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ABSTRACT 

The purpose of  the paper is to use the age of  claims in the prediction of risks. 
A dynamic random effects model on longitudinal count data is presen- 
ted, and estimated on the portfolio of a major Spanish insurance company. 
The estimated autocorrelation coefficients of  stationary random effects are 
decreasing. A consequence is that the predictive ability of a claim decreases 
with the lag between the period of risk prediction and the period of occur- 
rence. There is a wide gap between the long term properties of actuarial and 
real-world experience rating schemes. This gap can be partly filled if the age 
of  claims is taken into account in the actuarial model. 
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1. INTRODUCTION 

The purpose of the paper is to use the age of claims in the prediction of risks. 
This issue has already been addressed in the actuarial literature. Solutions 
are obtained from credibility models which can be updated (Gerber, Jones 
(1975)), and from credibility estimators with geometric weights (Sundt 
(1988)). 

The rating models presented in this paper are obtained ~tfter statistical 
inference on longitudinal count data. Let us first clarify the reasons which 
lead to question the assumption of  time-independence for the random effects. 
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Hidden features of risk distributions vary with time, as do rating factors. 
The random effects added in an a priori rating model on longitudinal data 
should then be dynamic. Variations of rating factors between two dates 
should increase with the related lag, and the same result is expected for 
hidden features in risk distributions. Hence the predictive ability of  a claim 
should decrease with the lag between the period of risk prediction and the 
period of occurrence. A stationary process for the random effects will relate 
the predictive power of  claims to this lag. If  the preceding intuition is veri- 
fied, the estimated autocorrelation function of  the random effects should be 
decreasing, a point already mentioned by Sundt (1988). 

In Section 2, we present different Poisson models with random effects. 
The variance of a time-independent random effect can be estimated from 

disaggregated data or from numbers of claims and frequency premiums which 
are summed across the periods. If the estimated variance obtained from dis- 
aggregated data is greater than the second one, the estimation of  distributions 
for dynamic random effects can be considered. This condition is verified on 
our data set, which is drawn from the portfolio of a major Spanish insurance 
company. 

An unconstrained autocorrelation function for dynamic random effects is 
then estimated from a Poisson model with regression components. For each 
lag, the corresponding autocorrelation is estimated from paired off products 
of  lagged number-residuals and frequency-premiums. The autocorrelation 
function obtained in the empirical study decreases, but more slowly than a 
geometric one. 

Optimal bonus-malus systems designed from a linear credibility approach 
are presented in Section 3 from the random effects models developed in 
Section 2. 

In Section 4, we assess the consequences of  a varying autocorrelation 
specification for the random effects on the dynamic of  bonus-malus coeffi- 
cients. An optimal bonus-malus system (later referred to as BMS) designed 
from a model with dynamic random effects and a decreasing autocorrelation 
function will behave in the following way. The no-claim discounts induced 
by a claimless year are lower than those obtained from the usual credibility 
model for a policyholder with a faultless history, but they are higher if claims 
were reported recently. The explanation is the same in both cases. The credi- 
bility granted to a given period of  the past decreases rapidly as time goes 
by, due to the increase of risk exposure but mostly to the decrease in the auto- 
correlation coefficients. 

Actuarial and real-world BMS differ with respect to the dynamic of bonus- 
malus coefficients. For example, the duration of  a claimless history needed 
to offset the malus induced by a claim at fault is longer for actuarial than for 
real-life BMS. The aforementioned properties of  the BMS with dynamic ran- 
dom effects allow us to reduce this difference. 

Increases in premiums induced by claims from the different BMS are 
not very different in the empirical study. On the whole, an optimal BMS 
derived from a Poisson model with dynamic random effects seems acceptable 
to policyholders, if the estimated correlogram is decreasing. Besides, it would 



ALLOWANCE FOR THE AGE OF CLAIMS IN BONUS-MALUS SYSTEMS 339 

entail strong incentives to careful driving for the drivers who reported a claim 
recently. 

