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ABSTRACT 

We study the distribution of the time to ruin in the classical risk model. We 
consider some methods of calculating this distribution, in particular by using 
algorithms to calculate finite time ruin probabilities. We also discuss calculation 
of  the moments of this distribution. 

1. INTRODUCTION 

In recent years, research in ruin theory has focussed on moments of the time 
to ruin, particularly in the classical risk model. Lin and Willmot (1999 and 
2000) develop ideas given in Gerber and Shiu (1998). They present methods 
from which explicit solutions for moments of the time to ruin can be found 
recursively for this model provided that an explicit solution exists for the ulti- 
mate ruin probability. Egidio dos Reis (2000) presents a recursion scheme to 
find the moments of  the time to ruin for a discrete time risk model, and uses 
this to approximate moments of  the time to ruin in the classical risk model, 
while Picard and Lefrvre (1998) consider the classical risk model with a discrete 
individual claim amount distribution. Cheng et al (2000) consider a discrete 
time risk model and find expressions for the moments of  the time to ruin for 
this model. Cardoso and Egidio dos Reis (2002) study the shape of the density 
of the time to ruin. Further references can be found in these papers. 

Our objective in this paper is to study aspects of the time to ruin in the 
classical risk model. In particular, we focus on the actual distribution of the 
time to ruin. By calculating values of both finite and infinite time ruin prob- 
abilities, we can construct numerically the conditional distribution of the time 
to ruin, and use this to create density functions. We also show how Lin and Will- 
mot's (2000) results can be used to calculate approximate values for moments 
of the time to ruin when explicit solutions for the probability of ultimate ruin 
do not exist. 
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The layout of  this paper is as follows. In Section 2 we introduce notation. 
In Section 3 we summarise methods of  approximating both finite and infinite 
time ruin probabilities, and of  approximating the distribution of  the time to 
ruin in the classical risk model. In Section 4 we illustrate how moments of  the 
time to ruin can be calculated, and in Section 5 we give some illustrations of  
densities of  the time to ruin, given that ruin occurs. 

2. NOTATION 

In the classical risk model, the insurer's surplus at time t, given an initial sur- 
plus u, is U(t) where 

u ( o  = u + c t -  s ( t ) .  

The aggregate claims process {S(0}t_>0 is a compound Poisson process, with 
Poisson parameter 2. We denote by P the distribution function of  individual 
claim amounts, and assume that P(0) = 0. Let Pk denote the kth moment of  
this distribution. We assume that the insurer's premium income is received 
continuously at rate c per unit time, where c = (1 + 0)2pl and 0 is the premium 
loading factor. Without loss of generality we can set both 2 and Pl to be 1 and 
these values will be assumed in all numerical illustrations in this paper. 

The time to ruin is denoted T and defined by 

= / i n f ( t :  U(t) < O) 
T [ ~  if U(t) > 0 for all t > 0. 

The probability of  ultimate ruin from initial surplus u is denoted ~,(u) and 
defined by ~,(u)  = P r ( T <  oo). We write O(u) = 1 - ~t(u)  and denote by Tc the 
random variable T] T<  o~. The aggregate loss process {L(t)}t>0 is defined by 
L ( t )  = S ( t )  - ct. We denote by L the maximum of the aggregate loss process 
so that g/(u) = P r ( L  > u). It is straightforward to show that: 

E[L] = fo°°~t(x)dx = P2 (2.1) 20p 1 

E [ L  2] : 2foo°°Xg(x)dx = P3 1[  P2 ~2 
3--~1+ 210Pl1 

(2.2) 

40Pl 4 

See, for example, Gerber (1979). 
The probability of ruin by time t from initial surplus u is denoted g/(u, t) 

and given by ~(u, t) = P r (T<  t) so that 

Pr(T~ < t) = Pr (T< t iT< oo) = ~(u, t) / q/(u) 

is the distribution function of the time to ruin given that ruin occurs. 
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3. A L G O R I T H M S ,  APPROXIMATIONS A N D  ASYMPTOTIC RESULTS 

In this section we give a brief description of some approaches to approximating 
the distribution of  the time to ruin. 

