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ABSTRACT

An assumption concerning the long-term rate of return on assets is made by
actuaries when they value defined-benefit pension plans. There is a distinction
between this assumption and the discount rate used to value pension liabilities,
as the value placed on liabilities does not depend on asset allocation in the
pension fund. The more conservative the investment return assumption is, the
larger planned initial contributions are, and the faster benefits are funded.
A conservative investment return assumption, however, also leads to long-term
surpluses in the plan, as is shown for two practical actuarial funding methods.
Long-term deficits result from an optimistic assumption. Neither outcome is
desirable as, in the long term, pension plan assets should be accumulated to
meet the pension liabilities valued at a suitable discount rate. A third method
is devised that avoids such persistent surpluses and deficits regardless of conser-
vatism or optimism in the assumed investment return.
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1. INTRODUCTION

Actuaries periodically value defined benefit pension plans to recommend suit-
able contribution rates. A number of valuation assumptions are made for this
purpose concerning various uncertain factors affecting the value of pension
obligations and the funding for these obligations. This set of valuation assump-
tions is usually called the valuation basis. Different bases may be required for
different purposes. For example, in certain jurisdictions, technical solvency bases
may be specified by regulation. There may also be a different set of projection
assumptions, usually scenario-based or stochastic, to investigate pension benefit
amendments, asset-liability management or other issues.

Actuarial valuations for funding purposes, that is, with the objective of rec-
ommending a contribution rate are considered in this paper. A deterministic
valuation basis is typically employed. Factors of a demographic nature about
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which assumptions are made include the mortality of plan participants at
various ages, as well as their disability and withdrawal rates from the plan.
Assumptions about economic factors such as price and wage inflation are also
required when pensions are a function of final or career-average salary and
when they are indexed with price inflation. An assumption about investment
returns on the pension plan assets is also made.

If the pension liability exceeds the plan assets, then an unfunded liability
(or deficit) exists. The unfunded liability varies over time as actual experience
generally does not unfold exactly according to actuarial valuation assumptions.
Suitable methods of pension funding generate a schedule of contributions that
satisfies two objectives. First, unfunded liabilities must be paid off and there
must be enough funds to pay benefits as and when they are due. Second, the
contributions that are required from the sponsor and members of the plan must
be stable over time.

In this paper, we investigate the effect on pension funding of deviation of
actual experience from the actuarial investment return assumption. The rele-
vance of this assumption is discussed in section 2. A simple model is described
in section 3. It is used to investigate pension funding under two common fund-
ing methods, in sections 4 and 5, and under a variation described in section 6
which has the useful property of yielding full funding independently of the invest-
ment return assumption. Finally, a numerical example is given in section 7.

A list of important symbols is given here for ease of reference:

AL actuarial liability 
B benefit paid every year 
Ct pension contribution paid at start of year (t, t + 1) 
Ft market value of pension plan assets at time t
i actual rate of return on plan assets 
iA actuarial assumption for rate of return on plan assets 
iL actuarial assumption for rate to discount pension liabilities 
K parameter in spreading of gains and losses (equation (20)) 
K1, K2 parameters in modified spreading of gains and losses (equation (36)) 
Lt actuarial intervaluation loss in year (t – 1, t) 
m amortization period for gains and losses in section 4 (equation (13)) 
n amortization period for initial unfunded liability (equation (10)) 
NC normal cost or normal contribution rate 
Pt payment for initial unfunded liability at time t (equation (10)) 
St supplementary contribution paid at the start of year (t, t + 1) 
u, uA, uL 1 + i, 1 + iA, 1 + iL respectively 
Ut unamortized part of initial unfunded liability at time t (equation (11))
ULt unfunded liability = AL – Ft

v, vA, vL (1 + i) –1, (1 + iA) –1, (1 + iL) –1 respectively
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2. INVESTMENT RETURN ASSUMPTION

The actuarial investment return assumption, henceforth denoted by iA, is an
assumption concerning the long-term rate of return on pension plan assets.
Funding for pension benefits involves the substitution of contribution income
(from plan participants and sponsor) by investment income from accumulated
assets. It is well-known that the choice of iA (and indeed of other valuation
assumptions) affects the incidence of contribution payments and pace of fund-
ing: see for example Berin (1989, p. 93) and Trowbridge and Farr (1976, p. 27).
The more optimistic the investment return assumption is, the larger the invest-
ment return is assumed to be in any given year, and the smaller the contribu-
tion that is initially required. If insufficient assets are eventually accumulated
compared to the pension liability (that is, if a deficit emerges), then higher
contributions than otherwise necessary will eventually be required. Conversely,
the more conservative iA is, the larger the contribution that is initially required
and, if surpluses emerge, smaller contributions than otherwise necessary,
will eventually be required. Thus, the schedule of contribution payments is
accelerated the more iA is conservative, and it is slowed down the more iA is
optimistic. The actuarial choice of iA is therefore a means of controlling the
pace of funding in the pension plan (Daykin, 1976; Trowbridge and Farr, 1976,
p. 27).

Another key actuarial valuation assumption is the interest rate assumption
(iL) used to discount pension liabilities. As pension liabilities are not generally
traded, they must be priced by comparison with similar asset cash flows. In the-
ory, pension liabilities should be valued using market discount rates, suitably
risk-adjusted, or at the rates implied in asset portfolios that are dedicated
or matched by cash flow to these liabilities. In practice, more approximate
methods are used. Pension liabilities have a long duration and are usually dis-
counted at a single term-independent discount rate which is typically based
on corporate bond yields to reflect the risk of default from the sponsor.

In classical actuarial valuation methodology (for example, Trowbridge and
Farr, 1976), iA and iL are identical. More recent actuarial practice distinguishes
between the two assumptions: see for example Actuarial Standard of Practice
No. 27 of the Actuarial Standards Board (1996) in the United States. The U.S.
pension accounting standard FAS87 also distinguishes between the liability
discount rate and the assumption for the “expected long-term rate of return
on plan assets”. Thornton and Wilson (1992) refer to a “dual-interest” valua-
tion method, used in the United Kingdom, whereby iA is a “best-estimate
assumption” of investment return on the actual asset portfolio and iL is a “pru-
dent estimate” of investment return based on a hypothetical asset portfolio
that matches pension liabilities.