Another difference is that an optimal BMS designed from rating models 
with dynamic random effects reaches its limit faster than the usual ones. 
Besides, total credibility does not converge towards one, which entails a lower 
dispersion for the bonus-malus coefficients. In real-life situations, the disper- 
sion of bonus-malus coefficients is much lower than what is obtained from 
actuarial models. Allowing for the age of claims in an optimal BMS reduces 
the dispersion of the bonus-malus coefficients. 

Finally, the applicability of the results obtained in the paper is briefly dis- 
cussed in Section 5. A possibly useful result for practitioners is the following. 
An optimal BMS estimated from short histories and applied to a longer dura- 
tion will overestimate the individual credibilities. This result occurs if the auto- 
correlation function of the random effects decreases with the lag. Hence, 
attention should be paid to the link between the length of the histories used 
in risk assessment and the duration of application of the BMS. 

2. MOMENT-BASED ESTIMATORS FOR LONGITUDINAL COUNT DATA 

2.1. Two estimators for the variance of a time-independent random effect 

Let us consider a portfolio composed of p policyholders. If we have an unbal- 
anced panel data set, the policyholder i is observed during 7",. periods, with 
1 < T~ < Tmax. If n~.t is the number of claims reported by the policyholder i in 
period t, the distributions retained for the frequency risk model are mixtures 
of Poisson distributions. Their likelihood is equal to 

L(ni, t)l<~<r, = E P,~,.,vi(ni, t) , withP~(n) = exp(-2)  -n- T . 

The expectation is taken with respect to the random effect Ui, and the coeffi- 
cients 2i. t depend on regression components (represented by a line-vector xi, t) 
and on the duration of the period d,, t. We write 

2i ,  t = di, t exp(xi, ta); a ~ R k, 

where a is a column-vector of parameters and where k is the number of  
regression components. The random effects (Ui)i=l,...p are assumed i.i.d., 
and the two first moments are 

E ( U i )  = 1; V(Ui)  = a 2. 

Within a semiparametric approach, we do not completely specify the distri- 
butions of  the random effects. Estimators and predictors are obtained from 
second order moments of the random effects and from the maximum like- 
lihood estimation of  the Poisson model with regression components and 
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without random effects. Let us denote the cumulated number of claims and 
frequency risk for the policyholder i as n; = ~F' 1 rti t and 2g T, : , =~-]t=l,~i,t. TWO 

2 consistent estimators of  at: can be retained, which are 

"~1 i~t [ (n i ' t -~ i ' t )2-Fl i ' t  ] "~2 2 ~ai(l'li--~i)2--1"li 
at: = ^~ ; at: = , (1) 

l, l 

where "2i. t a n d  ~i are the frequency-premiums computed from likelihood max- 
imization in the Poisson model without random effects. These two estima- 
tors are unbiased, and the second estimator should be preferred because its 
variance is lower. The intuition is that this estimator uses more information. 

Besides, a/: reflects a short term predictive ability of  the claims. It should be 
greater than an estimator based on longer durations if the predictive ability of 
claims decreases with their age. The inequality 

0<a~ <a~ 

is fulfilled on our data set (see Section 4). It is a necessary condition for the esti- 
mation of  simple dynamic random effects specifications (see Pinquet, Guill6n, 
Bolanc6 (2000)). 

2.2. A Poisson model with dynamic random effects 

We now replace the time-independent random effect U~ by a dynamic random 
effect Ui.t. The likelihood of the random effects model is equal to 

L(ni ,  t)l<_t<_T,=E ,,,u,,,(ni, t • 

As mentioned in the introduction, the time-dependence assumption for the 
random effects is natural. Two assumptions are retained on the random 
effects, which are the following. 

The distribution of vec  (Ui  t)  depends only on T/. 
l<_t<_T~ . 

If the distribution of vec  ( U i t )  is that of vec  ( U t )  the distribution of 
l<t<_T, " l<t~T, 

vec  ( U t )  is supposed to be stationary. This invariance assumption with 
l_<t <Tmax 
respect to time translations means that the predictive ability of  a claim 
will depend on the lag between the period of  risk prediction and the 
period of  occurrence. We suppose that the squared random effects are inte- 
grable. 
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The covariances and autocorrelation coefficients for the random effects are 
denoted as 

Cov(Ut, Ut_h)= pu(h)~r2; O <-h < t < Tmax, 

with: -1 _< pv(h) <- 1;pu(O) = 1. 

