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ABSTRACT 

Sundt and Jewell have shown that a nondegenerate claim number distribution 
Q = {q,}, ~ No satisfies the recursion 

qn+l=( a b + -h--~)q, 

for all n _> 0 if and only if Q is a binomial, Poisson or negativebinomial distri- 
bution. This recursion is of  interest since it yields a recursion for the aggre- 
gate claims distribution in the collective model of  risk theory when the claim 
size distribution is integer-valued as well. A similar characterization of  claim 
number  distr ibutions satisfying the above recursion for all n >_ 1 has been 
obtained by Willmot. In the present paper we extend these results and the 
subsequent recursion for the aggregate claims distribution to the case where 
the recursion holds for all n >_ k with arbitrary k. Our results are of  interest in 
catastrophe excess-of-loss reinsurance. 

1. INTRODUCTION 

A claim number distribution is a sequence Q = {qn}n c No satisfying q, > 0 for all 

n ~ No: = {0, 1,...} and '~.~=0 q, = 1. A claim number distribution {q'},~io is said 
to be nondegenerate if q, < 1 holds for all n ~ No. 

A nondegenerate claim number distribution Q = {q,}, E No is said to be the 
Panjer distribution with parameters a, b ~ R and k ~ No if q, = 0 for all n < 
k -  1 and 

qn+l=( a b + -y-4-r)q, 

for all n > k; in this case we write Q = Panjer (a, b; k). The Panjer distribution 
Panjer (a, b; k) is also said to be a Panjer distribution of order k and the collec- 
tion of  all Panjer distributions of  order k is called the Panjer class of order k. 
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Sundt and Jewell (1981) have shown that the Panjer class of order 0 is iden- 
tical with the collection of all (nondegenerate) binomial, Poisson, or negative- 
binomial distributions, and Willmot (1988) has identified all distributions of 
the Panjer class of  order 1. In the present paper, we identify all distributions 
of the Panjer class of order k with arbitrary k (Section 3). 

The Panjer class of order 0 is important since Panjer (1981) has shown 
that, in the collective model of  risk theory, the aggregate claims distribution 
can be computed by recursion when the claim number distribution is a Panjer 
distribution of order 0 and the claim size distribution is concentrated on the 
nonnegative integers (and hence is a claim number distribution itself). In the 
present paper, we also obtain an extension of Panjer's recursion to the Panjer 
class of  order k with arbitrary k (Section 4). 

The proofs of these results rely on a differential equation which character- 
izes the probability generating function of a Panjer distribution (Section 2). 

To complete the discussion of Panjer distributions and their compound 
distributions, we also present some results on their binomial moments which 
imply that every distribution of a Hofmann family has finite moments of any 
order (Section 5). 

Let us finally note that Panjer distributions of  order k > 1 are suitable for 
portfolios of risks which are subject to catastrophe excess-of-loss reinsurance 
where, as a rule, the priority is exceeded only when at least k claims occur. 

2. A DIFFERENTIAL EQUATION 

In the present section we characterize the Panjer distribution Panjer (a, b; k) 
by a differential equation for its probability generating function. This result 
will be used to identify all distributions of the Panjer class of order k and to 
extend Panjer's recursion for the aggregate claims distribution in the collective 
model of  risk theory. 

For a claim number distribution Q = {q~}~ ~ No' the probability generating func- 
tion mQ: [0, 1] ---> [0, 1] is defined by 

mQ(t):: ~],q.t". 
n=O 

Then we have q. = m~)(0) / n! for all n ~ No. 

2.1. Theorem. Let Q = {qn}n~No be a nondegenerate claim number distribution. 
For a, b ~ R and k ~ N o, the following are equivalent: 
(a) Q = Panjer (a, b; k) 
(b) For every I > 1, mQ satisfies the differential equation 

(1-  at)hO (t) = (la + b)h(Z- i) (t) + q~ ( kl ) l , tk-z 

with t ~[0,1) and the initial conditions h(z)(O) = O for allj < k - 1. 
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(c) mQ satisfies the differential equation 

(1 - at)h~k+ l) (t) = ((k + 1)a + b) h(k)(t) 

with t ~ [0,1) and the initial conditions hq)(O) = O for allj < k - 1. 