The distinction between the pension liability discount rate assumption and
the investment return assumption is often blurred in practice because it is assumed
that they are numerically equal. Actuarial Standard of Practice No. 27 of the
U.S. Actuarial Standards Board (1996) states that “generally, the appropriate
discount rate is the same as the investment return assumption”. This presumes
that the pension fund is invested in assets that closely match or hedge or
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immunize the pension liability so that approximately equal discount rates apply
to both asset and liability cash flows. In practice, asset allocation may involve
a mismatch between assets and liabilities. For example, asset managers may have
a rate-of-return objective involving a benchmark portfolio or index set with-
out reference to the liabilities (McGill et al., 1996, p. 659). It is also generally
difficult to hedge pension liabilities perfectly with normal market instruments,
because of the risk of default from the plan sponsor and because final-salary
pensions are related to economic wage inflation.

In this paper, the assumed rates on assets and liabilities (iA and iL respectively)
are taken to be conceptually distinct (although they could be numerically equal).
The aim of this paper is to investigate the effect on pension funding of actual
investment returns being different from the assumed investment return on assets.

3. MODEL

A simplified model of a defined benefit pension plan is used here. For details
of the model, refer to Dufresne (1988, 1989) and Owadally and Haberman
(1999). A stationary pension plan population is assumed, with fixed mortality
and withdrawal rates at different ages. The only benefit that is provided in the
model plan is a final-salary pension paid at normal retirement age. There is no
inflation on salaries and it is also postulated that actuarial valuation assump-
tions remain unchanged over time. This leads to a significant simplification in
that the payroll, the pension benefit B paid out every year, as well as the com-
bination of actuarial liability AL and normal cost NC generated by a given
actuarial cost method, are constant. Trowbridge (1952) shows that an equation
of equilibrium holds:

,AL i AL NC B1 L= + + -^ ]h g (1)

where iL is the interest rate used to discount pension liability cash flows. (Alter-
natively, one may assume that benefits in payment are indexed with wage infla-
tion so that, when measured net of wage inflation, the payroll as well as B, AL
and NC are all constant. All quantities must then be considered net of wage
inflation).

Assuming that contributions Ct and benefits B are paid at the start of year
(t, t + 1), the value of the pension fund Ft at time t follows a simple recurrence
relation:

t t ,F i F C B1 t1 = + + -+ ] ^g h (2)

where i is the actual rate of return earned on the pension plan assets. The
unfunded liability is defined as the excess of actuarial liability over assets:

t .UL AL F= -t (3)

It is assumed that all actuarial valuation assumptions, other than iA, are borne
out by experience. In other words, demographic and economic experience
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unfold in accordance with actuarial valuation assumptions, except that the
actual investment rate of return i may differ from the assumed investment rate
of return iA.

An intervaluation loss Lt during year (t, t + 1) is the change in unfunded
liability as a result of actual experience deviating from actuarial valuation
assumptions (Dufresne, 1989). A gain is defined as a negative loss. More specif-
ically, an asset loss is the unexpected increase in unfunded liability that is attrib-
utable to the actual investment return being less than the investment return
assumption. The contribution that is paid at the start of year (t, t + 1) is equal
to the normal cost NC plus a supplementary contribution St which is paid to
amortize past intervaluation losses and any initial unfunded liability:

.C NC St t= + (4)

Letting vL = (1 + iL) –1, it follows from equations (1)-(4) that 

.UL AL i UL S v AL1t t t L1 = + + - -+ ] ^g h (5)

Actual experience does not deviate from actuarial assumptions except possibly
in investment returns. Therefore, only asset gains or losses occur. An expression
for the asset loss is obtained by Dufresne (1989) as follows. Had a rate of return
of iA been earned on the plan assets (instead of the actual rate of return i ), the
unfunded liability at the end of year (t, t + 1) would have been t 1+ULA = AL +
(1+ iA)(ULt – St – vLAL), by comparison with equation (5). Therefore the inter-
valuation loss in year (t, t + 1) is

(6)

.

L UL UL

UL AL i UL S v AL

i i UL S v AL

1

t t t
A

t A t t L

A t t L

1 1 1

1

= -

= - - + - -

= - - -

+ + +

+ ^ ^

^ ^

h h

h h

(7)

(8)

Equation (8) shows that the asset intervaluation loss Lt+1 in year (t, t +1) arises
because the actual return on assets in that year (i) is different from the assumed
return (iA). Equation (7) may be rewritten as 

A ,UL u UL L u S v v ALt A t t A t L1 1- = - - -+ + ^_ h i (9)

where uA = 1+ iA and vA = (1+ iA) –1.

The supplementary contribution St in equation (4) pays off over time past
intervaluation losses as well as any initial unfunded liability at time 0. The ini-
tial unfunded liability may arise because of past service liabilities, or because
of a change in the valuation basis or an amendment to benefit rules.

Assume henceforth that Lt = 0 for t ≤ 0, ULt = 0 for t < 0, and that the ini-
tial unfunded liability UL0 is amortized over a finite period of n years at rate
iA by means of payments
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In equation (10), )A A( ) / (v va 1 1en
n= - - denotes the present value of an annuity-

certain of term n payable in advance and calculated at rate iA. The unamortized
part of the initial unfunded liability at time t is 
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Observe that 

A t t A .u U U u Pt1- =+ (12)

4. AMORTIZING GAINS AND LOSSES

Dufresne (1989) describes a funding method whereby the supplementary con-
tribution St, in equation (4), is calculated to amortize past intervaluation gains
and losses. His analysis may be extended by allowing for a distinction between
the liability valuation rate (iL) and the investment return assumption (iA), as
well as by explicitly amortizing the initial unfunded liability:

A .S
L

v v AL Pa e
t

m

t j

j

m

L t
0

1

= + - +
-

=

-

! ^ h (13)

In equation (13), )A A( ) / (v va 1 1em
m= - - is the present value of an annuity-

certain over m years payable in advance and calculated at assumed rate iA. The
supplementary contribution consists of level amortization payments for inter-
valuation losses over the past m years, an adjustment for the difference between
assumed rates on assets and liabilities, as well as an amortization payment for
the initial unfunded liability.

