with com-
ments on computational issues.

2. INITIAL FORMULATION OF THE RUIN PROBABILITY PRIOR

TO A PHASE-TYPE HORIZON

Inter-claim times (ICTs) {Yi ; i = 1,2,…} in the Sparre-Andersen risk model
constitute an independent and identically distributed (iid) renewal process with
distribution function A(t) = Pr{Yi ≤ t}. Claim amounts {Xi ; i = 1,2,…} are iid
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random variables with a distribution of “phase type with representation (b,B)”,
meaning that P(x) = Pr{Xi ≤ x} = 1 – b exp(Bx)e, where exp(.) denotes the
matrix exponential, and e a column vector of ones. Claim amounts are inde-
pendent of the inter-claim times.

A “relative security loading” q > 0 is charged on the expected payout per
unit time, so premiums are accrued linearly over time at rate c = (1 + q)E{X}/
E{Y}. The insurer’s surplus at time t is Ut = u + ct – ii 1= XtN! , where u ≥ 0 is the
initial surplus. The time of ruin is t = inf{t : Ut < 0}, or t = ∞ if Ut ≥ 0 for all
t ≥ 0. By rescaling time so that c = 1, we can also interpret A(t) as the probabil-
ity that the “inter-claim revenue” does not exceed t, consistent with the termi-
nology in Asmussen (2000). The probability of ultimate ruin is c(u) = Pr{t < ∞},
and the finite-time ruin probability is c(u,T ) = Pr{t < T}.

When claim amounts Xi ~ PHm(b,B), the ruin probability for a wide vari-
ety of models takes the form

c(u) = j exp{(B + bj)u}e (2.1)

where b = –Be and the vector j is a defective probability vector. j takes vari-
ous forms, dependent on the model. For the classical model, see for example
Asmussen and Rolski (1991) and Avram and Usabel (2003). For the Sparre-
Andersen model we consider here, Asmussen (2000) has shown that the maxi-
mal aggregate loss L also satisfies (2.1), and the stationary maximal aggregate
loss Le is closely related; see pp. 227-231. The solution for j is the result of a
fixed-point calculation, and the line of thought in its determination plays a key
role in our extension of Asmussen et al (2002). The fixed-point formula for the
Sparre-Andersen case is

exp t B b dA tj f j b j
0

= = +
3

#^ ^ ]h h g" , (2.2)

and its probabilistic reasoning is as follows. Conditioning on the amount of rev-
enue t earned during the inter-claim time, we seek the state of the underlying
transient Markov chain at an “upcrossing” of the current level; i.e., the point
where the maximal aggregate loss exceeds t (if indeed it ever does). The gen-
erator for transitions among the transient states is (B + bj). This allows both
for direct transitions during a single claim via the matrix B, and indirect ones
when a claim ends but a subsequent ladder height restarts the process; the
rates of these indirect transitions are given in the matrix bj. The resulting
probability vector at the up-crossing, conditioned on t, is b exp{t(B + bj)}.
Removing the conditioning on t yields (2.2).

We turn now to a brief review of Asmussen et al (2002), whose development
of the Erlangization approach for the classical risk model forms the starting
point for our extension. Assume that the horizon is phase-type (n,H) of dimen-
sion l, with h = – He denoting the rates of absorption. Asmussen et al (2002)
establish that the form of the ruin probability prior to a phase-distributed hori-
zon c(u,H) is given by

c(u,H) = njexp{Uu}e (2.3)
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where j is now a matrix of probabilities of size l ≈ lm, and

U = Il 7 B + (Il 7 b)j, (2.4)

where “7” refers to the Kronecker product. The matrix j represents the “up-
crossing probabilities” (see Asmussen et al (2002)) that, starting from each hori-
zon phase, the process will be in the various combinations of horizon phase and
claim state at the next up-crossing of the current level.

In what follows, we establish that (2.4) is still valid in the Sparre-Andersen
case. However, the approach in Asmussen et al (2002) for determining j is
based on the solution of a Riccati equation, which cannot be used in the fuller
Sparre-Andersen context. We resort to an extension of (2.2) instead.

