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Finally there is some discussion of the effects of constraints on 
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1. INTRODUCTION 

The analysis and control of pension fund dynamics is becoming increasingly 
important as members start to pay more attention to the security of 
promised benefits and as sponsoring employers become more concerned 
about the timing and stability of cashflows. 

This paper discusses some current problems in the analysis and control of  
defined benefit pension funds. Under a pure defined benefit pension fund the 
benefits payable to an individual member depend only upon his or her salary 
and length of past service. 

The principal alternative to a defined benefit scheme is a defined 
contribution occupational pension scheme. Here the benefits are defined 
by the level of contributions which are paid into an individual member's 
fund or 'pot'  and by the investment returns which are achieved over the 
period tip to retirement. Since the pot is used to purchase an annuity at 
the time of retirement the level of  pension is also determined by the 
annuity rate which prevails at the date of retirement and, in particular, 
the term structure of  interest rates on that date. Generally the rates of 
contribution by the sponsor and by the member are fixed. All of the 
investment risk is borne by the member and there is no opportunity for 
the member to smooth out the effects of  adverse investment returns. 
Existing literature on defined contribution problems typically deals with 
the case where the terminal utility is a function of the fund size at 
retirement (for example, see Merton, 1990, Gerber & Shiu, 2000, 
and Deelstra et  al. ,  1999). The case where the terminal utility is a function 
of pension purchased at retirement (that is, fund divided by annuity 
rate) in a stochastic interest-rate environment has been considered by 
Cairns et  al. (2000). 

Under a defined benefit scheme the sponsoring employer has no ability to 
vary the timing or amount of the benefits payable. In contrast to this and to 
a defined contribution scheme the rate at which contributions are paid into 
the fund are (within limits) very flexible. Typically this flexibility rests fully 
with the fund sponsor while individual members contribute a fixed 
percentage of their salaries. 

Increasingly, we also see schemes which provide elements of  
both defined benefit and defined contribution. Most common are 
schemes which allow for discretionary increases to pensions in 
payment with the size of the increase depending upon recent investment 
returns. Other 'hybrid' schemes provide a pension which is equal to 
the maximum of a defined benefit pension and a defined contribution 
pension. 

Within the pure defined benefit framework there is considerable scope for 
freedom: 
o in how the variable contribution rate should be varied; 
o in the choice of asset allocation strategy. 
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1 . 1 .  C o n t r i b u t i o n s  

By-and-large, the fund sponsor has considerable freedom in how the 
contribution rate can be varied. The basic principle underlying how the 
contribution rate is set is that it should take account of the amount of 
surplus or deficit (that is, the excess of assets over liabilities). Thus, in some 
sense, the contribution rate can be reduced during periods of surplus and 
increased above the normal rate when the scheme is in deficit. The role of the 
actuary is to take account of the needs of the sponsor and of the members 
before recommending to what extent surplus or deficit should affect the 
contribution rate. 

The overall level of flexibility may be restricted by the presence of certain 
constraints: 
o There may be a legal requiremen! to keep the funding level (the asset/ 

liability ratio) above a certain minimum level (the method of calculation 
of which can take a number of forms). If the funding level drops below 
this minimum the sponsor may be compelled to make up the deficit 
immediately. 

o Similarly there may be a restriction on the maximum size of the fund. 
This may require refunds to the sponsor or improvements to the benefits 
(although, in the latter case, the fund would cease then to be a 'pure' 
defined benefit scheme). 

o The fund sponsor may wish to keep the contribution rate below a certain 
level (for example, twice the normal rate). 

o Regulations or plan rules may prevent refunds to the employer, or 
perhaps refunds are only permitted when the funding level is sufficiently high. 

1.2. A s s e t s  

A pension fund will normally fall under the responsibility of a group of 
t ru s t ee s  or m a n a g e r s  who must act in lhe best interests of the fund members. 
Within this remit they can choose how to invest the assets of the fund. 
Appropriate investment strategies will take account of: 
o prudence; 
o requirements to 

- maximise returns; 
- minimise risk; 
- diversify; 
- avoid self-investment; 

o immediate cashflow requirements; 
o security; 
o the tax status of the fund and of the various potential assets. 

Besides taking the advice of their fund managers, trustees may also seek the 
advice of the fund actuary before deciding upon an appropriate strategy. 
How the funds available should be allocated presents an interesting problem 
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for the actuary. The solution to such a problem must take accountof  many 
things: 
o the balance between the conflicting interests of the members and the 

sponsor; 
o the expected returns on the various assets and the associated risks and 

dependencies (both between individual assets and through time); 
o the current level of funding; 
o constraints on short selling of assets. 

1.3. Objectives 

For an actuary to set an optimal contribution rate and asset allocation 
strategy it is necessary to use a well defined objective function with 
appropriate constraints. Objective functions must be sufficiently precise to 
avoid ambiguous or non-sensical solutions. For example, the imprecise 
objective minimise variance leads to various outcomes which minimise the 
variance of the funding level and/or the contribution rate. 

