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ABSTRACT 

We extend the Cox-Ingersoll-Ross (1985) model of the short interest rate by 
assuming a stochastic reversion level, which better reflects the time 
dependence caused by the cyclical nature of  the economy or by expectations 
concerning the future impact of monetary policies. In this framework, we 
have studied the convergence of the long-term return by using the theory of  
generalised Bessel-square processes. We emphasize the applications of  the 
convergence results. A limit theorem proves evidence of  the use of a 
Brownian motion with drift instead of the integral fg rudu. For practice, 
however, this approximation turns out to be only appropriate when there are 
no explicit formulae and calculations are very time-consuming. 
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1. INTRODUCTION 

In this paper, which has been presented at the 5th AFIR International 
Colloquium, we concentrate on the convergence of  the long-term return 
t - l  fo r,,du, using a very general two-factor model, which is an extension of 
the Cox-Ingersoll-Ross (1985) model. Cox, Ingersoll & Ross (1985) express 
the short interest rate dynamics as 

dr, = ~(3' - rt)dt + ~v/-~tdB, 

with (Bt)t>O a Brownian motion and ~, 3' and cr positive constants. This 
model has some realistic properties. First, negative interest rates are 
precluded. Second, the absolute variance of the interest rate increases when 
the interest rate itself increases. Third, the interest rates are elastically pulled 
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to the long-term value 3', where ~ determines the speed of adjustment. 
Empirical studies like Chan, Karolyi, Longstaff & Sanders (1992) or Brown 
& Schaefer (1994), however, have shown that there is only weak evidence for 
the existence of a constant long run level of reversion. 

We stress the long-term reversion level and the long-term interest rates 
since they are important in several issues in finance and insurance. For 
instance, for pricing an option to exchange a long bond for a short bond; or 
for mortgage pricing where the long rate determines when homeowners 
refinance their mortgages. In insurance, whole-life insurances are long-term 
products and the long-term interest rates play a dominant role. 

We therefore follow the idea of  Brennan & Schwartz (1982), who 
introduced a two-factor model by using short-term interest rates and consol 
rates (see Hogan (1993) for comments on this model). 

In this paper, we assume that the short interest rate X is governed by the 
stochastic differential equation 

dXs = (213Xs + 6s)ds + vvl~sdBs 

with the dri f t  rate parameter 13 < 0, v a constant and 6 a non-negative 
predictable stochastic process such that fo 6,,du < oo a.e. for all t E N+. This 
stochastic differential equation has a unique (non-negative) strong solution. 

It should be noted that the stochastic process (6S)s>0 determines a 
reversion level. I f  it is chosen to be a constant and i f  v - -  2, the process 
(Xs).,.>0 is a Bessel-square process with drift, a process which is studied in 
great-detail by for example Pitman & Yor (1982) and Revuz & Yor  (1991). 
As the model is a generalisation of Bessel-square processes with drift, it is 
fearly easy to treat. 

In Section 2, we concentrate on the convergence almost everywhere of the 

long-term return t-lJ~r,,du. We are interested in this limit as 

(exp(fo,',,du)) '/' is the average of  the accumulating factor (also called 

return) which can be useful in the determination of  models of  participation 
in the benefit or of saving products with a guarenteed minimum return. 
Using the results of  Deelstra & Delbaen (1995a), we found that in most 

existing interest rate models, (exp(J 0 r,,du)) I/' converges almost everywhere 

to a constant independent of the current market, as the observing period 
tends to infinity. We then say that the model has the "strong convergence 
property" (SCP), whereas we refer to models with the "weak convergence 
property" when the returns converge to a constant, that will generally 
depend upon the current economic environment and that may change in a 
stochastic fashion over time. This terminology appeared in a preliminary 
version entitled "Do  interest rates converge" (1986) of Dybvig, Ingersoll & 
Ross (I 996). 



LONG-TERM RETURNS IN STOCHASTIC INTEREST RATE MODELS:  APPLICATIONS 125 

Dybvig, Ingersoll & Ross (1996) proved that the assumption of  no- 
arbitrage implies that tile long forward rate and the asymptotic zero-coupon 
rate never fall and moreover, they show that nearly all models have the 
surprising implication that long run forward rates and zero coupon rates 
converge to a constant, which is independent of  the current state of the 
economy. El Karoui, Frachot & Geman (1998) discuss the theoretical and 
practical consequences of  this observation for existing models. They also 
focus on some issues encountered in empirical work which can be related to 
the behavior of  the long-term yield structure of  interest rates. 