A key element employed by Asmussen et al (2002) is the transformation of
their original Lévy process for the aggregate loss X(t) = ct – Ut into an equiva-
lent Markovian fluid model {(Xt, ƒt)}, which tracks the phase ƒt of the claim
and the horizon. Equivalently, we track the surplus process Ut and ƒt, with fluid
counterparts {(Ft, ƒt)}. Between claims, the fluid model and the original Lévy
process coincide. Claims in the Lévy process become segments of linear
decrease with slope –1 in the fluid model, resulting in added segments of
artificial “time”. Consequently, the phase of the horizon must be “frozen” dur-
ing such segments, resulting in a larger dimension of the phase component ƒt
of the fluid model during artificial time segments. The relationships between
the surplus process and the fluid model are illustrated in Figure 1.

1. Between claims, the state tracks the phase of the horizon, with the transition
probabilities of the phases after time t given by exp{Ht}.

2. When a claim occurs, the horizon phase is “frozen”, and the claim state
evolves until the claim is fully paid. Mathematically, this enlargement of ƒt
is described by the matrix
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3. During artificial time segments, Asmussen et al (2002) show that the phase ƒt
of the underlying transient system evolves according to a generator U given
by (2.4).

The Sparre-Andersen case: While the Sparre-Andersen model no longer con-
stitutes a Lévy process, one readily sees the equivalence between surplus process
and fluid model shown by Figure 1 is still valid, and the phase ƒt still evolves
in artificial time with generator U according to (2.4). What changes is the equa-
tion for j, which is obtained similarly to (2.2) by conditioning on the inter-claim
time t, yielding the following:

.exp expHt I Ut dA tj f j bl
0

7= =
3

#^ ^ ]h h g! !+ + (2.5)
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FIGURE 1: Relationship of the phase, fluid queue and risk process.
The intervals between claims are y1, y2,… The claim sizes are x1, x2, … The claim size distribution has two
phases, the horizon has three phases. The phase of the horizon is frozen when the phase of a claim evolves.

In this case, ruin occurs before the end of the horizon.

When the horizon’s phase is Erlang-distributed, n = (1,0,…,0), and the matrix
j takes an upper triangular, block Toeplitz form:
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where ji is a m-vector. Furthermore, exp{Ht} is an upper triangular l ≈ l
Toeplitz matrix with e –at(at)n /n ! on the nth super-diagonal, where a –1 is the
mean duration per horizon stage.
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In the next section, an alternative explicit expression is obtained, which
enables us to exploit a result in Asmussen (2000) for the matrix moment gen-
erating function of a square matrix. Equation (2.5) is developed along different
lines in section 4, to yield our most efficient computational algorithm for the
probability of ruin prior to a phase-distributed horizon. This algorithm exploits
previous results obtained in the field of fluid queues (see, for instance, da Silva
Soares & Latouche (2002)).

3. AN ALTERNATIVE EMBEDDING APPROACH

Rather than expanding the state space when the claim occurs, one could select
the initial claim phase at the beginning, and “freeze” it during the inter-claim
time. In this case, exp{Ht} is replaced by exp{(H 7 Im) t}, yielding

m

m

.
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(3.1)

where the Kronecker sum operator “5” is defined for square matrices A and
B of dimensions c and d respectively by A 5B = A 7 Id + Ic 7 B. We note that
the foregoing result is only true if the matrix (H7 Im) commutes with the matrix
U = Il 7B + (Il 7 b)j, which we prove in the lemma below. But first we note the
immediate corollary of the foregoing:

Corollary 1: The matrix j can also be obtained as the solution to

m n

n

/ !

/ !

I H I U M n

I H B I b M n

j b

b j

l
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0

7 7

7 5 7

= +

= +

3

3

=

=

!

!

^ ]

^ ]^
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(3.2)

whenever the infinite sums converge (where Mn denotes the nth moment of the
inter-claim time distribution).

Proof: Follows directly from expansion of the matrix exponentials.

Remark: We note in particular that the sum does not converge for log-normal
inter-claim times, despite the existence of all the moments Mn.