Other apparently precise objectives lead to optimal solutions which do 
not entirely make sense. In such circumstances it may be necessary to revise 
the objective ftmction. 

1.4. Types of model 

A basic question which must be answered first is should we use a 
deterministic or a stochastic model. Deterministic models are adequate for 
cashflow projections and valuations but little else. Stochastic models, on-the- 
other-hand, allow us to investigate fully the dynamics of the fund through 
time and, for example, devise suitable control strategies. Here we consider 
stochastic models only. 

A separate question is whether models should be kept simple or be 
made very realistic. The answer here depends on the reasons for 
modelling. In a more academic study we are looking for the major drivers 
of pension fund dynamics. Simple models allow detailed study of these 
factors. Often it is possible to derive analytical results which can then be 
used to provide specific links between causes and effects. A more complex 
model, on the other hand, may be required if the modeller has in mind a 
specific pension fund with a very specific benefit structure. As models 
become more complex wg input more and more factors and find that more 
detail comes in the output from each simulation. It then becomes very 
difficult to identify why certain effects are evident. However, simple 
models provide the backup in the analysis of complex models. Such 
models give pointers to what we should be investigating. Thus we may be 
able empirically to observe the same links between causes and effects as 
were found analytically in the simple model. More-often-than-not such 
comparisons can explain, with ease, the majority of the variation in the 
dynamics of a complex model. 
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In some problems the aim may be to devise an optimal control strategy. 
As we show here it is possible using simple models to derive precisely an 
optimal control. This then gives us the starting point for further study and 
optimisation within a more complex model. 

This paper has a number of aims. First, it will pull together some recent 
results in continuous-time pension fund modelling (O'Brien, 1986, 1987, 
Dufresne, 1990, Boulier et al., 1995, 1996, and Cairns, 1996, 1997). Fresh 
proofs of these results will be presented as appropriate along with further 
discussion of their implications. Second, some new avenues will be developed 
to show how this earlier work can be modified to consider some 
generalisations and to pull the results closer to current practice. Third, the 
paper will discuss some open problems. 

Within this framework the paper will proceed as follows. Section 2 
introduces the continuous-time stochastic model for the dynamics of a 
pension fund in its most general form which will be used in the majority of  
the paper. 

Section 3 considers dynamic stochastic control of  the model by 
making reference to a value function which discounts exponentially future 
random values of a quadratic loss function. The section proceeds by 
looking at various cases both constrained and unconstrained. The 
advantages and disadvantages of  the quadratic loss function are discussed 
in detail here. Finally, power and exponential loss functions are considered 
with problems similar to those under the quadratic loss function 
identified. 

In Section 4 we take the longer-term view and consider the stationary 
distribution of  the process (although the distribution of the model 
nears its stationary form within 10 to 15 years usually). This includes a 
look at the continuous proportion portfolio insurance approach to 
asset allocation introduced by Black and Jones (1988) and compares 
this with a static investment strategy. Section 5 compares the results 
of dynamic versus stationary optimisation derived in Sections 3 and 4 
and shows how sensitive these results are to changes in the control 
parameters. 

Finally Section 6 discusses how the model and value function might be 
developed in the future to come closer to reality. 
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2. A GENERAL MODEL 

In this paper we consider continuous-time stochastic models for pension 
fund dynamics which allow for n risky assets and for noise in the level of 
benefit outgo. The general form of this simple model is: 

d x ( ; )  = x ( r ) .  dCr(t, x(1))  + c(r) .  dl - B .  dr - oh.  dZb(r) ( l )  

where X(I) = fund size at t 

d~x(t, X(t)) = instantaneous return on assets between t and t + dr 

c(I) = o(i, x ( 0 )  

= contribution rate 

B = expected rate of benefit outgo 

and ab = volatility in benefit outgo 

Discrete-time models have been considered by Cairns (1995), Cairns & 
Parker (1997), Dufresne (1988, 1989, 1990) and Haberman & Sung (1994). 
Such models have yielded a number of useful analytical results with wider 
applications. Continuous-time models, which are, in some ways, more 
idealised, yield further analytical results (for example, see Dufresne, 1990, 
Boulier et al., 1995, and Cairns, 1996). Similar results can then be sought 
empirically in discrete-time models. 