Proof. Assume first that (a) holds. Then we have 

m~(t) 
c~ n l! q~(k)tk-'=n~+qn(l)tn-' 

=j~k (a+ j-~)qj(j-~l) t  j÷1-1 

=atj~=kqj(~)tJ-t+(a+ b)j~=kq,(lJl)tJ-(t-1) 

= a t ~  (a+b) m~-l'(t) 
+ ( t - I ) !  

and hence 

(1-at)m~(t)=(la+ b)m~-"( t )+ qk(k)l,t k-l. 

Therefore, (a) implies (b). Obviously, (b) implies (c). Assume now that (c) holds. 
By induction, we obtain 

(1 -a t )m~+l ) ( t )=( (n  + 1)a + b)m~)(t) 

for all n > k. Letting t : = O, the previous identity yields 

qn+l=( a + b -~Ti ) qn 

for all n > k and the initial conditions yield q. = 0 for all n < k - 1. Therefore, 
(c) implies (a). [] 

Theorem 2.1 is known in the case k = 0; see Schmidt (2001; Satz 7.2.2). 

For a claim number  distribution Q = {q~}, c No and l ~ No, the binomial moment 
of order is defined to be 

o~ n _~=l n 
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The binomial moment  of  order l is finite if and only if lim t_ l m~ (t) is finite, 
and in this case we have 

Fur thermore ,  a binomial  momen t  is finite if and only if the (ordinary) 
momen t  of  the same order  is finite. The following result is immediate  from 
Theorem 2.1: 

2.2. Corollary. Assume that Q = Panjer (a, b; k) with a < 1. Then Q has f inite 
moments o f  any order. 

3. THE DISTRIBUTIONS OF THE PANJER CLASS OF ORDER k 

A claim number  distribution Q = {qn}n ~ No is the 

• binomial distribution B (m, 61) with parameters  m e { l, 2 .... } and 61 e (0,1) if 

q o,m  

holds for all n e No. 

• Poisson distribution P(t~) with parameter  a e (0, ~)  if 

n 
- c t  0/. 

qn = e n~ " 

holds for all n e No. 

• negativebinomial distribution NB(fl, 61) with parameters fl ~ (0,oo) and 61 ~ (0,1) 
if 

qn=(  f l + n - n  1) ( 1 -  O)~ On 

holds for all n ~ No. 

logarithmic distribution Log(61) with parameter  0 ~ (0,1) if 

1 O n 
qn = ilog(1 _ O) I -n- 

holds for all n > 1. 
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• extended negativebinomial distribution ENB(m, fl, 0) with parameters m e { 1, 
2, ...}, f l e ( - m , - m +  1) and ~9 e (0, 1] if 

qn 

fl + n-1)O. 
n 

+/-1)oJ (1-O)-D- i(fl J 

holds for all n > m. 

extended logarithmic distribution ELog(m, ~9) with parameters m ~ {2, 3 .... } 
and 0 ~ (0, 1] if 

("m) 

holds for all n > m. 

These distributions will be refered to as basic claim number distributions. 

3.1. Remarks 

In the ratio defining the probabilities of  the extended negativebinomial 
distribution, the numerator  is either strictly positive for all n > m or strictly 
negative for all n > m and we also have 

f l+  -1  on=  (_l~)n=(l_O)_/~. 
n=0 

Therefore, the extended negativebinomial distribution is well-defined. 

• For m > 2, we have 

m m 

j=o~ m - 1 "  

Therefore, the extended logarithmic distribution is well-defined. 

• Willmot (1988) used the term extended truncated negativebinomial distribu- 
tion for ENB(1,fl ,  ~9); see also Klugman,  Panjer and Willmot (1998) and 
Willmot and Lin (2001). Al though there is an obvious justification for this 
terminology, we prefer to omit the adjective truncated here since our results 
suggest to reverse the order of  truncation and extension and to consider 
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extended negativebinomial distributions and truncated extended negativebi- 
nomial distributions. 

• Apparently, the distributions ENB(m, fl, ~9) with m > 2 and ELog(m, ~9) have 
not  been considered before; see Johnson, Kotz and Kemp (1992). 