Lemma 2: The matrices (H 7 Im) and U commute.

Proof: Observe that (Il 7 b)j = (Il 7 bb)G, where

m l .exp expG H I t I B I b G t dA tbl
0

7 7 7= +
3

# ] ^^ ]g h h g" #, - (3.3)
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Therefore, it is sufficient for us to show that (H 7 Im) commutes with U = Il 7
B + (Il 7 bb)G. The implicit form of (3.3) suggests a sequence of matrices

m l .exp expG H I t I B I b G t dA tbk l k1
0

7 7 7= +
3

+ # ] ^^ ]g h h g" #, - (3.4)

starting from G0 = 0. It is readily observed that the sequence of matrices {Gk}
is monotonically non-decreasing entry-wise, and each is bounded above by G,
so that there exists a limit to the sequence.

We now show the sequence converges to G itself. Observe that

mexp expG H I t I B t dA tl1
0

7 7=
3

# ] ] ]g g g" ", , (3.5)

represents the matrix of probabilities that the horizon is not reached before the
next claim, and the claim amount exceeds the revenue earned during the inter-
claim time. Similarly,

m lexp expG H I t I B I b G t dA tbl2
0

17 7 7= +
3

# ] ^^ ]g h h g" #, - (3.6)

represents the matrix of probabilities that the horizon is not reached before the
next claim, and either a) the claim amount exceeds the revenue earned during
the inter-claim time, or b) during the subsequent inter-claim time, the horizon
still is not reached, and that claim amount exceeds the revenue earned during
that interval. Continuing in this way, the sequence of matrices on both sides
converges to the true matrix G, yielding (3.3).

Furthermore, (H 7 Im) commutes with each matrix in the sequence, and
consequently with the limit of the sequence, which is G. Therefore necessarily
it commutes with U = (Il 7 B) + (Il 7 bb)G, which completes the proof.

Corollary 3: Suppose that inter-claim times are phase-distributed with repre-
sentation (a,A) of order n. Then it follows that, for a = –Ae,

m m

n m n .

exp

a

H I U H I U t dA t

I A H I U a I

A
0

1

7 7

7 5 7 7

+ = +

= - +

3

-

# ] ]

] ]^^ ]

g g

g ghh g

6 @ " ,
(3.7)

Furthermore, the matrix j satisfies

j = (Il 7 b) (a 7 In) (– (A 5 (H 7 Im + U )))–1 (a 7 In) 

and the following sequence of approximations converges to j: j0 = 0,

jk+1 = (Il 7 b) (a 7 In) (– (A 5 (H 5 B + (Il 7 b)jk)))–1 (a 7 In). (3.8)

Proof: (3.7) follows directly from Asmussen (2000), p. 221, Proposition 1.7. The
implicit equation for j results from substitution of (3.7) into (3.1). The convergence
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of the sequence {jk} follows directly from the proof to the lemma above, by
observing that (Il 7 b)jk = (Il 7 bb)Gk.

4. INTEGRAL EQUATION FOR j IN THE CASE OF

PHASE-TYPE INTER-CLAIM TIMES

An alternative approach is to compute j directly in the case of phase-type
inter-claim times using the methods of da Silva Soares & Latouche (2002).
We assume the following phase type representations: claim amounts have rep-
resentation (b,B) of order m, the horizon has representation (n,H) of order l,
and inter-claim times have representation (a,A) of order n.

Let us condition on an inter-claim time terminating during the interval (y,
y + dy), and consider what must happen during it: a) the likelihoods of the var-
ious states at the start of the interval are contained in the l ≈ ln matrix Il 7 a;
b) the ln ≈ ln matrix exp((H 5 A)y) describes the evolution of the inter-claim
time and the horizon during (0, y); c) the claim occurs during (y,y + dy) with
probabilities recorded in the ln ≈ l matrix (Il 7 a)dy. At this point, the horizon
is “frozen” and its phase is retained. [The appropriate construct is the l ≈ lm
matrix (Il 7 b ).] Finally, d) the generator U = Il 7 B + (Il 7 b)j must accumulate
y revenue to set a new record level; the probabilities of the underlying states at
the instant when this record is set are contained in the lm ≈ lm matrix exp(Uy).