From the moment equations derived in the random effects model 

E (Ni.t-2i, t ) a -N i , , - i . t%l=O;  

El ~ Z (Ni, t-~i,t)(Ni, t-h-l~i,t-h)-I~i, tl~i,t-hcT2pu(h)l:O, 
[ilTi h T~>_t>h (O<h<Tmax) 

(2) 

we obtain consistent moment-based estimators for a, o -2 and (pv(h))0<h<Tma, 

The empirical counterpart of the moment equation related to a leads to 

Z (n,,t- "2i.,) 'xi,, = 0,2i, t = di,, exp(xi, t'a). (3) 
i.t 

Hence, the maximum likelihood estimator of a in the Poisson model without 
random effects (i.e. the a priori rating model) is a consistent estimator of a in 
the model with random effects. From the second moment equation, a consis- 

-21 
tent estimator of  o-~ is av (see (1)). Finally, the estimated correlogram of U is 
obtained from 

Z Z (ni, t-'~i,t)(ni, t-h-~i,t-h) 
"~ I i l r , > h  r , > _ t > h  ^ ^ (4) 
a U pu(h)- Z Z /~i,t~i,t-h 

iIT~>h Ti>-t>h 

for 0 < h < Tma x. All these estimators are consistent and asymptotically normal. 
They are given in Zeger (1988), along with modified estimators which use 
weights related to overdispersion and autocorrelation in the regression in order 
to reduce the asymptotic variance. 

3. L IN E A R  CREDIBILITY PREDICTORS DERIVED 

FROM THE PRECEDING MODELS 

Let (nt) 1_< t_< r_< Tmax be the history of claims recorded on an insurance contract 
(we suppress the individual index in order to simplify the notations). A linear 
credibility predictor (Bfihlmann (1967)) for period T+ 1 is obtained from a 
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regression derived in the model with random effects. The predictor is equal to 

"d + ~7r,=1 "btnt, with 

(a, bl, .- . ,br) =arg  min E U r + l - a -  b,N, 
a,(b, )t=l, ..., r ' 

where the expectation is estimated in the random effects model. 

A linear predictor of  the type ff + b ( ~ ,  nt)is obtained from an expected value 
principle with the negative binomial m~del (see Lemaire (1985), and Dionne, 
Vanasse (1989)). The purpose of the paper is to obtain time-dependent coef- 
ficients in the linear combination. The intuition is that b t should decrease with 
the age of the period t. 

Since E(UT+1) = 1, we have a+ ~.T=l'btff,(Nt)= 1. Now 2t, the frequency 
premium derived from likelihood maximization in the a priori rating model, 
converges towards the frequency risk E(Nt) computed in the model with ran- 
dom effects (see the comments following equation (3)). Then we have 

T A T 

a + ~,,btnt : l + ~,,bt(nt-'2t ), with 
t = l  t = l  

(bt)t:l ..... w=arg min ~" UT+l-~,,btNt : [ ~ r ( N ) ] - I ~ o v ( N ,  U T + I ) .  
(be)t : l ,  .., T t = l  

We write N =  vec (Nt). From the consistent estimators given in Section 2.2, 
l<t<_T 

the estimators of the individual moments of interest are 

h 1 

~'(N,) ~+¢y2 "2~;C~v(Nt,Nr) ^ ^  A2 'A  ' = = 2, 2,,, % p v  ( I t -  t [) (t :/: t'); 

^ ~'-2 1 
Cov(Nt, UT+I) = 2ta v pv (T+l - t ) .  

The bonus-malus coefficient can be written as 

1- credt + ~, credt nt 
= tM A t 

A 
where (cred,= b,2t)t= i ..... v are the credibility coefficients, which are the solu- 
tions of the linear system with t = 1 ..... T equations 

cred,+ Xt ~-],a v pv(]t-t'J)credr=Rt~r U pv(T+ l- t ) .  (5) 
t '#t 

This linear credibility system can be used with the unconstrained correlogram 
estimated in Section 2.2. 
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Properties of  the credibility coefficients derived from equation (5) are not 
simple to obtain in a general setting. If the frequency premiums are negligible 
with respect to one, we infer from this equation 

A ~'-2 1 ~ 
credt ~ 2ta v p ~ ( T + l - t )  

A sequence of credibility coefficients should have the same shape as that of a 
correlogram with the same length and a reversed index. 