3.1. Algorithms 

Our calculations in Sections 4 and 5 are based on calculated values of  ~,(u) and 
~u(u, t). Values of  ~u(u) have been calculated using the stable recursive algo- 
rithm described in Dickson et  al (1995). Values of  ~u(u, t) have been calculated 
using the algorithm described in Dickson and Waters (1991, Section 8). 

Each of these algorithms is based on a rescaling and a discretisation of the 
classical surplus process described in Section 2. Values of  ruin probabilities are 
calculated in a recursive manner for a discrete time risk model, and are used to 
approximate probabilities for the classical model. In general, the scaling fac- 
tor, denoted fl in these papers, determines the quality of the approximations. 
The larger the value of  r ,  the better the approximations are. 

3.2. Segerdahl's asymptotic result 

Segerdahl (1955) showed that asymptotically as u---) oo, the distribution of  T~ 
is normal provided that the moment generating function of  the individual 
claim amount distribution is finite for some positive value of the argument. 
Asmussen (1984) suggests conditions under which Segerdahl's result gives a 
reasonable approximation to the distribution of Tc. We mention this result as it 
is well known in the literature. However, we will not apply it in our examples 
in Section 5. It will be apparent from our calculation of  the coefficient of  
skewness of  T~ in Section 4 and our graphical illustrations in Section 5 that it 
would be unreasonable to approximate the densities we plot there by normal 
densities. 

3.3. Diffusion and Inverse Gaussian approximations 

We can approximate the surplus process { U(t)} by a diffusion process. Letting 
(](t) = u + W(t)  where W(t)  ~ N(O2plt ,  2p2t) for all t > 0, we have the well known 
result that for u > 0 the conditional distribution of the time to ruin, given that 
ruin occurs, for the process {0(t)} is Inverse Gaussian with density 

f ( t )  - m 

u { (u-OXt ) 2 
2 n ~  2 t-3/2exp _ 22tp 2 (3.1) 

See, for example, Klugman et al (1998). The moments of  this distribution can 
be regarded as approximations to the moments of T~; we illustrate this idea in 
Section 4. In Section 5, we use f as an approximation to the density of  T~. 
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Based on this exact result for the diffusion surplus process, we also test the 
idea in Section 5 that the distribution of  Tc can be approximated by an Inverse 
Gaussian distribution, with parameters determined by the first two moments 
of  T~. 

3.4. Translated gamma approximation 

Dickson and Waters (1993) show that ~,(u, t) for a classical surplus process 
for which the premium loading factor is 0 can be approximated by the ruin 
probability q/sa(flu, at) for a standardised gamma process for which the premium 
loading factor is 0= 0(1 + kfl/a) where the parameters a, fl and k are given by 

3 2 2 
et=42P21P 3 f l=2pz lp  3 k=2(Pl -2P2 /P3) .  

Formulae to calculate values of ~UsG(U, t) are given by Dickson and Waters (1993, 
Section 2). Dufresne et al (1991) explain how values of  

Wsa(U) = ]im~sc(u, t ) 

can be calculated. Thus, we can use the methods of these papers to compute 
q/sG(flu, at) I ~Usa(flu) as an approximation to the distribution of  T~. 

The numerical illustrations in Dickson and Waters (1993) suggest that this 
approach should give reasonably good approximations, except for small values 
of u (relative to Pl). The main advantage of  this approach is that, for large 
values of t, the calculation of  a finite time ruin probability is fairly quick as it 
involves numerical integration rather than a recursive calculation. 

3.5. Other approaches 

Seal (1978) describes methods for calculating or approximating finite time 
ruin probabilities. In particular, when the individual claim amount distribution 
is exponential, a formula exists from which values of ~u(u, t) can be calculated. 
(See also Asmussen (2000).) As the algorithms described in Section 3.1 give 
excellent approximations to both finite and infinite time ruin probabilities, we 
will not employ the techniques described by Seal, although we acknowledge 
that these provide alternative methods of  approximation. 