Replacing St from equation (13) into equation (9) and using equation (12)
yields 

t A t .UL U u UL U L u
L
a e

t t t A
m

t j

j

m

1 1 1
0
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- - - = -+ + +
-

=

-

!^ ^h h (14)

The unfunded liability at the end of the year is therefore the accumulation of
the unfunded liability at the start of the year plus the loss that emerges during
the year less the accumulated value of payments made in respect of past losses.

It is easily verified that the solution of equation (14) is 

t .UL U La
a

e
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m

m j
t j
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294 M. IQBAL OWADALLY



For details of this solution, see Dufresne (1989). Note also equation (12) for
the initial unfunded liability and recall that the annuities are valued at rate iA.

When the funding method in equation (13) is used, a unit loss that emerged
j years ago is completely paid off if j ≥ m, but further payments of / a1 em for
the next m – j years are outstanding if 0 ≤ j ≤ m – 1. The present value of these
payments is /a ae em j m- . Equation (15) shows that the unfunded liability is the
present value of the payments that remain to be made in respect of losses that
are not yet paid off, together with the unamortized part of the initial unfunded
liability.

As in Dufresne (1989), replace St from equation (13) and ULt from equa-
tion (15) into equation (8), and use equation (12), to obtain:

A A/ .L i i L v AL Ua a1e et t j
j

m

m j m t1
0

1

1= - - - -+ -
=

-

- +!^ ` ^h j h

R
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W
WW

(16)

If the actual rate of return on plan assets in a given year is the same as the
assumed rate of return (that is, if i = iA), no intervaluation loss emerges in that
year (Lt = 0 ∀ t from equation (16)) and the unfunded liability consists only of
the unamortized part of the initial unfunded liability (ULt = Ut for t ≥ 0 from
equation (15)).

Dufresne (1989) obtains a sufficient condition for the convergence of {Lt},
{ULt} and {St} as t → ∞. The following result is due to Dufresne (1989).

RESULT 1. Provided that / < ,i i a a1 1e eA m j mj
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(19)

The only differences between (17)-(19) and the results of Dufresne (1989) are
that the annuities are valued at rate iA here and there is an explicit term for the
difference between iA and iL in equation (19). Equations (17)-(19) follow from
equations (16), (15) and (13). (Recall that Ut = 0 for t ≥ n from equation (11)
since the initial unfunded liability is amortized over a finite period n.)

COROLLARY 1. Assume that / < .i i a a1 1e eA m j mj

m

0

1
- --=

-! ` j

If iA = i, then limULt = 0. If iA > i, then limULt > 0. If iA < i, then limULt < 0.

Corollary 1 confirms the observations made in section 2: if the actuarial
investment return assumption is optimistic (that is, iA > i), then a persistent
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deficit occurs (limULt > 0); on the other hand, if the investment return assump-
tion is conservative (that is, iA < i), then a persistent surplus occurs (limULt < 0).
Note also that, if iA ≠ i, limULt depends on the period m over which gains
and losses are amortized.

5. SPREADING GAINS AND LOSSES

Dufresne (1988) discusses another funding method that is used to determine
contributions. This method is widely used in the United Kingdom and is also
implicit in actuarial cost methods such as the Aggregate and Frozen Initial
Liability methods (Trowbridge and Farr, 1976, p. 85). The equations in
Dufresne (1988) may also be extended to allow for the distinction between the
rate at which liabilities are discounted and the investment return assumption,
as well as for the separate treatment of the initial unfunded liability.

The supplementary contribution paid in year (t, t + 1) is 

A ,S K K u L v v AL P1t
j

A
j

j
t j L t

0

= - + - +
3

=
-!] ^g h (20)

where 0 ≤ K < vA. In this alternative method, a unit loss is paid off by means
of a sequence of exponentially declining payments, {(1– K)KjuA

j, j = 0,1,…},
the unit loss being paid off in perpetuity since j 0= K K u v1 1j

A
j

A
j$- =

3! ] g . The
larger the parameter K, the slower the loss is paid off. The loss is never com-
pletely defrayed, except in the limit as t → ∞, but Trowbridge and Farr (1976)
point out that this is not a weakness as intervaluation losses occur randomly
in practice and are never completely removed. This funding method is com-
monly referred to as “spreading” gains and losses, by contrast with the method
in section 4 which involves amortizing gains and losses (McGill et al., 1996, p. 525;
Berin, 1989, p. 18; Dufresne, 1988).

Replacing St from equation (20) into equation (9) and using equation (12)
yields 

A t .UL U u UL U L u K K u L1t t t t A
j

j
A
j

t j1 1 1
0

- - - = - -
3

+ + +
=

-!^ ^ ]h h g (21)

Recall that Lt = 0 for t ≤ 0, ULt = 0 for t < 0, and UL0 = U0. It is easily verified,
from equation (21), that 

t .UL U K u Lt
j

A
j

t j
j 0

- =
3

-
=

! (22)

Compare equation (15) when losses are amortized to equation (22) when losses
are spread.

Equation (22) is sensible since, for a unit loss that emerged j years ago, the
following sequence of payments is outstanding: {(1– K)KluA

l, l = j, j +1,…}.
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The present value of these payments is  l j=
K K u v K u1 l

A
l

A
l j j

A
j$- =

3 -! ] g . Equa-
tion (22) thus shows that, at any time t, the unfunded liability is the present
value of payments yet to be made in respect of all past and present losses,
together with the unamortized part of the initial unfunded liability.

