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ABSTRACT 

Nielsen (1999) showed the surprising fact that a nonparametric one-dimensional 
hazard as a function of  time can be estimated x/~-consistently if a high quality 
marker is observed. In this paper we show that the hazard relevant for predicting 
remaining duration time, given the current status of a high quality marker, can 
be estimated v~-consistently if a Markov type property holds for the high 
quality marker. 
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1. INTRODUCTION 

Prediction of future events is important in many fields (e.g. biostatistics, 
actuarial science, finance and economics). For  example in prevalent data studies, 
one often wishes to be able to make predictions based on the available 
information. Ii1 this paper we consider a general way of modelling a marker 
process and a hazard such that good prediction power remains. We do not have 
any parametric assumptions of the marker process or the hazard, but we do 
assume that the marker process obeys a Markov property and that the marker 
process is of high quality as defined in Nielsen (1999) that estimates the 
traditional deterministic hazard rate as a function of time. This estimation is 
improved through the knowledge of  a high quality marker and the resulting 
procedure is more efficient than traditional approaches to nonparametric hazard 
estimation that do not use this extra information, see Nielsen (1998) for an 
overview of some of these more traditional kernel hazard estimators. The 
present paper is concerned about the estimation of the future hazard given the 
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current state of  a continuous marker. The marker therefore enters as an 
integrated part of the model and the stochastic Future hazard that we aim at 
estimating. Therefore the concept of high quality markers seems to even more 
important in the current study than in Nielsen (1999). 

A lot of  actuarial work is about modelling, in which the important thing is to 
make the right approximation to the problem at hand. Statistical testing is not 
always appropriate since the actuary knows very well that his model is not true. 
The actuary has another consideration - how can I make a very general model 
that is easy to understand and that gives me appropriate p,'edictions for the 
future'? The modelling in this paper can be considered as a procedure following 
this actuarial tradition. Though testing procedures of the validation of the 
model indeed need to be developed, the most important Fact is that here is a 
rather general model that gives good prediction power. Our postt, late of good 
predicting power is based on the fact that our non-parametrically based 
estimator of  the future hazard given current marker conditions is estimated 
v~-consistently. This is in general not possible without parametric assumptions, 
the surprising fact that it holds in our situation is a result of the complicated 
interaction between the model assumptions of the marker process and the 
hazard function. We illustrate the applicability of the model in § 5 by considering 
possible applications in so diverse fields as asset-liability management, 
datamining, biostatistics and the analysis of high frequency financial data. 

To get started, consider n individuals with survival times TI,..., T,, and 
marker processes {Zl(s) ,s  <_ Ti},..., {Z,,(s),s _< T,,} and suppose we wish to 
estimate the future hazard based on current marker status. That is, we wish to 
estimate the marker conditional Future hazard (MCFH) 

h.,,.,o(t ) = Pr{Ti E (t + to, t + to + dr) I Zi ( to)  = y,  Ti > t + to}. 

We make the stability assumption that h.~,to(t) does not depend on to and write 
h,,(t) = h,,to(t).  This assumption is realistic if the marker process is a Markov 
process and of high quality. A marker is of  high quality if the hazard at any 
given time only depends on the marker, see Nielsen (1999). Under the stability 
assumption and the asst, mption that the marker is of high quality, we show that 
h.~.(t) can be estimated v/~-consistently. In the more precise model formulation 
below, we allow for filtered data includi,ag prevalent data. In §2 we formulate 
the two models, the simple time model and the marker-only model. In §3 the 
estimators are defined and in §4 we state the pointwise asymptotic theory of the 
v,5~-consistent estimator of the hazard as a function of time. We use standard 
counting process theory to Formulate our model and consider n individuals 
i = 1, ..., n with N, ('') counting observed failures For the i ' th individt,al in the time 
interval [0, T]. We assume that N ('') = (NI"),...,N,I '')) is an n-dimensional 
counting process with respect to the increasing, right conti,mot, s filtra- 
tion b e, = cr(N(s), Z(s), Y(s); s <  t ) , I E  [0, T] ,,,here Y(")= (YI ''), ..., Y,I '')) is the 
n-dimensional exposure process, x~here ~") is a predictable process taking 
wflues in {0, 1}, indicating (by the value 1) when the i'th individual is t, nder risk. 