Similarly, in the case when u = 0, a formula exists from which finite time 
ruin probabilities can be calculated: 

1 fct 
~u(O,t) = l -  ct Jo G(x,t)dx 

where, for a fixed value o f  t, G(x, t) = Pr(S(t) < x). In this special case, given 
that ruin occurs, the distribution of  the time to ruin is the same as the distri- 
bution of  the time to recovery to surplus level 0, and Dickson and Egidio dos 
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Reis (1996, Figure 1) illustrate this density in the case of exponential individual 
claim amounts. In this case, the distribution of  T~ has a strong positive skew, 
a feature that will be evident in the examples in Sections 4 and 5. 

4. M O M E N T S  OF THE TIME TO RUIN 

In this section we illustrate how the first three moments of T~ can be calculated 
and approximated. We note that Delbaen (1988) proved that the kth moment 
of T~ exists only if the (k + 1)th moment of  the individual claim amount dis- 
tribution exists. In the following subsection we assume that P4 exists and that 
we can calculate values of ~v(x) for x = 0, h, 2h ..... u, where u is an integer 
multiple of the constant h, using the algorithm described in Section 3.1. The 
ideas presented here can be extended to higher moments. 

4.1. Formulae for moments 

Lin and Willmot (2000, formula (6.21)) show that E(T~) = ~'l(U)/~u(u) where 

1 u +fu°~(x)dx - P2, (U)] ~ul(u)=-~lO(fo ~(u- x)~(x)dx ~ 1  ~" }" (4.1) 

Using (2.1), we can rewrite (4.1) as 

l (foU~U(u-x)~(x)dx + E(L)6(u) - fo~(x )dx)  

1 
= 2plO (E(L)6(u)-foU~V(x)cJ(u - x)dx) 

(4.2) 

so that we can evaluate ~/Jl(U) using numerical integration. 
Similarly, Lin and Willmot (2000, Theorem 6.3 and formula (6.29)) show that 

where 

(4.3) 

This formula involves integration over an infinite range and so cannot in gen- 
eral be used directly to calculate ~'2(u) and ~u3(u). 

For k - 2 the first and third terms on the right hand side of  formula (4.3) 
can be combined and evaluated by numerical integration. To evaluate the mid- 
dle term, we proceed as follows: 
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jo ~ j:(jo x j ;  ) ,~plO %(x)dx= ~,(x-y)~,(v)dy+ ~,(v)dy-E(L)~,(x)  dx 

= E(L) 2 +fo°~Y¢~v)dy - E(L) 2 

-- ½E(L2), 

using (2.2). Thus, we can write ~2(u) as 

2 [ E(L2)d(u)22PlO u } ~v2(u) = 2-~10 [ fo ~Ul(X)d(u- x)dx . (4.4) 

Similarly, we can write ~v3(u) as 

3 ~ u ~.~.,. ~{,~u~ fo ~.~x~,~- 2 ,~.-x,~.~,x} 
The second integral on the right hand side can be evaluated by numerical inte- 
gration. Consider the first integral. Using (4.3), we can write this as: 

o~ 2 [,foofu 
fo ~'~(uldu = ~-~O tJo Jo ~u(u- x)%(x)dxdu 

+ fo°° fu°°% (x)dxdu 

- fo°°~ (U) fo°°% (x)dxdu} 

We consider the evaluation of  this expression term by term below. First: 

fo fo ~(U-X)~U' (x)dxdu- 22p10 

Next: 

Finally: 

fO°Q~UU°°~I/ (X) = fO °°u~l/1 (u)du 
_ 1 "~Pl 0 {1 E[L]E[L 2] -t- 1 E [L3]} 

~ d u -  22p~0 
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Putting all these pieces together, we have: 

3d(u)E[L]E[ L2] d(u)E[ L31 3 foUd(u_x)~2(x)dx. (4.5) 
~//3 (U) : (,~pl 0 )  3 "[- (2p l  0)3 2Pl 0 

4.2. Approximate moments 

In Section 3.3 we noted that the time to ruin, given that ruin occurs, for a dif- 
fusion process has an Inverse Gaussian distribution. By choosing the para- 
meters of  the diffusion process appropriately, as in Section 3.3, we can regard 
the moments of the Inverse Gaussian distribution as approximations to the 
moments of  T~ for values of u greater than 0. Hence, we can write for u > 0: 