The supplementary contribution St in this method may be calculated directly
as a proportion 1 – K of the unfunded liability, together with an adjustment
for the difference between assumed rates on assets and liabilities and for the
separate amortization of the initial unfunded liability. Comparing equations
(20) and (22),

.S K UL U v v AL P1t t t A L t= - - + - +] ^ ^g h h (23)

For simplicity, Dufresne (1988) disregards the separate treatment of initial
unfunded liability and the distinction between iA and iL and considers only
St = (1 – K)ULt. Dufresne (1988) also states that the parameter K is usually
calculated as K = 1 – 1/ a eM . M is typically between 1 and 10 years in the United
Kingdom. Thus, if M = m, the first payment made in respect of a unit loss
is 1/ a em under both the amortization and spreading funding methods (equa-
tions (13) and (20) respectively).

Replace St from equation (20) and ULt from equation (22) into equation (8),
and use equation (12), to obtain:

A .L i i K u L v AL Ut A
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+
- +

=
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WW

(24)

Compare equation (16) when losses are amortized to equation (24) when losses
are spread. If the actuarial assumption as to the rate of investment return on
plan assets equals the actual rate of return (that is, if i = iA), then no loss
emerges (Lt = 0 ∀ t from equation (24)) and the unfunded liability consists only
of the unamortized part of the initial unfunded liability (ULt = Ut for t ≥ 0
from equation (22)).

From equation (24),

A A ,L u KL i i KL v AL U K AL Ut A t t t t1 1- = - - - + -+ +^ ^ ^h h h7 A (25)

which is a first-order linear difference equation that simplifies to 

A A .L uK L v i i AL U u K AL Ut t t A t1 1- = - - - - -+ +^ ^ ^h h h7 A (26)

Recall from equation (11) that Ut = 0 for t ≥ n. Provided |uK | < 1, it follows from
equation (26) that 

A A .limL AL i i v uK
u K

1

1

t t
A= - -

-

-

"3
^ h (27)

In equation (20), K was defined to be such that 0 ≤ K < vA. Provided |uK | < 1,
the right hand side of equation (22) is also absolutely convergent and 
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A .lim limUL u K L1
t t t t

1
= -

" "3 3

-
^ h (28)

limSt may be found from equations (23) and (28). This is summarised in the
following result.

RESULT 2 Provided |uK | < 1,
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(31)

In contrast with Dufresne (1988), we have allowed for separate amortization
of the initial unfunded liability and also for the possibility that the actuarial
assumptions iA and iL are different, and we have also derived equations per-
taining to the intervaluation loss Lt. Result 2 may alternatively be obtained,
as in Dufresne (1988), by substituting St from equation (23) into equation (5)
giving a first-order difference equation 

t A tt ,UL U uK UL U uv AL U1t t1 1 1- - - = - -+ + +^ ^ ^ ^h h h h (32)

which solves to 

A tt
j .UL U uv uK AL U1t j

j

t

0

1

- = - - -
=

-

!^ ] `h g j (33)

Corollary 2 hereunder follows directly from equation (30):

COROLLARY 2 Assume that | uK | < 1. If iA = i, then limULt = 0. If iA > i, then
limULt > 0. If iA < i, then limULt < 0.

Compare Corollary 1 with Corollary 2. Under both amortization and
spreading, the choice of the actuarial investment return assumption iA affects
the long-term funding status of the pension plan. Note also from equation (30)
that, when iA ≠ i, limULt depends on the parameter K that is used to spread
gains and losses.

6. MODIFIED SPREADING OF GAINS AND LOSSES

If the actual investment return deviates from the actuarial investment return
assumption, then persistent underfunding or overfunding will occur in the long
term, as shown in Corollaries 1 and 2 in both of the preceding methods. Per-
sistent deficits jeopardize the security of pension benefits for plan members
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since, in the event of sponsor insolvency, there will not be enough funds to meet
benefit obligations. On the other hand, excessive surpluses are also undesirable
as funds are being diverted from productive activity in the company. Plan par-
ticipants may also demand that surpluses be distributed to them in the form
of improved benefits (McGill et al., 1996, p. 592-4).

In practice, the emergence of persistent surpluses or deficits causes actuaries
to revise their actuarial valuation assumptions. Nevertheless, it is of interest to
devise a funding method that avoids systematic surpluses and deficits.

Suppose that a constant stream of intervaluation losses of size  > 0 occurs
in the pension plan. If losses are being amortized as in the method of sec-
tion 4, then a positive unfunded liability (that is, a deficit) occurs since, from
equation (15) and for t ≥ n,

> .UL a
a

0
e

e
t

m

m j

j

m

0

1

,=
-

=

-

! (34)

Likewise, a deficit occurs if losses are being spread, as in section 5, since, from
equation (22) and for t ≥ n,

A/ > .UL u K1 0t ,= -^ h (35)

This suggests a variation on the spreading of losses. Consider a new funding
method, which is referred to henceforth as “modified spreading of gains
and losses”, where supplementary contributions are calculated to pay off inter-
valuation losses and the initial unfunded liability as follows:

t� �S K K u L v v AL Pt
j j

j
A
j

t j A L1 1 2 2
0

= - + - +
3

=
-! ` ^j h (36)

where

A / ,� u K K u K K1 1 A1 1 1 2 1= - - -^ ^ ^h h h (37)

A / ,� u K K u K K1 1 A2 2 2 2 1= - - -^ ^ ^h h h (38)

and where 0 ≤ K1 < vA and 0 ≤ K2 < vA and K1 ≠ K2.
In this method, a unit loss is liquidated by means of an infinite sequence of

payments ( ) , , ,...� �K K u j 0 1j j
A
j

1 1 2 2
- =$ . and is paid off in perpetuity since 
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Replacing St from equation (36) into equation (9) and using equation (12) yields 

jt � �UL U u UL U L u K K u L .t A t t t A
j j

A
j

j
t1 1 1 1 1 2 2

0

- - - = - -
3

+ + +
=

-!^ ^ `h h j (40)
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Now define