Removing the conditioning on y, and integrating from 0 to infinity yields

l lexp expaI H A y I a I Uy dyj bl
0

7 5 7 7=
3

#] ]^ ] ^ ^g g h g h h (4.1)

l .exp expaI H A y I a Uy dybl
0

7 5 7=
3

#] ]^ ^ ^g g h h h (4.2)

since (Il 7 a) (Il 7 b) = (Il 7 ab). The expression under the integral sign is similar
to equation (12) in da Silva Soares & Latouche (2002) pertaining to fluid queues:

.exp expT y T Uy dyC 11
0

12=
3

# ^ ^h h (4.3)

There, T11 describes transitions among transient states in which fluid is con-
tinually increasing, and T12 describes transitions in which one moves from an
increasing state to states in which fluid is diminishing. Equation (4.3) provides
the probabilities, for all increasing states, that one will eventually return to the
present fluid level, and be in the various decreasing states at the instant this
occurs. Setting T11 = H 5 A, T12 = Il 7 (ab), one obtains the C matrix via uni-
formization as in da Silva Soares & Latouche (2002). Then one evaluates j =
(Il 7 a)C and U = Il 7 B + (Il 7 ba)C.

The interested reader is directed to da Silva Soares & Latouche (2002) for
a full discussion of the algorithm for the determination of C and the theory
behind it. Essentially, the approach employs an embedded quasi-birth-and-
death (QBD) process, whose G matrix of first-passage probabilities contains the
C matrix in the upper right block.
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Among the biggest advantages of this approach is the fact that the order
of the matrices being determined is l ≈ (m + n), which is typically much smaller
than those needed using the matrix moment generating function, where the
matrices are of size l ≈ m ≈ n.

5. THE STATIONARY SPARRE-ANDERSEN CASE

Typically claim occurrence processes are assumed to operate independently of
the period when coverage comes into effect. The “stationary Sparre-Andersen”
model reflects this by treating the time until the first claim occurs as a forward
recurrence time. The only impact this introduces is a new probability matrix
j(s) at the first ladder height. Denoting the distribution function of the for-
ward recurrence time by A*(t), one obtains

(5.1)
l m
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(5.2)

The latter of these integrals can be simplified further, by relating it to the equa-
tion for j. Upon integrating (3.1) by parts, one finds

l m m .expI H I U t A t dt H I Uj b
0

7 7 7= - + +
3

#^ ] ] ]h g g g" , (5.3)

Substitution of this in the foregoing expression, and evaluation of the first inte-
gral yields

j(s) = (j – Il 7 b ) (H 7 Im + U )–1 / mA. (5.4)

Remark: No particular simplification of j(s) occurs in the Sparre-Andersen
case. However, it does simplify to the form in Theorem 4.4, pp. 230-231 of
Asmussen (2000) when there is no horizon. This is readily verified after tedious
manipulations by selecting an exponential horizon in (5.4) and letting the rate
approach 0.

6. DEFICIT AT RUIN PRIOR TO A PH HORIZON

When ruin occurs prior to a phase-type horizon being reached, the size of the
deficit at ruin is also phase-type. The probability vector njeUu contains the
probabilities of being in the various pairings of horizon stage and claim phase
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at the moment of ruin. Aggregating appropriately over all possible horizon
stages, we can obtain the proper initial probability vector for this phase type
formulation, as the entire deficit comes from the claim causing ruin.

Corollary 5: The deficit at the time of ruin, given that ruin occurs prior to a
phase-type horizon PH(n,H), has a phase-type distribution with representation
PH(CnjeUu (el

T 7 Im),B ), where C = [njeUu (elm
T )] –1.