As noted by El Karoui, Frachot & Geman (1998) and Pearson & Sun 
(1994), parameter estimates are generally very unstable over time and this 
fact can be interpreted as an indicator of misspecification: the parameters 
have to capture the remaining uncertainty due to the stochastic long-term 
rates. As illustrated by Pearson & Sun (1994) and C h e n &  Scott (1992), the 
estimation of  multi-factor versions with no stochastic long-term reversion 
level, show low mean-reversion for one of the state variables. El Karoui, 
Frachot & Geman (1998) argue that this low mean-reversion reflects the fact 
that the long-term yield is not constant over time. 

Using the almost everywhere convergence theorem of Deelstra & 
Delbaen (1995a), we show that it is possible to build a model with the 
WCP in which the long-term return converges almost surely to a reversion 
level which is random itself. As an example we adapt the model of  Tice & 
Webber (1997). 

In Deelstra & Delbaen (1995b), we found conditions necessary to prove the 
convergence in law of a sequence of transformations of the long-term return 
to a Brownian motion. In Section 3, we propose a generalised theorem with 
measure-invariant hypotheses and we recall the idea of  approximating 
Jo r,,du for t large enough. If the objective is to approximate the distribution 
of the long-term return of an investment made at time 0, it is appropriate to 
approximate f~ r,du by a scaled Brownian motion with drift for t going to 
infinity. In the past, many authors have proposed Wiener models since in the 
long term, the Central Limit Theorems are applicable. In insurance, e.g. 
Beekman & Fuelling (1991), Dufresne (1990), Giacotto (1986), Goovaerts et 
al. (1994, 1995) and Milevsky (1997) modeled the accumulating factor 
exp(f0r ,  du) by the exponential of a Brownian motion with drift for the 
derivation of  prices of different i'nsurance products like annuities and 
perpetuities. 

For practical reasons, we are interested in an approximation of  fo r,,du for 
all values of t. Therefore we suggest an improved approximation, which is 
discussed and evaluated by looking at bond prices. The results show that one 
should be very careful by replacing the integral .for,,du by a Brownian 
motion with drift. This approximation should only be used if no exact 
formulae are available and the exact computations are very time consuming 
like could be the case in the derivation of  annuities. 
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In Section 4, we turn to the pricing of  n-year temporary life assurances, 
whole-life assurances and endowment assurances. We calculate the 
present value and the variance and skewness of  this present value of  
the benefit under these contracts by using on one hand the Cox- 
Ingersoll-Ross (1985) model and on the other hand a Brownian 
motion with drift which is suggested by the Central Limit Theorem. The 
results show that in general, it is inappropriate to use the Brownian 
motion with drift instead of the Cox-Ingersoll-Ross (1985) model or its 
extensions. 

Without further notice we assume that a probability space (f], (~,)0<,, P)  
is given and that the filtration (ft)0<t satisfies the usual assumtStions 
with respect to IP, a fixed probability o-n the sigma-algebra .Yoo = v,>_05c,. 
Also B is a continuous process which is a Brownian motion with respect 
to (gr,)0_<,. 

2. FACTOR MODELS WITH S C P  AND W C P  

In this section, we show by using a theorem obtained in Deelstra & Delbaen 
(1995a) that it is easy to verify that existing generalisations of the 
Cox-Ingersoll-Ross model have the strong convergence property, which 
means that the long-term return converges to a constant, which is 
independent of  the earlier shape of the term structure and of  the current 
state of the economic environment. By looking at anologous convergence 
theorems in e.g. a Gaussian setting, we could as a matter of fact prove that 
most existing interest rate models have the SCP, but this will not be done 
within this paper. 

Afterwards, we use the model of Tice and Webber (1997) to show that 
multifactor models do not necessarily imply that the strong convergence 
property holds. 