A / ,u K u K Kb 1 A1 1 2 1= - -^ ^h h (41)

A / .u K u K Kb 1 A2 2 2 1= - -^ ^h h (42)

Noting that �1 = b1(1 – K1) and �2 = b2(1 – K2) and b1 – b2 = 1, the right hand
side of equation (40) may be rewritten as

A A

A A

A ,

L u K K u L u K K u L

u K K u L u K K u L

K K u L u K K u L

b b b b

b b b b

b b b b

t
j j

j

j
t j A

j j

j
A
j

t j

j j

j

j
t j A

j j

j
A
j

t j

j j

j

j
t j A

j j

j
A
j

t j

1 1 1

1
2 2

1

0
1 1 2 2

0

1 1

1
2 2

1

1
1 1 2 2

0

1 1 2 2
0

1 1 1 2 2
0

+ - - -

= - - -

= - - -

3 3

3 3

3 3

+
+ +

=
-

=
-

+ +

= -
-

=
-

=
+ -

=
-

! !

! !

! !

a a

a a

a a

k k

k k

k k

(43)

which, upon comparison with the left hand side of equation (40), yields 

jA .UL U K K u Lb bt t
j j

j

j
t1 1 2 2

0

- = -
3

=
-! ` j (44)

Compare equations (15), (22) and (44).
Under the method of equation (36), for a unit loss that emerged j years

ago, the following sequence of payments is yet to be made: {( ) ,� �K K ul l
A
l

1 1 2 2-
, ,...l j j 1= + }. The present value of these outstanding payments is therefore 

A A .� �
� �

K K u v K
K

K
K

u K K ub b
1 1

l l

l j

l l j
j j

A
j j j

A
j

1 1 2 2
1

1 1

2

2 2
1 1 2 2

$- =
-

-
-

= -
3

=

-!` `j j

R

T

S
SS

V

X

W
WW

(45)

Equation (44) thus shows that, at any time t, the unfunded liability is the pre-
sent value of payments yet to be made in respect of all past and present losses,
together with the unamortized part of the initial unfunded liability.

The following proposition is proven in the Appendix.

PROPOSITION 1 Provided that

min(i, iA) > –100%, (46)

i – iA < 100% + iA, (47)

0 ≤ min(K1, K2) < max(K1, K2) < min(v, vA), (48)

then
lim
t "3

Lt = –AL (i – iA)v, (49)
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lim
t "3

ULt = 0, (50)

lim
t "3

St = AL (v – vL). (51)

The sufficient conditions (46)-(48) in Proposition 1 are not very restrictive. (Nec-
essary and sufficient conditions are discussed in the Appendix.) Condition (46)
is easily satisfied under normal economic conditions. Condition (47) also
holds in practice. Long-run economic growth means that the actuarial assump-
tion iA as to the long-term rate of return on plan assets is positive (iA > 0).
Condition (47) then requires that the actuarial investment return assumption
iA does not underestimate the actual return on assets i by 100% or more.
Condition (48) is also easily met in practice. For example, if max(i, iA) = 15%,
then 0 ≤ K1 < 0.87 and 0 ≤ K2 < 0.87 with K1 ≠ K2 means that condition (48)
holds.

COROLLARY 3 Assume that conditions (46)-(48) hold. Then, limULt = 0, irre-
spective of whether iA = i or iA > i or iA < i.

Compare Corollaries 1, 2 and 3. Corollary 3 states that, under the modified
spreading funding method described by equation (36), the pension plan is fully
funded in the long term, irrespective of the deviation of the investment return
assumption from the actual return on the pension plan assets (provided that
the mild conditions (46)-(48) hold). Furthermore, limULt is independent of
the funding method parameters K1 and K2.

The choice of iA affects the progression of funding in the short term, but
iA does not affect the funding position asymptotically. In fact, one could arbi-
trarily set iA = iL as under the classical actuarial valuation methodology
described in section 2 and effectively dispense with an investment return
assumption iA that is distinct from the rate iL at which the pension liability is
valued.

Corollary 3 may be explained as follows. Suppose that a constant stream
of intervaluation losses of size  = 0 occurs in the pension plan. Recall that this
results in a persisting deficit when losses are being either amortized or spread:
see equations (34) and (35) respectively. By contrast, under the method of
equation (36), a constant stream of losses of size  ≠ 0 results in zero unfunded
liability because, from equation (44) and for t ≥ n,

A AK KUL K K u u ub b
b b

1 1
0t

j j

j
A
j

1 1 2 2
0 1

1

2

2, ,= - =
-

-
-

=
3

=

! ` j < F (52)

where we use equations (41) and (42).

It was shown that the spreading method of equation (20) could be
calculated more directly in terms of the unfunded liability, in equation (23).
This may also be achieved here. The following proposition is proven in the
Appendix.
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PROPOSITION 2 The funding method described in equation (36) is equivalently
achieved by calculating supplementary contributions as follows:

A ,� �S UL U UL U v v AL Pt t t t j t j
j

L t1 2
0

= - + - + - +
3

- -
=

!^ ` ^h j h (53)

where �1 = 1 – uAK1K2 and �2 = vA (1 – uAK1) (1 – uAK2).

Trowbridge and Farr (1976, p. 62) state that “easy computations” are a
desirable characteristic of a funding method. Equation (53) provides a straight-
forward way of computing contributions from year to year as only the historic
sum of unfunded liabilities need be stored and updated.

Compare equations (23) and (53). The second term on the right hand side
of equation (53) represents a historic sum (without interest) of past unfunded
liabilities. Contributions are therefore paid until surpluses and deficits cancel
each other out and the unfunded liability is zero. Modified spreading of gains
and losses, in the representation of equation (53), is similar to a method
described by Balzer (1982) in the context of a general insurance system (see
also Taylor, 1987). Balzer (1982) refers to a summation term similar to the sec-
ond term on the right hand side of equation (53) as supplying an “integral
action” which adjusts for a “persisting stream of unpredicted claims”.