- - -  ~ 3 { P2 ]1/2 
E[T~] u " V[T~] uP2 " Sk[T~] (4.6) 

20Pl' 2203p~ ' ~Oplu] 

where Sk(T~) denotes the coefficient of skewness of T~. 
Note that these approximations do not depend on any moments of the 

individual claim size distribution above the second. This is because the sur- 
plus process is being approximated by a diffusion process matched through 
the first two moments. However, it should be remembered that if, for example, 
P4 does not exist, then the third moment, and hence the coefficient of skewness, 
of  T~ does not exist. The advantage of these formulae is that they are simple 
and depend on the various parameters in a transparent way. 

4.3. Numerical illustrations 

In Examples 4.1 and 4.3 below, approximate values of  E(Tc k) for k = 1,2,3 
were calculated using (4.2), (4.4) and (4.5) respectively, with numerical inte- 
gration by the trapezoidal rule. These values are labelled "App" in Tables 4.1 
to 4.6. Values of  6 were calculated using the stable recursive algorithm of 
Dickson et al (1995), with a scaling factor of 1000. This means that (approxi- 
mate) values of  qt(w) were calculated for w = 0, 0.001, 0.002 . . . . .  so that each 
trapezium had a base of 0.001. Similarly, values of ~Ul(W) and ~t2(w ) were 
calculated for the same values of  w, using exactly the same method of numer- 
ical integration. A second set of  approximate values for the first three 
moments of T~ was calculated using (4.6). These values are labelled "Dif"  in 
the Tables below. In Example 4.2, only the first two moments of  T~ are shown 
since the fourth moment of the individual claim amount distribution does not 
exist. 

Example 4.1 Let the individual claim amount distribution be exponent&l (with 
mean 1). Tables 4.1 and 4.2 show exact and approximate values of  the mean, 
standard deviation and coefficient of  skewness of T~ when 0 = 10% and when 
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TABLE 4.1 

MEAN, STANDARD DEVIATION AND COEFFICIENT OF SKEWNESS OF To, EXPONENTIAL CLAIMS, 0 = 100/o. 

Mean St. Dev. Skewness 

,, Exact App Dif Exact App Dif Exact App Dif 

E) 

10 

20 

30 

40 
50 

10.00 10.00 - 
100.91 100.91 100 

191.82 191.82 200 

282.73 282.73 300 

373.64 373.64 400 

464.55 464.55 500 

45.83 45.83 - 

148.66 148.66 141.42 

205.18 205.18 200.00 

249.20 249.20 244.95 

286.53 286.53 282.84 

319.53 319.53 316.23 

17.737 17.737 - 

4.238 4.238 4.243 

3.070 3.070 3.000 

2.528 2.528 2.449 

2.199 2.199 2.121 

1.972 1.972 1.897 

TABLE 4.2 

MEAN, STANDARD DEVIATION AND COEFFICIENT OF SKEWNESS OF To, EXPONENTIAL CLAIMS, 0 = 250/0. 

Mean St. Dev. Skewness 

u Exact App Dif Exact App Dif Exact App Dif 

0 

10 

20 

30 

40 

50 

4 4 - 

36 36 40 

68 68 80 

100 100 120 

132 132 160 

164 163.98 200 

12.00 12.00 - 

37.74 37.74 35.78 

52.00 52.00 50.60 

63.12 63.12 61.97 

72.55 72.57 71.55 

80.90 81.01 80.00 

8.963 8.963 - 

2.861 2.861 2.683 

2.076 2.076 1.897 

1.711 1.711 1.549 

1.488 1.486 1.342 

1.335 1.313 1.200 

0 = 25%,  respectively. The exact values are calculated from formulae (4.2), (4.4) 
and (4. 5). When 0 = 10%, over the range o f  values of  u in Table 4.1, the small- 
est value of  ~u(u) is 0 .0097  (when u = 50) .  