Total credibility does not converge to one when T goes to infinity if the 
autocorrelation function decreases rapidly, and the limit can be very inferior 
to one. Let us consider for example a Gaussian AR(1) process for the additive 
random effects Wt--log(Ut). With our data base, we obtain ~w(h) = 0.79 h 
(see Pinquet, Guill6n, Bolanc6 (2000) for details related to the estimation). 
The total credibility for an average risk (~, --0.09 Vt) converges towards 0.214 
when T converges towards infinity. This limit is obtained in round figures after 
twenty years. It corresponds to the maximum bonus applied to the a priori 
frequency premium of a policyholder with a claimless history. 

Simple updating formulas do not seem to be available for the credibility 
coefficients. Gerber and Jones (1975) prove that linear updating formulas exist 
under conditions which differ from the stationarity assumption retained in 
this paper for the random effects. 

4. E M P I R I C A L  R E S U L T S  

4.1. The data set 

The working sample represents ten per cent of the portfolio of a major Span- 
ish insurance company. We selected only policies covering cars for private use. 
The durations of individual histories range from one to seven years, hence 
T m a  x --- 7 with the notations of the paper. Policyholders were observed between 
1991 and 1997, and indicators of the calendar years are part of the regression 
components in order to allow for a trend in the past (see Besson, Partrat 
(1992) for optimal BMS with a trend). The other rating factors retained in the 
regression are the gender, the geographical area, the age of  the driving licence, 
the seniority and age of the policyholder, the coverage level and the power of 
the vehicle. 

In order to have similar rates of  arrival and attrition in the working sam- 
ple and in the portfolio, we selected the policyholders in the following way. 
Ten per cent of the policyholders present in 1991 were selected at random, 
and kept in the working sample as long as possible. Ten per cent of the new- 
comers in 1992 were included in the working sample, and so on. The size of 
the working sample increases from 120000 in 1991 to 200000 in 1997 (in round 
figures). The attrition rate varies between 8.5% and 10%. The working sample 
is an unbalanced panel data set which is composed of  269388 policyholders 
and of  1172701 periods. The average frequency of  claims at fault per year is 
equal to 0.09. All the period durations are equal to one year, which means 
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that the characteristics of the policyholders are known only at each anniver- 
sary date. This inaccuracy in the observation of  the regression components is 
of  no consequence in our opinion. 

4.2. Estimators for the correlogram of the random effects 

The two consistent estimators quoted in Section 2.1 for the variance of a time- 
independent random effect are respectively 

A 2 1 Z i ,  t(I'li, t--~i, t) 2-?li't 118554.78--105655 
= = 1.269. 

° ' v -  /,X--~ i ~ 10167.12 
,t i,t 

"$2 Y~,i(ni-2i)2-ni  _ 144879 .33-105655  
- = 0.779. (6) 

O'U = X i  X~2i 50359.14 

A 2  "~1 
As expected in Section 2.1, we have o-~ < o- v . 

The correlogram of (Ut)l<t_< 6 is estimated from equations (1) and (4). We obtain 

TABLE 1 

AUTOCORRELATION COEFFICIENTS 

h (lag) 1 2 3 4 5 6 

P'v (h) 0.632 0.485 0.462 0.436 0.360 0.348 

The difference between Pv (1) and p v (0)= 1 reflects the loss of  predictive abil- 
ity related to a claim after one year. Owing to the shape of the correlogram, 
the predictive ability of  claims decreases with their age. The consequences are 
assessed in the following section. 

The moment-based estimators retained in this paper are unconstrained. 
For instance, the estimated autocorrelation coefficients are not bound to 
belong to [-1, 1]. This constraint is fulfilled by the preceding estimators, and 
a multivariate log-normal distribution for the (Ut) lzt<_ 6 can be matched with 
the values of Table 1 (see PinqueL Guill6n, Bolanc6 (2000) for more details 
and further discussion in case of  misspecification). 