It should be noted that the almost everywhere convergence limit of  
t-l fo r,du is interesting to study since economists and actuaries work with 
the multiplicative accumulating factor (return) over t years, namely 

, t  
exp(j0 r, du). The average return in one year, where the average is taken 

over ,  years, is denoted by (expff;  rodu)) '/'. If the observing period goes to 

infinity, it converges to the exponent" of the almost everywhere limit of  

t -I forudu. 

We recall from Deelstra & Delbaen (1995a) that if X is defined by 

dX,  = (29X,  + + 
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with (Bs).~>0 a Brownian motion,  /3 < 0, v a constant  and 8 a positive, 
'S predic table  stochastic process such that s-I  Jo 8,,du ,,.e. S with 8 : f~ ~ IR +, 

then the following convergence almost  everywhere holds: 

a . e ,  

-s X ,  du ~ 2fl " 

It is easy to show that for rt = o2Xt /4 ,  v = 2,/3 = - ~ / 2  and 8t = 4~7 t /o  2, 
we obtain a generalised two-factor  Cox-Ingersol l -Ross (1985) model 

drt = ~(7, - rt)dt + Crv/-~tdBt 

with (Ts).~>0 a positive stochastic reversion level process. To ensure that the 
interest rate process (rt)t remains a.s. strictly positive, we should add some 
hypotheses.  Compar ison  theorems for Bessel-square processes with stochas- 
tic reversion level (see Deelstra (1995)) can be used to obtain some. Indeed, if 
X (~) and )((2) are two Bessel-square processes with respectively stochastic 
reversion level 8(0, 8(2) and issued from x (I), X (2) with X (2) ~ X (I) and 
6 (2) >_ 8 (I) a.s. for all t E ~,+, then 

lp[~2)  >_ ~ l ) f o r  all t >_ 0] = 1. 

Now,  it is well-known that if X (I) is a Bessel-square process with constant  
dimension 6 (I) _> 2, then X~t l) > 0 a.s. Therefore,  hypotheses like 4~7¢/o2 _> 2 
a.s. for all t E IR +, imply the strict positivity of  (r~)t a.s. Remark  that this is 
the generalisation of  the constraint  in case of  the Cox-Ingersol l -Ross model. 

In this paper, we further choose the process (%).~.>0 such that t -1 foq'sds 
converges almost everywhere to a random variable q,~ = o2S/4~ : f2 ~ ~.+. 
The central tendency process (')'S)s>_0 may be dependent  or independent of  the 
short  interest rate process. 

We stress this fact since if the reversion level process (%)s>0 
is independent of  the short-term interest rates it is possible to deri~ee 
(quasi-)explicit formulae for bond prices by using scaling properties of  
Bessel-square processes. This approach has been used in the papers by e.g. 
Maghsoodi  (1996), Delbaen & Shirakawa (1996) and Deelstra (2000), who 
consider t ime-dependent but  deterministic (7.,)s>0. However  if the reversion 
level process (Ts)s>0 is dependent  on the short interest rate process, no such 
formulae can be obtained. 

As an example, let us describe the stochastic reversion level process (TS)s_>0 
by a Cox-Ingersol l -Ross (1985) square root  process 

a T ,  = - 7,)at + avS;,d , 

or by a Cour t adon  (1982) process 

d T t = ~ ( 7 * - T t ) d t + 6 7 t d B ,  with 3 2 < 2 k ,  
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with (/}*).,.>0 a Brownian motion and with £, 7* and 6- positive constants. The 
Brownian motion (/;',),>0 may be correlated with the Brownian motion 
(Bs),>_o of the short rate-process and this correlation may be in a random 
way. As mentioned above, we do not need the technical assumption of  fixed 
correlation or independence between the two factors of the model: for 
example, as in Brennan & Schwartz (1982). 

The two proposed reversion level processes are from the same family. They 
both remain positive for £, ~,* > 0, a property which is necessary if one wants 
to work with nominal interest rates. For £, 7* > 0, these processes are mean- 
reverting to the long-term constant value 7", where £ represents the speed of 
adjustment. The volatility increases in both cases with the reversion level. 