Proof: Post-multiplication by the matrix (el
T 7 Im) performs the aggregation

over all horizon stages, so that njeUu (el
T 7 Im) is the distribution of the claim

states at the instant of ruin. Furthermore, B is the intensity matrix of the phase
changes of the payment interval. A similar line of thought, applied to the sta-
tionary renewal risk model, yields the following:

Corollary 6: The deficit at the time of ruin, given that ruin occurs prior to a
phase-type horizon PH(n,H) in the stationary renewal risk model has a phase-
type distribution with representation PH(C (s)nj(s)eUu(el

T 7 Im),B), where C(s) =
[nj(s)eUu (elm

T )] –1.
By choosing an Erlang-l distributed horizon and letting l → ∞, we obtain

asymptotically exact results for the deficit, when ruin occurs by time t in both
models. This problem will be addressed in future work.

Remark: Recent other results establishing a phase-type form for the size of
the deficit upon ruin include Drekic et al (2004) and Willmot et al (2004), both
of which consider the Sparre-Andersen model with phase-type claim sizes.
A flexible model allowing for correlation in the claim time and claim size
processes also yields a phase-type form for the deficit upon ruin (see Badescu
et al (2004, Corollary 4.5)), generalizing the foregoing results.

7. NUMERICAL EXAMPLES

Two examples have been selected, to illustrate the accuracy and the speed of
convergence of the approximation. The first is from Thorin & Wikstad (1973),
where an advanced root-finding approach was used to determine finite time ruin
probabilities. Their Table 8 provides finite time ruin probabilities for the case
where the inter-claim time is a mixture of two exponentials, with an overall
mean inter-claim time of 1. Their claim size distribution is a mixture of five
exponentials used to approximate the Pareto distribution F(y) = 1 – (1 + 2y)–3/2;
see Thorin & Wikstad (1973) for the parameter values. We present in Table 1
below the results for the case where c = 1. (The other cases not presented here
can be easily handled by an appropriate rescaling of the rates for the phase type
inter-claim revenue.)

What Table 1 reveals is a rather quick approach towards the exact probability
of ruin for small values of the Erlang order l. Frequently, the approximating
probability of ruin when l = 9 is already within 1%, although the error is as large
as 3% for the case where T = 1000 and for an initial surplus of u = 100. Clearly,
even approximations of relatively small order yield results accurate enough to
employ for any decision making purpose.
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Unfortunately, further gains in accuracy require much larger values of l. This
is not surprising: as l increases, there are successively smaller differences in the
Erlang distributions involved. Thus, if one wanted five digits of accuracy, one
could anticipate a very large value of l and a long time to calculate. Luckily,
much better accuracy (for effectively the same computational effort) is obtained
when one makes use of the Richardson extrapolation employed in Asmussen
et al (2002):

c1(u,Hl) = (l +1) c(u,Hl +1) – lc(u,Hl).

When this extrapolation is applied to the previous example, one obtains the
approximate probabilities of ruin in Table 2. One sees immediately that a much
better degree of accuracy is obtained, for lesser values of l. For instance, in the
“worst case scenario” of Table 1 where T = 1000 and u = 100, the original
approximate probability of ruin for l = 9 had a 2.8% relative error. A similar
accuracy is obtained using the Richardson extrapolation with l = 1. The con-
clusion to be drawn is that by combining the Erlangian approximations with
the Richardson extrapolation, accurate approximate values can be obtained
quite readily.

Of the two methods presented in sections 6 and 7, the j recursion, which
is based on inverting matrices of size l ≈ m ≈ n, was such that we were able to
use Mathematica without meaningful delay, whenever l was less than 7. (By this
we mean that results came back in a matter of seconds; they were available
before the user was ready to proceed.) Even for l = 9, the algorithm produced
results in less than a minute. In contrast, the second algorithm entailing the
determination of the C matrix as per da Silva Soares and Latouche (2002)
works with matrices of size l ≈ (m + n). Here results were obtained with no
meaningful delay for values of l approaching 30.
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TABLE 1

COMPARISON OF APPROXIMATE RUIN PROBABILITIES WITH THORIN & WIKSTAD RESULTS

T u T & W l = 1 l = 3 l = 5 l = 7 l = 9

100 0 0.87387 0.83288 0.86316 0.86775 0.86959 0.87059
100 0.04060 0.04024 0.04065 0.04066 0.04066 0.04065
1000 0.00114 0.00114 0.00114 0.00114 0.00114 0.00114
10000 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