4.3. Experience rating from the different models 

In the following tables, credibility coefficients for the different periods are 
computed for an insurance contract with an average frequency premium, 
which is equal to 0.09 per year. Within a linear credibility approach, we use 
the Poisson models with random effects presented in Section 2. The next table 
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provides credibility coefficients computed from time-independent and dynamic 
random effects. The coefficients are computed for histories ranging from one 
to six years. We used the usual credibility formula for time-independent ran- 
dom effects, and the linear credibility system given in Section 3 for the other 
model. We estimated the variance of the time-independent random effect from 
the number of claims and frequency-premiums summed across the periods. 

"~2  "~1 
Hence, we retained a v = 0.779 instead of  a v = 1.269 (see equation (6)). 

Remember that a credibility coefficient is a bonus if no claim is reported. 

TABLE 2 

CREDIBILITY COEFFICIENTS FOR AN AVERAGE RISK (PERCENTAGE) 
DYNAMIC VS. TIME-INDEPENDENT RANDOM EFFECTS 

Duration Credibility per year (%) Total credibility (%) 

of histories dynamic random effects dynamic time-independent 
t=l  t=2 t=3 t=4 t=5 t=6 random effects random effects 

1 year 6.47 0 0 0 0 0 6.47 6.55 

2 years 4.57 6.17 0 0 0 0 10.74 12.29 

3 years 4.15 4.32 5.98 0 0 0 14.45 17.37 

4 years 3.74 3.94 4.14 5.83 0 0 17.65 21.89 

5 years 2.83 3.57 3.82 4.03 5.72 0 19.97 25.95 

6 years 2.66 2.68 3.46 3.71 3.94 5.65 22.10 29.60 

For a given duration of  the individual history, the credibility coefficients of 
the last table decrease with the lag between the prediction period and the 
current period, as do the autocorrelation coefficients. For example, the cre- 
dibility given in Table 2 for the last year of a six years history outweighs 
the credibility of  the two first years. Besides, total credibility (and hence the 
bonus applied to a claimless history) is lower if dynamic random effects are 
used in the rating model. 

Let us now perform an impulse-response analysis of the evolution of the 
bonus-malus coefficient if one claim is reported during the first year, and 
none during the years that follow. We compare the two BMS for a car with 
the average frequency premium. Bonus-malus coefficients are expressed as 
percentages. 

TABLE 3 

IMPULSE-RESPONSE ANALYSIS OF BONUS-COEFFICIENTS AFTER ONE CLAIM 

Years 1 2 3 4 5 6 

time-independent random effects 166.2 156 147 139 131.7 125.2 

dynamic random effects 165.5 140 131.7 123.8 111.4 107.5 
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The no-claim discounts are higher for the rating model with dynamic random 
effects. For instance, the discounts from period 1 to period 2 are equal to 6 
and 15 per cent in the two models. This important difference is due to the 
fact that claimless periods increase risk exposure but also the age of claims 
reported in the past. This property of the rating model with dynamic random 
effects can be related to some clauses found in real-life BMS, which provide 
important discounts for bad drivers with recent good behaviour. In France for 
instance, a driver with a bonus-malus coefficient greater than the coefficient 
applied to beginners (less than three percent of the drivers are concerned) is 
rated according to this coefficient after two consecutive claimless years. This 
feature of  real-life or optimal BMS entails strong incentives to drive carefully 
for policyholders with a bad accident record. Notice that economic analysis 
suggests that optimal insurance contracts with moral hazard should penalize 
recent claims more than older ones (Henriet, Rochet (1986)). 

As shown in Table 3, the duration of a claimless history needed to offset the 
malus induced by a claim at fault is longer for an actuarial BMS designed from 
time-independent random effects than for the other BMS. If the frequency pre- 
mium per year is equal to 0.09, ten clairnless years are needed to offset the malus 
with the usual BMS. On the other hand, five claimless years are almost enough 
to obtain the same result if the other BMS is used. This duration is closer to 
those derived from real-life BMS, which range from three to five years in most 
cases (see Lemaire (1995) for a thorough description of  compulsory BMS). 