For this class of  stochastic reversion levels, t - I  foT.~ds "*, 7" and since 
~ = 4~.,/.~/o -2, t - l  fo6~ds 254 4~7,/o -2. By the theorem mentioned above 
(see Deelstra & Delbaen (1995a)), the long-term return is shown to converge 
almost everywhere to a constant: 

rsds = ds 

We conclude that the long-term return in these two-factors model of short 
interest rates satisfies the strong convergence property. The average 
accumulating factor, where the average is taken over a period t, is found 
to converge almost everywhere to a constant as the period t tends to infinity, 
and this constant is independent of the current state of  the economy: 

e f  £ r,,du a.e. e~r'. 

As another example, we treat the two-factor model proposed by Cox, 
Ingersoll & Ross (1985). They assumed a stochastic reversion level process 
depending on Y, the state variable which describes the change in the 
production opportunities, namely 

dr, = n ( 7 , ' -  r,)dt + crx/~tdB, 

d> = £( r, - 7,)dr 

with r~, £, o, ( and 6 strictly positive constants. We assume that ~ is a strictly 
negative constant. We here only theoretically show that this model also has 
the SCP for the long-term return: since t -~ fo Y.~ds ~,.e. _ ~/~,  we have that 
t -I  Jo 7.,ds ""; - ( / ~  and by the same reasoning as above, we obtain 

1 f l ~.~'. - 4  
- -  r ~ d s  

t Jo " ( 
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As a consequence of the convergence of the long-term return to a constant, 
we can conclude that the long-term yield l imr_~Y(t ,T)  is uniformly 
bounded above as by Jensen'~ inequality (see also Yao (1998)) 

Y(t, T) = /rr,,clu) l <_ exP(Tl~_ t / r l E [ r , ] d u )  . 

It is not surprising that the previous examples satisfy the SCP since in each 
model, the reversion level process itself is elastically pulled to a constant 
independent of the economic state. We recall that the convergence theorem 
from Deelstra 8,: Delbaen (1995a) has no such strong hypothesis; on the 
contrary, the assumptions are very general. For example, the reversion level 
process does not have to be continuous. The convergence theorem only 
assumes a positive, predictable reversion (6,,),,> 0 such that s -I JO 6,du ,,.e. ~, 
where ~ may be a random variable. Models in Which this 6 really is a random 
variable, would imply that the long-term return converges to a random 
variable which will generally depend on the economic environment. 

As an example, let us look at the general dynamic mean interest rate 
model in Tice & Webber (1997) 

dr = a(7 - r)dt + crrdzr 

d Y  = c (#r ( t , r ,% Y) - IOdt + ardzr  

where z~, z 7 and zr denote Brownian motions, r is the short rate and ~, the 
level to which the short rates revert. Y is assumed to be a vector process 
summarizing the remainder of the dynamics in the model. Tice & Webber 
(1997) have interpreted this model within the IS-LM framework, which is a 
standard model in macroeconomics (see e.g. Hicks (1937)). As a particular 
case, Tice & Webber (1997) study a three factor model with the third factor 
related to the availability of transactions credit within the economy. To 
simplify the notations, Tice & Webber (1997) restrict themselves to err, a7 
and ay being constant but it is possible to consider e.g. ar = av"7. 

In that case, it is clear that we are dealing with an extension of the Cox- 
Ingersoll-Ross model with a stochastic reversion level. This model has the 
weak convergence property if the process is not recurrent. 

3. APPROXIMATION OF THE LONG-TERM RETURN AND OF BOND PRICES 

In this section, we give a generalised version of the Central Limit Theorem 
from Deelstra & Delbaen (1995b). We study the convergence in law since it 
is always useful to know how the long-term return is distributed in the limit 
so that approximations can be deduced. We are particularly interested in an 
approximation of for ,  du since this term appears in discounting factors, 
bond prices, annuities, perpetuities, etc. As a natural candidate appears a 
Brownian motion with drift. This process has been used in insurance before 
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for modeling the integral for,du, e.g. in Beckman & Fuelling (1991), 
Dufresne (1990), Giacotto (1986), Goovaerts et al. (1994, 1995) and 
Milevsky (1997). In order to evaluate this approximation, we compare in 
the settings of the Cox-Ingersoll-Ross model bond prices calculated by using 
the approximating Brownian motion with exact values. 