7. NUMERICAL EXAMPLE

An illustration of the previous results is given here and is based on the following:

Demographic projections: Mortality: English Life Table No. 12 (males). Plan
population: stationary with single entry age of 20 and single retirement age
of 65.

Salary: Constant throughout working lifetime.
Benefit: A level pension at age 65 paying 2/3 of annual salary.
Economic projections: No inflation. Assets earn a constant rate of return of 4.5%.
Initial unfunded liability: Zero. (Alternatively, assume that UL0 is being sepa-

rately amortized as in equation (10) and that ULt – Ut, rather than ULt is
evaluated below.)

Actuarial valuations: Frequency: yearly. Actuarial cost method: unit credit.
Actuarial assumptions: Fixed with valuation assumptions iL = 4%, iA = 1%,

4.5% and 6%. Other valuation assumptions are identical to projection
assumptions.

Valuation data: Number of entrants and payroll are calculated such that the
yearly benefit outgo B is normalized to 1. Actuarial liability AL = 16.94, nor-
mal cost NC = 0.3486, both expressed as a proportion of B.

Funding method parameters: Amortization: m = 5. Spreading: K = 1 – 1/a e5 .
Modified spreading: K1 = K, K2 = 0.8.

When i = iA = 4.5%, numerical work (not shown here) shows that neither gain
nor loss arises and the funded ratio (that is, ratio of fund value to actuarial
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Figure 1: Fund value (per cent of actuarial liability) and contribution (per cent of normal cost) against
time (years) when iA = 6% and i = 4.5% for amortization, spreading and modified spreading.

liability) remains at 100%, while the contribution paid is equal to the normal
cost, for all three methods. This accords with Corollaries 1, 2 and 3 when iA = i.

When i = 4.5% and iA = 6%, the investment return assumption is optimistic.
Fund values (as a percentage of actuarial liability) and contributions (as a per-
centage of normal cost) over time are exhibited in Table 1. See also Figure 1.
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A contribution that is equal to 11.8% of normal cost is required initially under
all three methods. Under amortization, the required contribution levels off at
86.6% of normal cost and an unfunded liability of 4.3% of actuarial liability
remains. Under spreading, the contribution rises steadily to 93.3% of normal
cost and an unfunded liability of 7.5% of actuarial liability is left eventually.
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Figure 2: Fund value (per cent of actuarial liability) and contribution (per cent of normal cost) against
time (years) when iA = 1% and i = 4.5% for amortization, spreading and modified spreading.
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TABLE 1

FUND VALUE (PER CENT OF ACTUARIAL LIABILITY) AND CONTRIBUTION (PER CENT OF NORMAL COST)
WHEN iA = 6% AND i = 4.5% FOR AMORTIZATION (A), SPREADING (S) AND MODIFIED SPREADING (MS).

Time Fund value (%) Contribution (%)

A S MS A S MS

0 100.0 100.0 100.0 11.8 11.8 11.8
2 97.4 97.4 97.6 42.5 39.7 55.6 
4 96.0 95.8 96.7 72.5 58.1 78.2 
6 95.7 94.6 96.6 87.0 70.1 88.8 
8 95.7 93.9 96.8 86.6 78.1 92.9

10 95.7 93.4 97.2 86.6 83.3 93.4 
12 95.7 93.1 97.7 86.6 86.7 92.3
14 95.7 92.9 98.1 86.6 89.0 90.5
16 95.7 92.8 98.4 86.6 90.5 88.4
18 95.7 92.7 98.8 86.6 91.4 86.5
20 95.7 92.6 99.0 86.6 92.1 84.8
25 95.7 92.6 99.5 86.6 92.9 81.7
30 95.7 92.5 99.7 86.6 93.2 79.8
35 95.7 92.5 99.8 86.6 93.3 78.8
40 95.7 92.5 99.9 86.6 93.3 78.3
45 95.7 92.5 100.0 86.6 93.3 78.0
50 95.7 92.5 100.0 86.6 93.3 77.8

TABLE 2

FUND VALUE (PER CENT OF ACTUARIAL LIABILITY) AND CONTRIBUTION (PER CENT OF NORMAL COST)
WHEN iA = 1% AND i = 4.5% FOR AMORTIZATION (A), SPREADING (S) AND MODIFIED SPREADING (MS).

Time Fund value (%) Contribution (%)

A S MS A S MS

0 100.0 100.0 100.0 238.8 238.8 238.8
2 106.3 106.3 105.7 169.1 175.9 124.1
4 110.2 110.7 107.5 96.5 132.3 66.3
6 111.2 113.8 107.3 57.1 102.2 41.7
8 111.2 115.9 106.3 54.6 81.3 35.2

10 111.3 117.3 105.1 54.1 66.9 37.7
12 111.3 118.3 103.8 54.1 56.9 44.0
14 111.3 119.0 102.8 54.1 50.0 51.2
16 111.3 119.5 102.0 54.1 45.3 57.8
18 111.3 119.9 101.3 54.1 42.0 63.4
20 111.3 120.1 100.9 54.1 39.7 67.7
25 111.3 120.4 100.3 54.1 36.6 74.2
30 111.3 120.5 100.1 54.1 35.3 76.7
35 111.3 120.6 100.0 54.1 34.9 77.5
40 111.3 120.6 100.0 54.1 34.7 77.7
45 111.3 120.6 100.0 54.1 34.6 77.7
50 111.3 120.6 100.0 54.1 34.5 77.7



Under modified spreading, the required contribution stabilizes at about 78%
of normal cost with the plan being fully funded eventually. This therefore
agrees with Corollaries 1, 2 and 3 when iA > i : long-run deficits occur under
amortization and spreading, but not under modified spreading. Furthermore,
numerical experiments suggest that the long-run unfunded liabilities that occur
under amortization and spreading are larger, the larger the deviation between
actual and assumed returns.