Let us compare total credibility for longer durations. We need to extend 
the correlogram for higher values of  the lag. A possible extension is derived 
from the Yule-Walker equations applied to the additive random effects Wt = 
log(Ut). If we assume that the past is summarized by the last six years for 
the random effects process, we obtain an AR(6) specification for the additive 
random effects. In that case, a parametric specification is needed in order to 
link the second order moments of  the Wt with the corresponding moments of  
Ut. A multivariate Gaussian distribution for the additive random effects can 
be considered (see Pinquet, Guill6n, Bolanc6 (2000) for more details). With an 
average risk and from the correlogram given in Table 1, we obtain 

TABLE 4 

LONG-TERM BEHAVIOUR OF TOTAL CREDIBILITY (PERCENTAGE) 

Duration of time-independent dynamic 
histories random effects random effects 

10 years 41.2 27.7 
20 years 58.4 32.6 

40 years 73.7 34.1 

The result obtained in the last column is striking. After almost a full life as a 
car driver, a policyholder with a claimless history obtains a frequency-bonus of 
only 34 per cent, which is about five times the bonus after the first year. 
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In the last table, we compare the dispersion of the bonus-malus coefficients 
derived from the two models. We derive the standard deviation of  bonus- 
malus coefficients for different durations of the histories. Computations are 
performed in the two different random effects models for an individual with 
an average frequency risk. The autocorrelation function of the dynamic random 
effects is extended as indicated before Table 4. The variance of the bonus- 
malus coefficients are those of the linear regression which defines the linear 
credibility predictor, that is to say 

+ ) -1C-Tv(N, ) 

with the notations of Section 3. For different durations of the history, we obtain 

TABLE 5 

STANDARD DEVIATION OF BONUS-MALUS COEFFICIENTS 

duration of the history (years) 1 5 10 20 40 

time-independent random effects 0.226 0.450 0.567 0.674 0.758 
dynamic random effects 0.228 0.355 0.389 0.398 0.399 

In real-life situations, the dispersion of bonus-malus coefficients is much 
lower than what is obtained from actuarial models. For instance, the coeffi- 
cient of variation of the bonus-malus coefficients in Belgium was equal to 
0.154 in 1992 (see Lemaire (1995) for the distribution of bonus-malus coeffi- 
cients at that time). The standard deviation of bonus-malus coefficients in an 
actuarial BMS is also the coefficient of variation, due to the fairness property 
of these systems. The differences between actuarial and real-life BMS are lower 
if the age of claims is allowed for in the statistical model. 

5. CONCLUDING REMARKS 

The main features of an optimal BMS derived from stationary random effects 
with a decreasing correlogram seem acceptable to policyholders. The no-claim 
discounts are lower for claimless drivers than those derived from the usual 
optimal BMS. On the other hand, they can be much higher for policyholders 
who reported claims recently. Such systems would entail strong incentives for 
these drivers to drive carefully. 

A useful result for the application of actuarial models is the following. If 
the autocorrelation between stationary random effects decreases with the lag, 
the variance of  a time-independent random effect (estimated from aggregated 
numbers and frequency-premiums) will decrease with the average duration 
of  the histories used in the estimation. For instance, the variance estimated 
from the observations of the first period is equal to 1.09, whereas the variance 

---2 2 
obtained from the full histories is equal to a U = 0.78 (see Section 4.2). In this 
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f r a m e w o r k ,  a n  o p t i m a l  B M S  e s t i m a t e d  f r o m  s h o r t  h i s to r i es  a n d  a p p l i e d  to  a 
l o n g e r  d u r a t i o n  will  o v e r e s t i m a t e  the  i n d i v i d u a l  credibi l i t ies .  Th is  resu l t  p ro -  
v ides  a s u p p l e m e n t a r y  r e a s o n  to  use  the  w h o l e  h i s t o r y  o f  the  p o l i c y h o l d e r s  in 
the  s t a t i s t i ca l  analysis .  
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