In order to obtain convergence in law, we have to make some more 
assumptions about our family of processes: 

Theorem: Suppose that a probability space (~, (f,),>0, IP) is given and that a 
stochastic process X : ~ × ~,+ ~ ~,+ is defined by the stochastic differential 
equation 

dXs = (2/3Xs + 6s)ds + ",,,v'~.~8~ Vs ~ ~,+ 

with (B,.)s> 0 a Brownian motion with respect to (f't)t>0, v a constant and 
/ 3 < 0 .  
Let us make the following assumptions about the adapted and measurable 
process 6: F tx  IR + ~ IR+: 

/o o ,, 6,du a.e. 8 where ~ is a strictly positive real number; 
. J  

'fo' o sup,>_1 }- 6~du < ec a.e.; 

o Fora,  a+ K O .  

Under these conditions, the following convergence in distribution holds: 

V v2&l J0 X,, + 2/3) ,>_0 - 

where (Bt)t>o denotes a Brownian motion and where ' ~---+' denotes 
convergence m law. 

Since the proof  of this theorem follows more or less the lines of the result in 
Deelstra & Delbaen (1995b), the proof  is omitted and we immediately turn 
to the applications. 

Inspired by this theorem, we estimate fo X,,du with X as in the settings of 
the theorem by 

f '  -6,, , -v2~ 
au + V--~-~--B, 

for t large enough. In Deelstra & Delbaen (1995b), we used the hypothesis 
I t a . e .  - • I t- fo6,du ~ 6, to approximate f oX ,  du by the sum of the long-term 
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constant -6 /2f l ,  to which the long-term return a.e. converges, multiplied by 
t and a scaled Brownian motion: 

f0 x.,u by (,/ 
It should be noted that in the case that (6,,),, is a stochastic process we 
replace the stochastic term (-2fl)  -I J0 6,,du by a constant times t. 

Another drawback of  this estimator is that the moments of fo X,,du do 
not equal those of the estimator, although they are the same asymptotically. 
If the period observed is large enough, this is satisfactory. If the objective is 
to approximate the distribution of the long-term return of  an investment 
made at time 0, it seems to be appropriate to approximate fo Xudu by a 
scaled Brownian motion with drift since the Central Limit Theorems are 
applicable on long-term. 

However, one of our objectives is to look at the approximation 

, 

fo .V, du by -~-fit+ V - - ~ - B '  

to find estimations of bond prices for all maturities. Therefore, the moments 
of  fo X,,du and of the estimator should be equal for all t. A second drawbacl~ 
of the approximation immediately appears in the bond price, namely 

?(0,,) = Ex0 e - £  xo.. ~ e x p  t - 1 - -~ t  ) . 

It is not realistic that the estimating bond price is independent of the current 
short interest rate -'go. Remark that we work with the default-flee bond 
prices. In the sequel, we omit without notice the adjective "default-free". We 
further assume that there is no market price of  risk, since we only want to 
compare different approximations theoretically. 

In case of  the Cox-Ingersoll-Ross (1985) square root process, the 
approximating bond price equals: 

::'"1- -,  (,' 
This estimating bond price is a decreasing function of  the speed of  
adjustment parameter ~;, where in case of  the Cox-Ingersoll-Ross (1985) 
model, two cases are distinguished: for r0 < '7, the bond price is a decreasing 
function of the parameter ~, and for r0 > "7, it is an increasing function of ~. 
In Deelstra & Delbaen (1995b), we compared these approximating bond 
prices with values obtained in the Cox-Ingersoll-Ross setting and found 
that there is an underestimation of  bond prices if r0 < '7  and an 
overestimation if r0 > "% 
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Trying to motivate the approximation of the integral of the short-term 
interest rates by a Brownian motion with drift, we searched for an improved 
approximation. It seems logical to propose the approximation 

X,,clu ,.~ E[X',,]du + V gO# B,. 

Then the expectation is equal for all t and the variance is still asymptotically 
equal. 

Since (2",,),,>o is defined by the stochastic differential equation 

clX, = (2 f i x ,  + 6,)ds + v v / - ~ d & ,  

the expectation value of Xs equals: 

f.~ E[Xs] = e2~"Xo + e 2fls e-2"quE[6u]du, 
dO 

which can only be calculated if IF,[cS,,] is known and J0 ;lE[~5,,]du < oo. As 
above, it should be noted that in the case of (6,),, being a stochastic process, 
we replace the stochastic term (2fl) -l Jo6, ,du by a deterministic time- 
dependent term. But at least in this way, the current state X0 is introduced in 
the approximation. 