( 7  (n) 7 (n)'~ We assume that we get some further marker information Z OO = ~ l  ,..., '-,, J, 
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where ZI '') is a d-dimensional ,  predictable  C A D L A G  marke r  process and that we 
are in the high quality marker case, which Nielsen (1999), defined in the following 

(. ('0 ..., AI~')) based on the increased way: the s tochast ic  intensity process A(") = ~A~ , 
filtration 5 c, = o-(N(s), Z(s) ,  Y(s); s < t) depends  only on the value o f  the marke r  . 
in the following sense 

g"/,)-- 

Apar t  f rom smoothness  assu, 'nptions the functional  form of  the marke r -on ly  
hazard,  e~, is assumed to be unknown.  We fu r the rmore  assume that  the marke r  
process have the Markov property that  

G,,,,o(Z) = P r { Z i ( ;  + to) _< z I ze ( ;o )  = y ,  Ti > t + to} 

is independent  o f  to and use the nota t ion  

F,..t(z) = F,,.,,,o(z ). 

Let ./j,,, (z) be the density o f  F~,.,(z) with respect to the d-dimensional  Lebesgue 
measure.  We also assume the following condi t ion of  tmbiasedfilterffTg: 

F,,,t(z) = Pr{Zi(t  + to) < z [ Zi(to) = y, Yi(to) = ri(t + to) = 1} 

Let also 

F,(z) = Pr{Zi(t)  _< z I Y,(0) = I} 

and let fr(z)  be the density o f  Ft(z) and 

Hy( l ) -  Pr{Yi(t + to)= 11 z;(;o)=y, ~',(,o)= l}. 
We assume that  the marke r  Z,(s) has suppor t  on some compac t  set A/" and that  
the densities~,,t  and the hazard c~ are uniformly bounded  away  from zero and 
infinity. 

We asst, me that  E{Yi(s)}  = H(s) ,  where H(o) is cont inuous .  The  marke r  
Zi(s) is only observed for those s such that  Yi(s) = I. Let 

-*  s { Z,.(s) when Y i ( s ) =  I 

Z; (.) = - oo when Yi(s) = O. 

We call Z 7 the observed marke r  process. We assume that  the s tochast ic  
processes (NI,  Z{, Y,,), ..., (N,,, Z,~, Y,,) are lid for the ,; individuals.  Under  the " 
above  model  assumpt ions  a more  precise definition of  the M C F H  is 

= e [o , {z ; ( ;  + ;0)} I z;(r0) = y, ~',(;0) = v;(; + ;0) = 1] : f h.v( t) ct(g)f v,t(z)dz. 

In the following we will show that under the above  assumpt ion  hy can be 
es t imated v57-consistently. 
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2. DEFINITION OF THE ESTIMATOR 

The following estimator of a was introduced and analyzed in Nielsen 
& Linton (1995) and it was employed by Fusaro et al. (1993) to estimate the 
risk of Aids given current marker status based on the San Fransisco Mens' 
Health Study. Let ffi(z) = n- '  ~_#i  f T  Kb{z -- Zk(s)} Yk(.v)(£" and 

n -l ~/~.#, fo' Kh{Z -- Zk(s)}dNk(s) 
&(~) = a~(~_) ' 

where K is a second order kernel of d dimensions. Both ffi and ~i are leave-one- 
out according to the definition given in Nielsen. Linton & Bickel (1998). 

We estinaate hy(t) by the empirical version of J'o,(z)f,v(z)dz: 

g,(t) = ~ ' ' : '  "l°f & {z ' ( t  + s)} r,(t + s) Y , ( s ) & { y  - Z,(s)}ds 
~','=, fo T Yi(t + s) Yi(s)Kb{y - Zi(s)}ds 

Remark. Full knowledge of the marker process is only possible if the marker 
changes deterministically between observed time points. In many examples, 
including using CD4 cell counts or other surrogate markers to predict onset of 
Aids of HIV+ infected individuals, the marker is only observed at discrete 
timepoints. Therefore the methodology of this paper requires an interpolation 
and extrapolation technique. Interpolation is done between two observed points 
in time and extrapolation is performed from a point in time, where no 
succeeding observation exists within a suitable time, see Fusaro et al. (1993) and 
Nielsen (1999) for more comments on this issue. 