It is easily seen that every basic claim number distribution is a Panjer distribu- 
tion. Table 1 below contains for every basic claim number  distribution Q con- 
sidered as Panjer (a, b; k) the parameters  a, b, k and the probabili ty generating 
function mQ: 

TABLE 1 

BASIC CLAIM N U M B E R  DISTRIBUTIONS 

b k mQ(t) Q a 

O (m + 1)-l_---d 0 0 ( 1 -  61+ 61t) m B(m,  ,9) 1 - O  

P (a )  0 a 0 e - a ( 1  - t) 

0 

log(1 - Ot) 
Log(61) ,9 - ,9 1 log(1 - O) 

Ot m - 1  f l + j - I  • 

E N B ( m ,  fl, 61) 61 ( f l -  1),9 m 
~m-,(p+~-,]oJ ( 1 - O ) - ~ - , . . ~ j = 0 \  j I 

)--]o~ ( n ]-1 (Ot) n 
n = m k m ]  E L o g  (m, 61) 61 - m61 m oo - |  n y, (n) O 

3.2. Remarks 

• Table 1 shows that there exist Panjer distributions Panjer(a, b; k) with a = 1; 
this has first been observed by Willmot (1988) who discovered ENB(I ,  r ,  1) 
= Panjer(1, r -  1; 1). 

• For ENB(m,  fl, 1 )=  P a n j e r ( 1 , f l - 1 ; m )  the momen t  of  order l is finite if 
and only if l <  m - I ,  and for ELog(m, 1)= Pa n j e r (1 , -m;  m) the moment  
of  order l is finite if and only if l < m - 2. This shows that Corollary 2.2 
cannot  be extended to the case a = 1. 

For a claim number  distribution Q = {qn}, ~ No and k • No satisfying qk > 0 and 
~-]~= 1, + 1 q, > 0, define 

Q<k> : = {q~k>}.eN ° 
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where q(n k)" = 0 for all n < k -  1 and 

_ ( k }  . _ qn 
k - 1  'In • 1 -  ~ - ] j : o q ]  

for all n > k. Then Q(kl is a nondegenerate claim number distribution satisfying 

~ " ~ k -  1 j 
mQ(t) - 2.~y=oqjt 

mQ<k>(t) = 

The distribution Q<k> is said to be the k-truncation of  Q. 

Table 2 below defines the notat ion for the k-truncation Q<k> of  the basic claim 
number distribution Q: 

TABLE 2 

k-TRUNCATIONS OF BASIC CLAIM NUMBER DISTRIBUTIONS 

Q k Q(k} 

B(m, ~9) {0, 1 ..... m-  1} B(m, o% k) 
P(~) {0, 1 .... } P(a; k) 
NB(fl, ~9) {0, 1 .... } NB(fl, ~q; k) 
Log(g) { 1, 2 .... } Log(~9; k) 
ENB(m, fl, g) {m, m + 1 .... } ENB(m, fl, o% k) 
ELog(rn, ~9) {m, m + 1 .... } ELog(m, g; k) 

In particular, we have 

B(m,g)  = B(m,g ;0 )  
P (a )  = P (~ ;0 )  

NB(fl ,  g) = NB(fl ,  g; 0) 
Log(g)  : Log(g;  1) 

ENB(m, fl, g) = ENB(m, fl, g; m) 
ELog(m, g) = ELog(m, g ;m)  

Since every basic claim number distribution is a Panjer distribution, it is clear 
that the k-truncation of  a basic claim number distribution belongs to the 
Panjer class of  order k. In order to prove that the converse of  this assertion 
holds as well, we need the following lemma: 

3.3. Lemma. Assume that Q = Panjer (a, b; k). Then 

( k + l ) a + b > 0 .  

Moreover, a + b >_ 0 implies a < 1, and a + b < 0 implies a < 1. 



290 KLAUS TH. HESS, ANETT LIEWALD AND KLAUS D. SCHM1DT 

Proof .  T h e  first  inequal i ty  is i m m e d i a t e  since Q is nondegenera te .  Le t  us n o w  
a s s u m e  tha t  a > 0 and  a + b > 0. T h e n  we have, for  all n > k. 

_ n a + a + b  n 
qn + ~ n + 1 q, - -n-C1 > aG 

and  hence  
k + l  n -k  

qn + l >-- - f f " ~  a q k + l " 

oo k + l  n - k  i 
Since the series )--]'n = k ~-T a d verges for  a > 1, we ob t a in  a < 1. Le t  us nex t  
a s s u m e  tha t  a > 0 and  a + b < 0. T h e n  we have, for  all n > k, 

( n - k ) a + ( k + l ) a + b  n - k  
G + I =  n + l  qn> _ -h---4--faqn 

a n d  hence  
> / n + l V  1 . - k  

q . + l _ l k  + l ) a qk+l- 

~_a ~ [n++l]-la n - k  
Since the  series .=k~k 11 diverges for  a > 1, we ob t a in  a < 1. 