As an example of the approximation, let us look 
Cox-Ingersoll-Ross (1985) two-factor model: 

dr, = n(7 ,  - r , )d t  + Ov~rdBr  , 

& ,  = ~,(3`* - 3`,)dr + ~v/57~&. 

The approximation becomes 

r,,~. ~ ~Ir,,la,, + V - ~ 8 '  

,~3`*t+ - r 0 - 3 '  - - - -  ~ - ~  

, -e  
+ ~ - -ft. , ~ + V - - 2 - B , .  

The bond price is estimated by: 

[- - {'"/"] exp (3,*t (2@. 2 - 1 ) )  

( 1 - e - ' ~ ' ( r 0 - 3 ` *  7 0 - 7 *  ) =  tc 
exp t~ t~ tc 

again at the 

i_;  
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Let us evaluate the approximation in case of the Cox-Ingersoll-Ross (1985) 
single-factor model: 

drt = t~(3` - rt)dt + 0-v"~tdB,. 

An anonymous referee remarked (see Deelstra & Delbaen (1995b)) that in 
this case, the moments of the first proposal (1) are equal for all t, as soon as 
the current short interest rate r0 is distributed according to the steady state 
distribution of the square root process, namely the gamma-function with 
parameters c~ = 2 n 3 ` / ~  and/3 = 2t;,/o2: 

lEro r,,du = 3`t = leo 3`t + Bt • 

In reality, r0 is not distributed this way, so an improvement is also necessary 
here to obtain good estimations of bond prices: 

t t /--G2,.),Bt £ r , , d u . . ~  IE[r,,]du+v-~- . 

Substituting the mean of the short interest rate, gives the expression 

fO0 ' 1 - e - ~ t  /-G2"),Bt , , ,au 3`t + ( ,o  - 3`) + 

and the estimating bond price is found to be 

IEr0[e J0 ] ,-~exp 3`t ~ - 1  - - ~  (r0-"7) . 

In case of the previous approximation (I), we found for r0 < 3' an 
underestimation of the bond prices. The approximation in this paper is 
larger since for r0 < 3', a positive term is added to the exponent, namely 

1 - e - ' ~ t  

- -  (r0 - 3`). In the same way, the underestimation in case of r0 > 3  ̀is 
N 

reduced. 
For the Cox-Ingersoll-Ross (1985) square root process, an explicit 

formula for the bond price is given by Pitman & Yor (1982) and Cox, 
Ingersoll & Ross (1985). We recall the bond price from Pitman & Yor 
( 1982): 

ro I + ~/wcoth(wt/2)le~.,./Oae~2~.,/o~ 
[ ( f ) ]  exp - - - w  t 0 -2 C ~ ~  T N----~- J 

IEr0 exp - rudu = 2~. 
(cosh(wt /2)  + ~ / w  sinh(wt/2)).-w- 

with w = x / n  2 + 2 e  2. 
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Using various values for the parameters, we have calculated this exact 
bond price and the improved approximation, for a large range of maturities. 
The deviations are always very small. The largest absolute deviations appear 
when the bond price has a value about 0.5. The reason therefore is that the 
bond price is a decreasing convex function of maturity and that the 
endpoints are fixed, namely for t =  0, the bond price equals 1, and for 
t = oe, the bond price converges to 0. Consequently, the largest deviations 
are to be expected around one half. 

In Table 1, the exact bond prices and the estimating bond prices are 
calculated with the parameters estimated by Chan, Karolyi, Longstaff & 
Sanders (1992), namely ~ = 0.23394, "7 = 0.0808 and a = 0.854. The results 
are given for r0 = 0.04 and for r0 = 0.1. We present the maturities between 6 
and 10 since then, the bond price is approximately 0.5 and the largest 
absolute deviations appear. Although the absolute error as presented in 
Table I is not a monotonic function, one should note that the error in the 
rate -InP(0,  t)/t does reduce for large values of t. 
In comparison with the first approximation (I), the underestimation and 
overestimation are reduced but the difference between the exact result and 
the approximation remains too large to be useful in practice. This 
approximation should only be used if no exact formulae are available and 
the exact computations are very time-consuming like could be the case in the 
derivation of annuities. 