Let 

and 

Let also 

3. PROPERTIES OF THE ESTIMATOR 

&, t(z) = .fo T f  ,,r(z)Hy(t)[s(y)H(s) / {,~o TJi~(z)H(u)dtt }d& 

/o gy(t) = H~,(t)A(y)H(s)ds 

.~,.(t) = n -I Yi(t + s) Y~(s)Kh{y - Zi(s)}ds. 
i= I 

~0 7" Xi = c~i{Zi(t + s)} Yi(t + s) Y i ( s )Kb{y-  Zi(s)}ds - h v(t)'~.,,(t). 
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The error of estimation can be written as 

g( , ) -  (,)}-',,-, x, 
i =  I 

n L'/" 
+ { g ' ( / ) } - ' " - '  ,=~l • py , t {Z i ( s l } dM i ( s )  

+ {£ (0)- '  {R, (,) + ,%(0}, 

where 

p,.,,,,(z) = , , - ' ~  
kg:i 

Rl(t) = . - I ~  
i= 1 

n 

R~(,) = , - ' ~  
i =  I 

o r K h { Z , . ( t  + s )  - =}Kb{y - Zk(~)} r , ( .~) / .~{Z~( t  + s ) } &  

o"['k,,,,{ z,(,,,) } - r,.,,,,{ z,(.~) } ] da4~(,~), 

L T[(~; _ ~,){z,(~ + ~)}] v,(, + 4 r , ( a ) K ~ { y  - Z~(.~)}d.,, 

where c:; corresponds to ~i, but with Ni replaced by its compensator A,: 

, <,,/ ~,,l(s)j , "- '  C , . : , : 0  K~{z  - Zk ( . , ) }o , {Z~  (.~)} 
~ i ( z )  = .g (z )  

The remainder terms RI(I) and R2(I) are of lower order of magnitude 
in probability. The proof of this is omitted since it follows the same lines as 
the proof of Theorem I in Nielsen (1999). The main technical difficulty of 
this proof is to solve to the so-called predictability issue, see Nielsen, 
Linton & Bickel (1998)4, Nielsen (1998) and Nielsen (1999). To get the 
asymptotic variance of h.,,, we need to get the asympto~c distribution of the 
two first terms. Therefore the asymptotic distribution of {by(t) - h.v( l ) } {~y( t ) }  - I  
can be calculated as the asymptotic distribution of the sum of indepen- 
dent identically distributed stochastic variables ~--~,'/'=l(Xi+ Wi), where 
Wi = . fZ&, . , {Z i ( .s ' ) }dMi(s) .  The following theorem is a consequence of the law 
of large numbers. Notice that it is necessary to undersmooth the preliminary 
estimator, ~i, used to calculate the final estimator. This type of undersmoothing 
is well known from semiparametric analyses, see Bickel, Klaassen, Ritov, 
Wellner (1993) and Nielsen et al. (1998). It also enters in marginal integration 
(one kind of additive regression), see Linton and Nielsen (1995), and it appeared 
in a similar way in the study of Nielsen (1999). The variance cxpression 
corresponding to 14/, is a nice expression resulting from a standard counting 
process martingale calculation. The variance and covariance term corresponding 
to X~ is, however, not a nice expression. We have chosen a short hand notation 
['or these two latter expressions. The variance can be estimated in a 
straightforward manner by first estimating the stochastic terms, Xi and IV,., by 
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inserting consistent versions of the unknown quantities and then use these 
estimators to estimate the empirical variance of the sum of the identically 
distributed stochastic variables. 

Theorem I. [Pointwise Convergeneel Assume that oe is twice contimwusly 
dif/'erentiable and that nb d+l ~ oo and n b  4 ~ O. Assume finally that the kernel K 
sati.~es the Lipschitz condition given in Theorem 2 in Nielsen & Linton (1995) in 
each coordinate. Then 

where 

and 

/ A .1 
n-{h~,(t) - h.,:(t)} ~ N(O o~?,) 

-~  2 0 "2),,, = {g.,,(t)} -(Cyl..,.., + o'~_ r,, + 2cr~.2.,,.,). 

j.jo ,T -) 

= v ( x , ) ,  = 

= E(X,  W,) crT,Z,y,~ 

4. EXTENSIONS 

The v@Consistency of  the predicting hazard estimator will remain even if the 
hazard model is extended to some semiparametric model 

= o 

where m0 is some parametric model specification and LI")(t) is some marker 
process that can contain continuous as well as descrete markers. A traditional 
actuarial finite state space Markov model can therefore be included in the 
model. The estimation of the parameter 0 can be performed by a traditional 
semiparametric analysis, see Nielsen et al. (1998) for an example of  a 
semiparametric hazard estimation technique beyond the traditional cox 
regression. Also the Markov assumption of  the marker process can be relaxed. 
One can allow for a parametric trend, for example a linear trend and estimate 
and include the parameters without violating the v'Z-consistency of the 
predicting hazard estimator. 