We can  n o w  cha rac te r i ze  the  d i s t r ibu t ions  o f  the Pan je r  class o f  o rde r  k: 

[] 

3.4. Theorem.  Let Q be a nondegenerate claim number distribution. For k ~ No, 
the following are equivalent: 

(a) Q belongs to the Panjer class o f  order k. 

(b) Q is the k-truncation o f  a basic claim number distribution. 

Proof. Assume  first that  (a) holds  and  consider  Q = {qn}n ~ No = Panjer (a, b; k). 
By T h e o r e m  2.1, we have 

d ( l ° g m ~  )) ( k + l ) a + b  
dt (t) - 1 - at 

for  all t e [0, 1) a n d  m~)(O) = 0 for  all n < k - 1. To  solve the  different ia l  equa -  

t ion,  we d is t inguish  three  cases  d e p e n d i n g  on  a :  

• The case a < 0" In  this case we ob t a in  

m(~) (t) = c(1 - at) -(k + l + bla) 

for  s o m e  c ~ R. Since 
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(n - k)a + (k + l )a + b 
q n + l =  n + 1 qn 

holds for all n > k, Lemma 3.3 yields the existence of  some m > k satisfying 
qm+ 1 = 0 < qm" We obtain m = (a + b) / (-  a), and hence 

rn~) (t)= c ( 1 -  at) m-k .  

The general solution of  this differential equation has the form 

k-1  
mQ(t) = ~ ,  c flJ + ck(1 - a t )  m 

j=O 

and the initial conditions together with mQ(1) = 1 yield 

m o ~  = 

l _ ~ a  + - a  m k ~ l [ m \ l  1 \ m - j / - a  \ j  

1 ]"-J[ - a  ]J 
1- j =o j j Ve-a j i-z-a j 

Therefore, we have Q = B((a + b) / (-  a), (-  a) / (1 - a); k). 

• The case a = 0: In this case, Lemma 3.3 yields b ~ (0, oo) and we obtain 

m ~  ) (t) = c e bt 

for some c ~ R. The general solution of  this differential equation has the 
form 

k - I  
ma (t) : ~,, cj t j + c k e bt 

j = 0  

and the initial conditions together with m Q ( 1 )  = 1 yield 

moq)  - 

k-1 -b, (bO j 
e-b(1 - 0 _ ~,, e 

j=o J! 
k-1  b j 

1 -  Z e-b j~. 
j=O 

Therefore, we have Q = P (b; k). 

• The case a > 0: In this case we obtain 

m~) (t) = c(1 - at) -(~ +1 +b/a) 
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for some c e R. To solve this differential equation, we distinguish five cases 
depending on b: 

© The case b > - a :  In this case we have a + b > 0 and Lem m a  3.3 yields 
a ~ (0, 1). Lett ing fl : = (a + b) / a, we obtain fl ~ (0, oo) and 

m~) (t) = c( l  _ at)-(k + l~ 

The general solution o f  this differential equat ion has the form 

k - 1  

mQ(t) = ~ ,  c j t  j + c~(1 - at) -~ 
j = 0  

and the initial condit ions together with mQ(1) = 1 yield 

mQ(t) = 
j = O ' ,  .J ! 

1 -  Z~ [ i ] ( l - a )  a 
j = 0 \  a / 

Therefore, we have Q = NB((a + b) / a, a; k). 

© The case b = - a :  In this case we obtain 

m~) (t) = c ( 1 -  at) -k 

for some c ~ R. The general solution of  this differential equat ion has the 
form 

k - 1  

mQ(t) = ~ ,  c j t  j + ck log(1 - at) 
j = 0  

and the initial condit ions together with mQ(1) = 1 yield 

mQ(t) - 

log(1 - at) ~ 1  (at)~ 
l o g ( l - a )  ]=l J 

k - 1  a j 

1- f 

Therefore, we have Q = Log(a; k). 