TABLE I 

BOND PRICES EXACT VALUES AND APPROXIMATIONS. 

r 0 =0.04 r0 = 0 .  l 

Exact Approx Approx-Exact Exact Approx Approx-Exact 

I .9565 .9617 .0051 .9068 .9116 .0048 

6 .7061 .7254 .0192 .5843 .5978 .0134 

7 .6587 .6788 .0200 .5386 .5521 .0134 

8 .6135 .6339 .0204 .4970 .5102 .0131 

9 .5708 .5912 .0204 .4591 .47[9 .0127 

10 .5305 .5507 .0201 .4244 .4367 .0122 

20 .2503 .2630 .0127 .1968 .2040 .0071 

30 .1171 .1239 .0068 .0919 .0959 .0039 

40 .0547 .0582 .0035 .0430 .0451 .0021 
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4 APPLICATIONS IN LIFE ASSURANCE 

In this section, we follow the lines of Parker (1993, 1994) for deriving the net 
single premium and the variance and the skewness of the present value of  the 
benefit payable under some insurance contracts. If the short-term interest 
rates are determined by a Cox-Ingersoll-Ross model, the exact formulae 
follow from the result of  Pitman & Yor (1982). We compare these values 
with the approximation derived in Section 3. 

Following the notation of  Parker  (1992), we denote by K the integer- 
valued discrete random variable which represents the number of  completed 
years to be lived by a life assured, whose age is exactly x year at the issue of  
the contract. We let Z be the present value of the benefit payable under a 
given assurance contract. As the precise definition of Z depends on the 
specific assurance under consideration, we look at some examples: the n-year 
temporary assurance, the whole-life assurance and the endowment assurance 
(see e.g. Bowers et al. (1986)). 

Under the n-year temporary assurance, the benefit of 1 is payable at the end 
of the year of  death of  a life assured, if the death occurs within n years from 
the date of  issue. Thus Z is defined to be: 

{ ( S o  `+' ) Z =  exp - X u d u  K = O, 1, ..., n - I 

0 K = n ,  n +  1, ... 

where (X,),,> 0 denotes as before the short interest rate, 
by the stochastic differential equation 

dX, = (213X, + 6t)dt + vv/-~db,.  

The m - t h  non-centered moment of Z is given by 

[ , ,  TM )1 IE[Zm] = Z IF. e x p t - m  Jo X, ,du klq-,, 
k=0 

defined 

(f"+') Z = exp - X ,  du 
dO 

K = 0 ,  1, ..., w - x -  1, 

where klqx denotes the probability that the life assured dies between his 
(x + k)-th and his (x + k + l)-th birthday. 

Remark that for a whole-life assurance, the benefit certainly will be paid 
once, namely at the end of  the year of death. Consequently, 
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where w is the least age so that /~ = 0. The m-th non-centered moment is 
given by: 

F ( r  )1 IE[Zm] = Z E exp - m  X, du klqx. 
k=O dO 

Under the endowment assurance contract, the benefit is payable at the end 
of the year of death if death occurs within n years of the issue date or, if the 
insured person survives n years, the benefit is payable at time n. 
Consequently, the present value Z of an endowment assurance is defined as: 

z = f e x p ( - f K + ' x . d , )  K = 0 ,  1, ..., n -  1 
t exp(-  J~' X, ,du)  K : ,,, n + 1, . . .  

The m-th non-centered moment of the present value is given by: 

IE[Z"'] = ~ E e x p , - m  j0 X.d~, klq., + ~ exp - m  X.du .p.,.. 
k=O 

Approximations of the net single premium of each contract are easily 
calculated. Indeed, approximations of the expected value of Z are obtained 
by taking m -: 1 and by substituting the estimating bond price, proposed in 
the previous section. 