E x a m p l e  4 . 2  Let the individual claim amount distribution be Pareto with distri- 
bution function P(x) = 1 - ( 3 / ( 3  + x) )  4. Table 4.3 shows approximate values o f  the 
mean and standard deviation o f  Tc when 0 = 10% and when 0 = 25%. In this case 
it is not possible to compare these approximations with exact values. When 
0 = 10%, over the range o f  values of  u in Table 4.3, the smallest calculated value 
o f  q/(u) is 0.0102 (when u = 80) .  

E x a m p l e  4 . 3  We now extend the previous example by introducing excess o f  loss 
reinsurance, with retention level M. In this case all moments o f  the individual 
claim size distribution, and hence of  Tc exist. Tables 4.4, 4.5 and4.6 show approx- 
imate values o f  the mean, standard deviation and coefficient o f  skewness o f  T c 
when 0 = 10% and when the reinsurance premium is calculated by the expected 
value principle with a loading ~ = 25%,  for three different values o f  M. 
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TABLE 4.3 

MEAN AND STANDARD DEVIATION OF To, PARETO CLAIMS. 

307 

0 
20 
40 
60 
80 

Mean 

App Dif App [ Dif 

15.00 - 71.94 - 
203.77 200 271.39 244.95 
372.13 400 373.14 346.41 
531.90 600 456.49 424.26 
681.88 800 535.33 489.90 

St. De~ 

App Dif App I Dif 

6.00 - 19.90 - 
70.49 80 75.50 61.97 

119.00 160 113.74 87.64 
155.88 240 164.94 107.33 
186.27 320 233.05 123.94 

0 =  10% 0 =  25% 

St. Dev. Mean 

TABLE 4.4 

MEAN, STANDARD DEVIATION AND COEFFICIENT OF SKEWNESS OF To, 
PARETO CLAIMS AND EXCESS OF LOSS REINSURANCE, M = 2.  

Mean St. De~ Skewness 

u App I Dif Dif 

0 
20 
40 
60 
80 

14.64 
426.94 434.78 
842.32 869.57 

1257.70 1304.35 
1673.07 1739.13 

App 

86.25 
472.16 465.81 
663.27 658.76 
810.51 806.81 
934.89 931.62 

App Dif 

17.765 
3.246 3.214 
2.311 2.273 
1.891 1.856 
1.639 1.607 

C o m m e n t s  

In each of  the above examples,  we have taken a fairly large scaling factor  in 
our  a lgor i thm to calculate 6. With the smaller scaling fac tor  o f  100, approxi-  
mat ions  in Example  4.1 are poorer  than  those given by Egidio dos Reis (2000) 
who also considered this example. As his a lgori thms are based on the same 
model  we use to calculate values o f  6, the role of  the scaling fac tor  is identi- 
cal in each method.  Our  me thod  is perhaps  a little more  t ransparent  than  his, 
and  does not  appea r  to suffer f rom problems of  numerical  stability. Interest-  
ingly, choosing a more  sophist icated me thod  o f  numerical  integrat ion such as 
Simpson's  rule does not  material ly improve the quali ty o f  our  approximat ions  
in Example  4.1 with a scaling factor  o f  100. In  Example  4.1 at least we can 
see that  the integrand in formula  (4.2) is an exponential ly decreasing funct ion 
(using the well known formula  q/(u) = exp{ -0u  / (1 + 0)} / (1 + 0)) whereas our  
numerical  integrat ion technique effectively assumes it is a linearly decreasing 
function. In each o f  the above examples,  the choice of  a large scaling factor  
did not  result in lengthy compu te r  run times. 
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TABLE 4.5 

MEAN, STANDARD DEVIATION AND COEFFICIENT OF SKEWNESS OF Tc, 

PARETO CLAIMS AND EXCESS OF LOSS REINSURANCE, M = 4. 