© The case - (m + 1)a < b < - m a  with m ~ {1, 2 .. . .  , k}: In this case we have 
a + b < 0  and Lemma  3.3 yields a~ (0 ,1 ] .  Lett ing f l : = ( a + b ) l a ,  we 
obtain f l e ( - m , - m  + 1). Proceeding as in the case b > - a ,  but taking 
into account  the possibility o f  a = 1, we obtain 
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mQ(t) = 

k - 1  " B  , 

(1 - at)-/~ - ~-], ( f l + J  ')(at)' 
j = 0 \  

(l_ a)-~_ ~ l  (fl+ J - l l d  
j=o\ J / 

Therefore, we have Q = ENB(m, (a + b) / a, a; k). 

© The case b =-ma  with me {2, 3, ..., k}" In this case we have a + b < 0 
and Lemma 3.3 yields a ~ (0, 1]. We obtain 

m~) (t) = c(1 - at)  m - k - I  

for some c ~ R. The general solution of  this differential equation has the 
form 

k-1  
mo(t) = ~ c: t j + c~(1 - at)m-llog(1 - at) 

j=0  

and the initial conditions together with mQ(1) = 1 yield 

o© / n X-1 

n~=~tm) (_al t)J m:= 

Therefore, we have Q = ELog(m, a; k). 

© The case b < - (k  + 1)a: This case is impossible because of  Lemma 3.3. 
Therefore, (a) implies (b). The converse implicat ion is obvious,  as not iced 
before. [] 

In the cases k =  0 and k =  1, Theorem 3.4 is due to Sundt and Jewell (1981) 
and Willmot (1988), respectively. 

4. PANJER'S RECURSION 

Let N be a random variable such that the distribution Q of  N is a claim num- 
ber distribution, let {X,}n~N be a sequence of  random variables which is i.i.d. 
and independent o f  N, and define 

N 

S "= ~ _ ~ X  n. 
n=l 

In the collective model  o f  risk theory, N is interpreted as the number  of  
claims, X, is interpreted as the claim size of  claim n and S is interpreted as the 
aggregate claim size of  the portfolio. 
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If the distribution F of each Xn is a claim number distribution, then this is also 

true for the distribution F *k= {f2k}n~N ° of  ~..~=lXn and for the distribution 

Comp(Q, F) of S; we have me.k (t) = (mr (t)) k and mco.,p(Q, ~) (t) =mo (m F (t)). The 
following result extends Theorem 2.1: 

4.1. Theorem. Let Q = {qn}~N0 be a nondegenerate claim number distribution. 
For a, b ~ R and k ~ No, the following are equivalent." 
(a) Q = Panjer(a, b; k). 
(b) For every claim number distribution F = ~ f ,~ , with fo = 0 and for every 

I > 1, mcomp(Q ' F) satisfies the differential equa't"i~ ° 

(1-ame(t))h't)(t) = (a+b~)h"-O( t )m~( t )+qkmF.k( t )  

with t ~ [0, 1) and the initial conditions h(1)(O) = O for  al l j  <_ k -  1. 

Proof. Assume first that (a) holds and let G := Comp(Q, F). Then we have 

ma(t)  = ma(mF(t))  

and hence 
mb(t)  = mb(mF(t))m~-(t) 

Because of Theorem 2.1, this yields 

(1 -  amr(t) )m'  ~ (t) = (1 -  amr( t ) )m'  Q (mr( t ) )m'  r (t) 

=((a + b)mQ(mF(t)) + qkk  (mF(t)) k - l )m ' r  (t) 

= (a + b)m6(t)m' F (t) + qkm'F'k (t). 

This is the differential equation of (b) in the case l = 1, and the general case 
now follows by induction. Furthermore, Theorem 2.1 yields 

m S ( 0 ) = 0  

for a l l j  < k -  1. Since mr(O ) = f 0  = 0, differentiation of both sides of the iden- 
tity m6(t) = mQ(mr( t ) )  yields 

m~)(0) = 0 

for a l l j  _< k -  1. Therefore, (a) implies (b). Assume now that (b) holds. For the 
claim number distribution F =  {f~},~N0 with fl = 1, we have mF(t) = t and 
hence Comp(Q, F ) -  Q, and the differential equation becomes 

(1-aOh(O(O=(la+ b)h('-l)(t) + q ~ ( k ) l , t k - ' .  
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By Theorem 2.1, this yields Q = Panjer(a, b; k). Therefore, (b) implies (a). [] 

When the distribution F =  {fn}~No considered in Theorem 4.1 is obtained as 
an approximation of a continuous distribution, then the condition f0 = 0 may 
be violated. For this case, we have the following variant of  Theorem 4.1: 

4.2. Theorem. Assume that Q = Panjer(a, b; k). I f  F= {f~},~h0 is a claim number 
distribution and if  G = Comp(Q, F), then m6(t) = ma(me(t)) and the identity 

l l 
(l - ame (t) ) m~ (t) = i~=l (i )(a + b ~ ) m~-O (t)m~ (t) + q~ m~.k (t) 

holds for all l > 1. 