We have evaluated this approximation in case of the Cox-Ingersoll-Ross 
single factor model, with the parameters estimated within Chan, 
Karolyi, Longstaff & Sanders (1992) and with r0 = 0.07. We used the 
mortality table HD (1968-72), which is commonly used in Belgium and 
which is based in Makeham's formula/x = k~g  c~ with for the ages between 0 
and 69: k =  1,000,268, s=0.999147835528, g=-0.999731696667 and 
c = 1.115094352734; and otherwise k = 1,292,726, g = 0.995564574228, 
c = 1.077130677635 and the same value of s. 

In Table 2, the exact values and the approximations are given for the net 
single premiums of n-year temporary life assurances and endowment 
contracts. Remark that for n larger than 60 years, both assurances become 
whole-life assurances since the life assured is aged x = 30 at the date of issue. 
We conclude that the approximations of the single net premiums are not 
encouraging. 

The variance and the skewness of Z also are easy to find since the 
variance is defined as 

var[Z]-- E[Z'-] - E[Z]'-, 
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and the skewness is defined as 

sk[Z] : E [ ( z  - EIzl/ ] 
var[Z] 3/2 

_ E [  Z3] - 31E[Z2] E[Z] + 21E[Z] 3 

-- var[Z]3/2 

Each of these terms can be calculated by substituting m = 1, 2 or 3 in IE[Z m] 
and by using the approximation of the m-th non-centered moment of the 
discounting factor, namely 

, , m2~v t \ 
l E [ e x p ( - m f 0  X,,du)] ~ e x p ( - m f 0  E[X,]dU-l- ~ ) . 

TABLE 2 

NET SINGLE PREMIUMS: EXACT VALUES AND APPROXIMATIONS 

life assurance  e n d o w m e n t  assurance  

Exact Approx Approx-Exact Exact ,4pprox ,4pprox-Exact 

I .00154 .00155 .000008 .9313 .9363 .0049 

10 .01453 .01484 .000314 .4785 .4944 .0158 

20 .02896 .02985 .000887 .2354 .2453 .0098 

40 .06222 .06479 .002572 .0894 .0935 .0041 

60 .07635 .07979 .003439 .0767 .0801 .0034 

80 .07664 .08010 .003459 .0766 .0801 .0034 

In Tables 3 and 4, the variance and tile skewness of Z are calculated, for Z 
being the present value of the benefit under an n-year temporary life- 
assurance, an endowment assurance and a whole-life assurance (if n is very 
large). Again, we used the formula of Makeham and the Cox-Ingersoll-Ross 
(1985) model with the same parameters as above. These results seem to be an 
indicator that the appproximation by a Brownian motion with drift can only 
be used in practice when there are no explicit formulae or when the 
calculation is very time-consuming. 

We further admit that the major problem of taking into account 
stochastic interest rates in long-term life insurance products, is that the 
policies become dependent. With regard to the problems of setting 
contingency reserves and assessing the solvency of life assurance companies, 
it is therefore interesting to study portfolios of assurance policies (see e.g. 
Parker (1992, 1997)). 
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TABLE 3 

THE VARIANCES: EXACT VALUES AND APPROXIMATIONS. 

life assurance  e n d o w m e n t  assurance  

Exact Approx Exact-Approx Exact Approx Exact-Approx 

1 .00153 .00147 .00006 .00949 .05587 .04638 

10 .01182 .01071 .00111 .02844 .07711 .04867 

20 .01763 .01587 .00175 .01849 .02994 .01148 

40 .02021 .01796 .00225 .01567 .01833 .00266 

60 .01902 .01658 .00243 .01653 .01897 .00244 

80 .01898 .01654 .00244 .01654 .01898 .00244 

TABLE 4 

THE SKEWNF~SS: EXACT VALUES AND APPROXIMATIONS 

llfeassurance e n d o w m e n t  assurance  

Exact Approx Exact-Approx Exact Approx Exact-Approx 

1 25.245 24.866 0.379 -3.685 0.313 -3 .998 

l0 7.540 7.421 0.119 -0.957 1.048 -2 .005 

20 5.019 5.002 0.017 0.433 2.046 -1.602 

40 3.655 3.719 -0 .064 3.668 3.961 -0.293 

60 3.724 3.891 -0 .166 3,733 3.904 -0.171 

80 3.731 3.902 -0 .170 3.731 3.902 -0 .170 
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