Note that the pension fund is ultimately in balance under all three methods.
For example, under amortization, using units of yearly benefit outgo, a fund
of 95.7% ≈ 16.94 = 16.21 yields investment income of 16.21 ≈ 4.5% = 0.7295 at
the end of the year. At the start of the year, the present value of this income
is 0.7295 /1.045 = 0.698. Contribution income is 86.6% ≈ 0.3486 = 0.301. Total
income is 0.698 + 0.301 = 1 which balances the benefit of 1 that is paid out. The
balance occurs at different levels under the three methods. Under modified
spreading, the fund is eventually in equilibrium in such a way that the pension
plan is fully funded.

When i = 4.5% and iA = 1%, a conservative investment return assumption is
being made. See Table 2 and Figure 2. A large contribution (more than dou-
ble the normal cost) is required initially under all three funding methods. Inter-
valuation gains lead initially to falling contributions under all three methods
(at about the same rate). Ultimately, the lowest contribution (at only 35% of
normal cost) is generated when spreading is used, but this is at the expense of
a large surplus in the pension fund of 20% of actuarial liability. On the other
hand, the surplus is only 5% of actuarial liability within 10 years, and under
1% within 20 years, when modified spreading is used. This also agrees with
Corollaries 1, 2 and 3 when iA < i .

8. CONCLUSION

The investment return assumption made by actuaries when valuing defined
benefit pension plans and its relevance to the pace of funding for pension
benefits was discussed in section 2. It was argued that this assumption is the-
oretically distinct from the discount rate that is used to value pension liabili-
ties, although they may be equal in practice. A simplified model pension plan
was posited in Section 3, where actuarial liability, normal cost and benefit
outgo were constant. The only intervaluation gains and losses allowed in the
model resulted from actual investment return deviating from the actuarial
investment return assumption.

Two practical funding methods were described in sections 4 and 5 and it
was shown, in both cases, that a conservative investment return assumption
leads to a long-term surplus whereas an optimistic investment return assump-
tion leads to a long-term deficit. Both long-term surpluses and deficits were
deemed to be undesirable. Surpluses may entail expensive demands for benefit
enhancements from plan members during wage negotiations and also involves
the diversion of capital away from projects within the sponsoring corporation.
Deficits may endanger the security of pension benefits should the plan sponsor
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become insolvent. A funding method was devised and described in section 6
that avoids such persistent surpluses and deficits, under mild stability condi-
tions, independently of the conservatism or optimism in the actuarial invest-
ment return assumption. A simple way of implementing this funding method
was derived in terms of the historic sum of past unfunded liabilities. A numer-
ical illustration of these results was provided in section 7.

The analysis in this paper yielded closed-form mathematical solutions but
this required simplistic modelling assumptions. Future research should relax
these restrictive assumptions. First, only asset gains and losses were considered.
Mortality, withdrawal, inflation and other factors are also variable and should
be incorporated in the model. Second, these factors are uncertain and inter-
valuation gains and losses are random. A stochastic approach following
Dufresne (1988, 1989) and Owadally and Haberman (1999), who investigate
pension funding with random investment returns, should be illuminating. It will
enable a more realistic comparison of the various funding methods to be made
in terms of the variance of fund values and contributions. The efficient choice
of parameters K1 and K2 under modified spreading of gains and losses can also
then be investigated.
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Appendix

Proof of Proposition 1

It is easy to show, from equations (37), (38), (41) and (42) that

�1 – �2 = 1 + vA – K1 – K2, (54)

�1K2 – �2K1 = vA – K1K2, (55)

b1 – b2 = 1, (56)

b1K2 – b2K1 = vA. (57)

Replace St from equation (36) and ULt from equation (44) into equation (8),
and use equation (12), to obtain:

A .� �L i i K K u L v AL Ub bt A
j j

A
j

t j t
j

1 1 1 1 2 2 2 1
0

= - - - - - -
3

+ - +
=

!^ ^ ^ ^h h h h

R

T

S
SS

9

V

X

W
WW

C (58)

This may be rewritten using the lag or backward shift operator B as follows:

A A
AA .

� �
B L i i u K B L u K B L B v AL U

b b
1 1t t t t

1

1

1 1

2

2 2 1= -
-

-
-

-

-
- -- -

^ ^h h< F (59)

Note from equations (54)-(57) that

(b1 – �1) – (b2 – �2) = K1 + K2 – vA, (60)

(b1 – �1)K2 – (b2 – �2)K1 = K1K2. (61)

Multiply both sides of equation (59) by (1– uAK1B) (1– uAK2B)B and use the two
equations above:

A A A A

A A A .

u K B u K B L i i K K v BL u K K B L

u K B u K B v AL U

1 1

1 1

t A t t

t

1 2 1 2 1 2
2

1 2

- - = - + - -

- - - -

^ ^ ^ ^

^ ^ ^

h h h h

h h h

8

A
(62)

Collect terms in Lt on the left hand side to obtain a second order linear differ-
ence equation for Lt :

A

A A A .

B uK uK uv B uu K K L

u K B u K B v i i AL U

1 1

1 1

A t

A t

1 2
2

1 2

1 2

- + - + +

= - - - - -^ ^ ^ ^h h h h

7 7A A$ .
(63)

Difference equation (63) has a quadratic characteristic equation,

A A( ) ,P z z z uK uK uv uu K K1 02
1 2 1 2= - + - + + =7 A (64)
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whose roots must be less than one in magnitude for {Lt} to converge as t → ∞.
Necessary and sufficient conditions for this for a general quadratic equation
are given by Marden (1966):

|P(0)| < 1 ⇒ |uuAK1K2 | < 1, (65)

P(1) > 0 ⇒ uvA(1 – uAK1) (1 – uAK2) > 0, (66)

P(–1) > 0 ⇒ uvA [2uA(v + uAK1K2) – (1 – uAK1) (1 – uAK2)] > 0. (67)

It is now shown that inequalities (65)-(67) follow from the sufficient conditions in
Proposition 1. Note first that condition (46) may be rewritten as 0 < min(u, uA) ≤
max(u, uA). Conditions (46) and (48) thus imply that 

0 ≤ min(u, uA) min(K1, K2) < max(u, uA) max(K1, K2) < 1. (68)

Hence, inequality (65) follows from sufficient conditions (46) and (48).