With t = 0, Theorem 4.2 yields the following extension of Panjer's recursion 
for the probabilities of  a compound distribution: 

4.3. Corollary. Assume that Q = Partier(a, b; k). If F=  {fn}n~No is a claim number 
distribution with fo < 1 and if  G = {gn},~so = Comp(Q, F), then go = mQ(fo) and 
the identity 

1 " + q  f*k~. gn : l _--~f o (i~=l (a + b i ) gn-i f i k n } 

holds for all n > 1. 

With t = 1, Theorem 4.2 yields the following recursion for the binomial moments 
of a compound distribution: 

4.4. Corollary. Assume that Q = Panjer(a, b; k) with a < 1. I f  F is a claim num- 
ber distribution and i f  G = Comp(Q, F), then fl~] = 1 and the identity 

(~:~( i - - 'n l"-qnl i l+-  °[~.l' 
flG[~] : l -a1 a + b  n}~'G ~'F q~PF k ] 

holds for all n >_ 1 such that fl~] is finite. 

The results of this section are known in the case k = 0; see Schmidt (2001; 
Abschnitt 7.3). Corollary 4.3 can also be obtained from Sundt (1992; Theo- 
rem 11); see also Sundt and Jewell (1981; Theorem 5). Corollary 4.4 is a vari- 
ant of a result of DePril (1986) who obtained a recursion for the (ordinary) 
moments in the case k = 0; see also Schmidt (1996; Theorem 5.4.3). 

5. A N  APPLICATION TO HOFMANN FAMILIES 

In this section, we consider a family {Qs}s~[O,~) of claim number distributions 
Qs = {qsn}n~h0" For n ~N0, define Fin : [0, oo)--> [0, 1] by 
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1-I,(s) := q~,. 

The family { Q~}s~[0,=) is said to be the Hofmann family H (d, p, c) with para- 
meters d e  [0, oo) andp, e ~ (0, oo) if there exists a differentiable function 8 : [0, oo) 

R with the following properties: 

o 0 ) = 0  

dO P 
(s) - (1 + cs) a 

Ho (s) = exp (-  O (s) ) 

(mS) n dnl"Io 
I'In(S)- n! -~s n (s)" 

The Hofmann family was introduced by Hofmann (1955). Kestemont and 
Paris (1985) pointed out that every distribution of a Hofmann family can be 
written as 

Qs = Comp(Ps, Rs) 

where P~ is a Poisson distribution and R~ is a claim number distribution. The 
following theorem makes this statement more precise. Let Dirae (1) denote the 
claim number distribution Q = {qn},~N0 with ql = 1. 

5.1. Theorem. Assume that {Qs}s~[0,~) = H(d,p, c). Then 

Os = Comp(P(~q(s)), R~) 

holds with 

Dirac(1) / f  d = 0 

: ~ENB(1,d-l ,cs/( l+cs))  if dE(0 ,1)  

Rs [Log(cs/(l+cs)) i f  d = l  

[NB(d-l ,cs/( l+cs);1) i f  d ~ ( 1 , ~ )  

and for all s e [0, oo). In particular, Qs has finite moments of any order. 

Proof. By the Bernstein-Widder Theorem, there exists a probability distribu- 
tion Q concentrated on (0, ~) such that 

Hn(s) = f(o, o o ) e - ; ~  dQ(2) 

holds for all n e No and s e [0, oo). Using this explicit formula for I-In (S), straight- 
forward computation yields 

mQs(t ) = exp ( -O (s - st)) 



AN EXTENSION OF PANJER'S RECURSION 

and we also have 

mco.,( i , (o~s,) ,R,)( t)=exp(-O(s)(  1 -  mR,(t))). 

Now the first assertion follows from 

ps / f  d = 0  

O(s)= P log(1 + c~) /f  d = l  

p (1 + cs) 1- d _ 1 
~- 1 - d  tf dE(0 ,  1)U (1,oo) 

and the second assertion follows from Corollary 4.4 and Corollary 2.2 
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