1000 0 0.94074 0.92063 0.93585 0.93798 0.93883 0.93928
100 0.29719 0.23975 0.27390 0.28263 0.28661 0.28888
1000 0.01176 0.01212 0.01190 0.01184 0.01182 0.01181
10000 0.00013 0.00014 0.00014 0.00014 0.00014 0.00014

10000 0 0.97261 0.96307 0.97038 0.97137 0.97177 0.97197
100 0.63980 0.55334 0.61359 0.62473 0.62926 0.63171
1000 0.13005 0.11556 0.12430 0.12643 0.12741 0.12797
10000 0.00177 0.00212 0.00189 0.00184 0.00182 0.00181



Our second example was first proposed by Asmussen & Højgaard (1999),
who presented a corrected diffusion approximation to approximate finite-time
ruin probabilities in the Sparre-Andersen model. The claim-size distribution in
their Example 4.1 approximates a lognormal distribution by a phase-type
approximation of order four, and the interclaim times follow a distribution that
is a mixture of four exponentials. Asmussen & Højgaard (1999) considered that
no “exact” solution existed for the Sparre-Andersen case, yet our approach
provides a sequence that is asymptotically exact. Furthermore, our computa-
tions involve straightforward evaluations, relative to the complicated determi-
nation of the b1 coefficient in the corrected diffusion approximation (as observed
by the authors).

We note that the l = 7 and extrapolated values presented in our table below
are consistent with the trajectories of both the corrected diffusion approxi-
mation and the simulation, as presented in Figure 2 of Asmussen & Højgaard
(1999). In this example, however, the extrapolated values for l = 1 are smaller
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TABLE 2

COMPARISON OF EXTRAPOLATED RUIN PROBABILITIES WITH THORIN & WIKSTAD RESULTS

T u T & W l = 1 l = 3 l = 5 l = 7

100 0 0.87387 0.88074 0.87483 0.87426 0.87408
100 0.04060 0.04067 0.04065 0.04065 0.04063
1000 0.00114 0.00114 0.00114 0.00114 0.00114
10000 0.00001 0.00001 0.00001 0.00001 0.00001

1000 0 0.94074 0.94503 0.94128 0.94096 0.94088
100 0.29719 0.28830 0.29534 0.29645 0.29680
1000 0.01176 0.01180 0.01177 0.01176 0.01176
10000 0.00013 0.00013 0.00013 0.00013 0.00013

10000 0 0.97261 0.97476 0.97290 0.97273 0.97269
100 0.63980 0.64364 0.64160 0.64056 0.64018
1000 0.13005 0.12786 0.12954 0.12979 0.12987
10000 0.00177 0.00183 0.00178 0.00177 0.00177

TABLE 3

APPROXIMATE RUIN PROBABILITIES FOR ASMUSSEN & HØJGAARD EXAMPLE 4.1

T l = 1 l = 2 Extrapolation l = 6 l = 7 Extrapolation

10 0.01253 0.01424 0.01595 0.01590 0.01605 0.01695
20 0.01672 0.01909 0.02146 0.02113 0.02129 0.02225
30 0.01868 0.02107 0.02346 0.02283 0.02295 0.02367
40 0.01982 0.02207 0.02432 0.02349 0.02357 0.02405
50 0.02057 0.02265 0.02473 0.02379 0.02384 0.02414
1000 0.02391 0.02411 0.02431 0.02411 0.02411 0.02411



than the regular values for l = 7 when T = 10, which is atypical. Furthermore,
the extrapolated value for l = 6 when T = 50 actually exceeds the ultimate ruin
probability very slightly. Nonetheless, we would submit that the accuracy of the
results for l = 7 is already quite sufficient for any decision making purpose.

The numbers for this second example were run completely using the more
time-consuming Mathematica code, yet still each value for l = 7 ran in about
30 seconds.
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