Mean St. De~ Skewness 

u App I Dif App Dif App Dif 
I 

0 
20 
40 
60 
80 

12.29 
241.73 249.00 
472.32 498.00 
702.90 747.01 
933.48 996.01 

59.98 
271.16 264.98 
379.14 374.74 
462.56 458.97 
533.10 529.97 

14.666 
3.247 3.193 
2.322 2.257 
1.903 1.843 
1.651 1.596 

TABLE 4.6 

MEAN, STANDARD DEVIATION AND COEFFICIENT OF SKEWNESS OF To, 

PARETO CLAIMS AND EXCESS OF LOSS REINSURANCE, M = 6. 

Mean St. Dev. Skewness 

u App [ Dif App Dif App [ Dif 

0 
20 
40 
60 
80 

12.72 
213.93 220.41 
414.91 440.82 
615.89 661.22 
816.87 881.63 

60.05 
251.36 243.90 
350.24 344.92 
426.80 422.44 
491.57 487.79 

14.128 
3.379 3.320 
2.425 2.347 
1.990 1.917 
1.727 1.660 

Given that a diffusion process has cont inuous sample paths, we would 
expect a diffusion approximation to give better  results if claim sizes are small 
relative to the initial surplus. It  can be seen that the diffusion approximations 
are better  in Tables 4.1 and 4.2 (exponential  claims) than in Table 4.3 (Pareto 
claims) and that the approximations improve as the excess loss retention level, 
M, decreases (cf. Tables 4.4 to 4.6). 

A feature of  Examples 4.1 and 4.3 is the large positive value for each of  
the coefficients o f  skewness. This indicates that in each case the distributions 
o f  T~ are far f rom normal .  This feature will be illustrated in the examples in 
Section 5. Formula  (4.6) indicates that 

l i r n S k [ r c ]  -- 0 

as Segerdahl's (1955) asymptot ic  result shows it must for these examples since 
in the limit the distribution o f  T~ is normal.  We can use formula (4.6) for the 
coefficient of  skewness o f  Tc to gain some insight into when the distribution 
o f  T~ is approximately normal.  For  example, consider Example 4.1, for which 
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Pl : 1, P2 ---- 2 and 0 = 10%. Formula (4.6) indicates that to obtain a coefficient 
of  skewness as low as 0.5, u must be about 720 and for the coefficient to be as 
low as 0.25, u should be about 2880. However for these two values of u, the 
probabilities of  ultimate ruin are 3.4 x 1 0  -29 and 1.34 x 10  - l l 4 ,  respectively, way 
beyond any area of  practical interest. (We note that for these two values of  u 
the exact values of the coefficient of skewness are 0.525 and 0.262 respectively.) 

We remark that the quality of  the approximations denoted "App" in Exam- 
ple 4.1 is excellent. 

5. THE DENSITY OF T c 

5.1 Calculation methods 

In this section our aim is to illustrate the shape of  the density of T~. In 
each of the examples in this section, four different methods of  calculating/ 
approximating this density were used. The following methods were used to 
produce graphs of  density functions. 

1. Algorithms: For a given value of  u and a fixed value of  t, the algorithm to 
approximate finite time ruin probabilities described in Section 3.1 provided 
approximate values of ~(u, z) for z =j/[(1 + O)fl],j= l, 2 ..... (1 +O)flt. Divid- 
ing these by the value of ~u(u) calculated from the infinite time algorithm of 
Section 3.1 provides values of the distribution function, say H(z)= Pr(Tc < r). 
From these, we estimated the density at z =j/[(1 + O)fl] as 

• j - 1  

for j =  1,2,3 ..... 
We regard this as the "true" density and measure the three approximations 
below against it. In the calculations in Examples 5.1, 5.2 and 5.3 we have 
set fl = 20. Illustrations in Dickson and Waters (1991) suggest this value is 
sufficient to calculate accurate approximations to both finite and infinite 
time ruin probabilities. A larger value of  fl will give better approximations, 
but such extra accuracy is of  limited value to us in what follows as our aim 
is to illustrate the shape of  the density of T~. 

2. Diffusion approximation" We have calculated this approximation directly 
from formula (3.1) given the Poisson parameter 2, the moments pl(  = 1) 
and P2, the initial surplus u, and the loading 0. 