5. EXAMPLES 

In this section we specify four examples where the above methodology seems to 
provide a helpful methodology for prediction. The examples are taken from 
asset-liability management, datamming, biostatistics and an area of recent 
interest, namely high frequency transaction data in financial studies. 
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5.1. Asset-Liability management: Predicting the hazard of the remaining time 
to prepayment of mortgage bonds 

Danish prepaid bonds can be a difficulty in asset-liability management of Danish 
insurance cornpanies, where up to 60% of the invested capital is in this type of  
bonds. In particular it can be hard to say something precise regarding the 
expected duration of the bonds. Here we think of duration of bonds in the 
original sense of Macauley (1938) and of asset-liability management in the sense 
indicated by Redington (1952). The duration of prepaid bonds is difficult 
because the payment times are stochastic variables. People might choose to 
prepay their loan and they might not. One good marker of whether people 
actually choose to prepay their mortgage is if the market interest rate is 
considerable below the nominal interest rate. Therefore the difference between 
the market interest rate and the nominal interest rate is a good candidate for a 
high quality rnarker. It is reasonable to assume that this marker obeys the 
needed Markov property and that the hazard of prepayment can be described 
from the marker information alone. The procedure of this paper therefore seems 
valuable when calculating the predicting hazard of prepayment bonds and 
hereby their expected remaing life time or their duration. 

5.2. I)atamining: Predicting the hazard of the remaining time a given customer 
will remain in an insurance company or predicting the remaing time 
before the next claim 

Let us assume that we through datamining have come tip with some relevant 
marker for expected customer loyalty. If this marker is assumed to obey the 
Markov property of this paper, then the method of this paper can be used to 
give a precise estimate of the expected customer loyalty in the ftlture. Another 
example from datamining could be to predict the expected time to the next 
claim. Continuous lneasures such as the historical claim intensity for the last 
three years can be combined with other markers to predict the expected time to 
the next claim using the methodology of this paper. 

5.3. Biostatistics: Predicting the hazard of the remaining time to onset of AIDS 
in an HIV+ infected individual 

In prevalent cohort studies the relevant time is often unknown and surrogate 
markers can be useful to alleviate this. A well known example is the early 
datasets on onset of AIDS, see Fusaro et al. (1993) for a description of the San 
Fransisco Mens" Health Study. In studies of onset of AIDS the predictive power 
of  CD4 cell counts and other surrogate markers for HIV+ infected individuals 
are well known, see also Choi, Lagakos. Schooley & Volberding (1993) and 
Nielsen (1999). Fusaro et al. (1993) considered the effect of CD4, CD8 and 
Beta-2 Microglobulin on onset of AIDS. It does not seem unreasonable to 
assume that CD4 cell counts, perhaps combined with other surrogate markers, 
can be used as a marker of high quality. The Markov property assumption of 
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the markers  also seems reasonable. Therefore the methodology of  this paper can 
be used to give quite accurate estimates of  the predicting hazard given current 
marker  status. This is an unexpected and quite welcome result for this type of 
otherwise hard to handle prevalent cohort  data sets. 

5.4. High frequency financial analysis: Predicting the hazard of time 
between transactions in financial data 

Due to the increasing storage capacity of  data and due to the increasing speed of 
computations,  all kinds of  financial data is being collected at high frequencies. 
The methodology described in this paper can be useful for modelling the 
distribution of  time between transactions of  financial data. Engle and 
Russell (1998) describe a completely different approach using time series 
techniques. In their section 6.1 they analyze the time between transactions for 
IBM stocks. However, their problem is a problem of  duration and traditional 
duration methods from biostatistics and renewal theory seem to be useful for 
this type of data. The methodology of this paper can be used to predict 
remaining time to the next transaction of  a stock given the two most important  
markers, namely the bid-ask spread and the volume, see Engle and Russell (,1998) 
for a definition of  these markers. The Markov property of  the markers seems to 
be realistic and it is also realistic to assume that the two markers are of  high 
quality, see Shen and Starr (1998) for some indication of the predictive power of  
the bid-ask spread on bond returns. In our terminology they argue, that the bid- 
ask spread can be characterized as a marker  for liquidity in the considered 
financial market. Liquidity in turn is a financial term closely connected to 
duration of time between transactions. Obviously the traded volume is also 
important  for the duration of  time between transactions. The marker consisting 
of the bid-ask spread and the traded volume is therefore likely to be of  high 
quality in many cases. The predicting hazard of duration time between 
transactions given the current bid-ask spread and volume can therefore be 
expected to be estimated v'~-consistentiy when using the method of this paper. 
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