Next, note from the inequalities (68) that 

0 < 1 – max(u, uA) max(K1, K2) < 1 – min(u, uA) min(K1, K2) ≤ 1, (69)

and therefore that 

0 < (1 – uAK1) ≤ 1   and   0 < (1 – uAK2) ≤ 1. (70)

Hence, inequality (66) follows from sufficient conditions (46) and (48).
Finally, condition (47) may be written as u < 2uA or 2uAv > 1, by virtue of

condition (46). It follows from inequalities (70) that

(1 – uAK1) (1 – uAK2) ≤ 1 < 2uAv ≤ 2uAv + 2u2
A K1K2 (71)

⇒ 2uA(v + uAK1K2) – (1 – uAK1) (1 – uAK2) > 0. (72)

Hence, inequality (67) follows from sufficient conditions (46), (47) and (48).
Let the roots of the characteristic equation (64) be �1 and �2. If �1 ≠ �2,

Lt in equation (63) has a solution of the form Lt = A�1
t + B�2

t + L, where A,
B, L ∈ �. If sufficient conditions (46)-(48) hold, then |�1| < 1 and |�2| < 1, the
sequence {Lt} converges to L and, furthermore, the series ( )L Ljj 0

-
3

=
! is

absolutely convergent.
Assuming convergence, it is clear from equation (63) that

A

A

A

A

A A

,

limL L
uK uK uv uu K K

u K u K v i i AL

AL i i v
v u K u K
v u K u K

AL i i v

1 1

1 1
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1 1
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1 2 1 2
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^
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h
h h

h h
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7 7A A

(73)

which proves equation (49).
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The limit in equation (51) is obtained by resorting to equation (36):

A .

� � � �S K K u L L K K u L

v v AL P

t
j j

j
A
j

t j
j j

j
A
j

L t

1 1 2 2
0

1 1 2 2
0

= - - + -

+ - +

3 3

=
-

=

! !` ` `

^

j j j

h

(74)

As t → ∞, the first sum on the right hand side of equation (74) vanishes since
both ( )� �K K uj j

A
j

j 1 1 2 20
-

3

=
! and ( )L Ljj 0

-
3

=
! are absolutely convergent and

their Cauchy product is also absolutely convergent. As t → ∞, the second sum
on the right hand side of equation (74) converges to 

A A
A A

A ,
� �
u K u K L v AL i i v AL v v

1 11

1

2

2 # #
-

-
-

= - - = - -d ^ ^n h h (75)

where use is made of equations (37) and (38). Pt also vanishes as t → ∞ from
equation (10). Hence, lim t→∞ St = –AL (vA – v) + AL (vA – vL) = AL (v– vL).

Finally, the limit in equation (50) is obtained by taking limits on each term
on the right hand side of equation (44) which may be rewritten as follows:

t .UL U K K u L L K K u Lb b b bt
j j

j
A
j

t j
j j

j
A
j

1 1 2 2
0

1 1 2 2
0

- = - - + -
3 3

=
-

=

! !` ` `j j j (76)

As t → ∞, the first sum on the right hand side of equation (76) vanishes since
both j 0=

( )K K ub bj j
A
j

1 1 2 2
-

3! and j 0=
( )L Lj -

3! are absolutely convergent and
their Cauchy product is also absolutely convergent. As t → ∞, the second sum
on the right hand side of equation (76) converges to zero since 

A A
,K K u u K u Kb b

b b
1 1

0j j

j
A
j

1 1 2 2
0 1

1

2

2- =
-

-
-

=
3

=

! ` j (77)

where use is made of equations (41) and (42). Hence, lim t→∞ULt = 0. ¡

Proof of Proposition 2

Rewrite equation (44) in terms of the lag or backward shift operator B:

B

t
A A

A A

A .

UL U u K B u K B L

u K B u K B
K K u

L

b b

b b b b

1 1

1 1

t t

t

1

1

2

2

1 2

1 2 1 2 2 1

- =
-

-
-

=
- -

- - -

^ ^

^ ^

h h

h h

< F

(78)

Using equations (56) and (57), the numerator on the right hand side of the
above equation simplifies and 

t
A A

.UL U
u K B u K B

B L
1 1

1
t t

1 2

- =
- -

-
^ ^h h

(79)
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Likewise, rewrite equation (36) in terms of the backward shift operator B and
use equations (54) and (55) to simplify:

A

A A
A

A A

A A
.

� �
S u K B u K B L v v AL P

u K B u K B
v K K v K K u B

L v v AL P

1 1

1 1

1

t t L t

A
t L t

1

1

2

2

1 2

1 2 1 2

=
-

-
-

+ - +

=
- -

+ - - - -
+ - +

^

^ ^

^ ^
^

h

h h

h h
h

< F

(80)

Cancel Lt from equations (79) and (80) and simplify:

(81)

A

A A

A

A

A
A A

A A A ,

S v v AL P

B
v K K v K K u B

UL U

u K K B
v u K u K

UL U

u K K UL U v u K u K UL U

1

1

1
1

1 1

1 1 1

t L t

A
t t

t t

t t t j t j
j

1 2 1 2

1 2
1 2

1 2 1 2
0

- - -

=
-

+ - - - -
-

= - +
-

- -
-

= - - + - - -
3

- -
=

!

^

^ ^
^

^ ^
^

^ ^ ^ ^ `

h

h h
h

h h
h

h h h h j

= G

which is equation (53). ¡
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