3. Inverse Ganssian approximation: We have calculated the first two moments 
of Tc using formulae (4.2) and (4.4). We then matched the first two moments 
of an Inverse Gaussian distribution to these, and calculated values of  the 
density directly, using the formulation in Klugman et al (1998, p. 583). 

4. Translated gamma approximation: For the same r values as under Method 1 
above, we approximated values of  ~u(u, z) and, having divided these by our 
approximation to ~u(u) under this method, we estimated the density in the 
same way as under Method 1. 



5.2. Illustrations 

Example 5.1 Let the individual claim amount distribution be exponential. Fig- 
ure 1 shows densities calculated by each method for 0 = 10% and u = 40. We 
have chosen this value of  u as it provides an ultimate ruin probability in the range 
of  practical interest. (In fact ~u(40) = 0.024.)  Using the exact values of  the mean 
and standard deviation from Table 4.1, we can calculate the parameters of  our 
approximating Inverse Gaussian density as 373.64 and 635.36 (in the parame- 
terisation used by Klugman et al (1998)). In Figure 1, the densities calculated 
by Methods 1 and 4 are virtually indistinguishable from each other, whilst the 
approximations under Methods 2 and 3 are reasonably close to the true density. 
A clear feature o f  Figure 1 is that the distribution is positively skewed, as indi- 
cated by the value o f  the coefficient of  skewness in Table 4.1. Figure 2 shows the 
densities when 0 = 25% and u = 20 (so that ~,(u)= 0.015).  It has exactly the same 
features as Figure 1. 

E x a m p l e  5.2 Let the individual claim amount distribution be Pareto as in Exam- 
pie 4.2, let  u = 80 and let 0 = 10% (so that ~ ( 8 0 )  = 0.010).  Figure 3 shows the 
same densities as Figures I and 2. In this example, we have used the "App" values 
from Table 4.3 to f ind the parameters of  the approximating Inverse Gaussian 
density. We observe that Method 4 again provides the best approximation to the 
true density and that Method 3 provides a better approximation than Method 2. 

Example 5.3 We extend the previous example to include the effect of  excess of  
loss reinsurance. Figure 4 shows the density of  T~ when the retention level is 6, 
10 and 14, and when the reinsurance premium is calculated with a loading o f  
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Figure 1: Exponential claims, u=40,  10% loading 
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Figure 2: Exponential claims, u = 20, 25% loading 
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Figure 3: Pareto(4,3) claims, u = 80, 10% loading 

50%. These densities have been calculated using Method 1. We observe that the 
common feature of  each of these densities is a strong positive skew. 

It is clear from Figures 1 to 3 that the translated gamma approximation per- 
forms better than both the other two approximations and performs particu- 
larly well for the lighter-tailed exponential claims distribution (Figures 1 and 2) 
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Figure 4: Pareto claims and excess of loss reinsurance 

2500 3000 

compared to the heavier-tailed Pareto claims distribution (Figure 3). It is not 
surprising that the translated gamma approximation, which is based on match- 
ing three moments, performs better than methods based on matching just two 
moments. 

In each of the above examples, the consistent feature is that the true den- 
sity is positively skewed, and this feature was even more apparent in other 
densities that we plotted for the same individual claim amount distributions, 
but for smaller values of u. This is consistent with the numerical examples in 
Cardoso and Egidio dos Reis (2002). Based on the numerical illustrations in 
Dickson and Waters (1993), we are not surprised by the fact that Method 4 
produces good approximations to the density of T~. 

One feature that is apparent from our figures is that for the range of para- 
meter values and individual claim amount distributions that we considered, the 
distribution of T~ is not normal. The straightforward approach of Methods 2 
and 3 provides much better approximations than a normal distribution does, 
particularly in Example 5.2. 

6. C O N C L U D I N G  R E M A R K S  

Our aim has been to calculate moments of T~, and to investigate the shape of 
its density. A simple numerical integration procedure suffices for the former 
provided we can accurately calculate values of the ultimate ruin probability. 
Our examples in Sections 4 and 5 indicate that the distribution of T~ is posi- 
tively skewed, and that simple approximations based on Inverse Gaussian den- 
sities can give reasonable results, whereas a normal approximation would be 
inappropriate. 
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