The contribution rate, c(t), is a predictable process and provides us with 
one of the means of controlling the dynamics of the pension fund. Dufresne 
(1990) and Cairns (1996) considered continuous-time models in which the 
contribution rate was a linear function of the current fund size, X(t). Boulier 
et al. (1995) considered more general forms for c(t) but found that the 
optimal solution to a simple control problem was that the contribution rate 
should indeed be linear in X(t). These results are discussed in detail in 
Sections 3 and 4 of this paper. O'Brien (1987) considered a similar objective 
function where the contribution rate only was controllable and where there 
was a stochastic reserve (in contrast to the constant target Xp relative to 
salary roll used in Section 3 of this paper). He found that the optimal 
contribution rate was linear in the anaount of surplus. However, other 
aspects of the model used by O'Brien (1987) were unrealistic even for a 
simple pension scheme, making a fresh start here appropriate. 
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The other means of  control is through the asset-allocation strategy. First 
we may allow for the possibility of  a risk-free asset (or cash) which has a 
value at time t of  Ro(t) = R0(0)exp(cS0t). There are, in addition, n risky 
assets, the prices of  which (including reinvestment of  dividend income) we 
assume follow correlated geometric brownian motion: that is, 

dRi(l)  
- = 6, .  + 2.5, J z j ( t )  

Ri j=l 

or d6(t) = 6.  dt + S .  d Z  

where d~5(t) = (d~Si (t), ..., d~5,,(t)) v 

= (6 [ ,  . . . ,  6n)  T 

(0)" S =  o" id.=l 

d Z  = (dZn, ..., dZ,,) v 

(2) 

(3) 

and Z(t)  is s tandard n-dimensional Brownian motion.  We assume that Z(t)  
and Zb(t)  are independent.  

For convenience later on, we define D = S S  T (the instantaneous 
covariance matrix) and A = (Aj, ..., A,,) r where Ai = CSs- 60 is the risk 
premium attached to asset i. 

Let us assume that 6i > 50 for all i > 1 (that is, investors are rewarded 
with higher expected returns for taking on some risk). No assumption is 
made about  the level of  correlation between the returns on the various stocks 
including, for example, the benefits (or otherwise) of  diversification. The 
proport ion of  the assets invested in asset i (i = 0, 1, ..., n) is denoted by 
pi(t, X(t)) .  It follows that ~-'~in=oPi(t, X(t))  = 1. In the development below we 
write p = p(t ,  X( t ) )  = (Pl (t, X( t ) ) ,  ..., p , ( t ,  X( t ) ) )  r. The instantaneous rate 
of  return on the fund is then: 

l-}2p, (41 
i=l / '  i=1 

In this paper we will consider a range of  constraints on the proport ions 
invested in each asset. These include the possibility that we hold no cash (or 
a fixed percentage of  the fund in cash) and that there shall be no short-selling 
of  assets. 

We allow for more than one risky asset for two reasons. First, it allows 
for a degree of  realism without  complicating substantially the analysis. 
Second, the experience of  the U K  pension funding scene is that pension 
funds only use cash for short-term liquidity rather than as a serious asset. 
Instead funds use government bonds (fixed interest and index linked) as low- 
risk (but non-zero-risk) assets. This situation is modelled in Section 3.3. 



26 ANDREW CAIRNS 

3. OPTIMAL DYNAMIC STOCHASTIC CONTROL 

3.1. The general quadratic ease 

We consider first the case where there is no constraint on the amount 
invested in cash. Following Boulier et al. (1995) we define the value function 
for a general controlled pension fund process 

] W(t, x)(c,p) = E exp(-/3s)L(s, c(s, X(s)), X(s))dslX(t ) = x (5) 

Here exp(-/3s) is a discount function and L(s,c,x) is a loss function given 
that at time s, J((s) = x. This value function is also a function of the chosen, 
Markov contribution strategy c(s, X(s)) and investment strategy p(s, X(s)) 
which we abbreviate, where appropriate to c and p respectively. 

Let g(t ,x)  = inf(c,p)W(t,x)(c,p) = W(t,x)(c*,p*) assuming that such 
optimal control strategies c ~ and p* exist. Then V(t,x) satisfies the 
Hamilton-Jacobi-Bellman equation (for example, see Merton, 1990, 
Oksendal, 1998, or Fleming & Rishel, 1975): 

where V,=O V/Ot 

V,.-OV/Ox 

V,.,.=~ V/Ox 2 (6) 

We differentiate the expression in brackets with respect to c and p to find 
that: 

---~(.) = e-~'Lc + l'~r = 0, where Lc = OL/Oc (7) 

=z~ c * ( l , x )  = g c  I ( -e /3t  Vx) (8) 

and ~p(.) = AxV,. + Dpx2V,.x = 0 (9) 

\ "  X?,'/ 

We see from the form of p* that the amounts invested in each of the risky 
assets always stay in the same proportion. Thus we may define a special 
portfolio, A, which is a mixture of  assets 1 to n in the same proportions 
(in market value terms) as D-tA. Then for any x we hold a proportion 
/5(x) (which depends upon V(t,x)) in portfolio A and i - /5(x)  in cash. 
This result has obvious parallels in modern portfolio theory where the 
combination here of cash and portfolio A mimics movement along the 
capital market line. However, here we have not yet specified any form for 
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the loss function L(t, c, x) whereas modern portfolio theory (which works 
in discrete time) relies upon the use of  a quadratic loss function. Further 
consideration of the model shows that portfolio A (which is efficient in the 
sense of minimising the value function) is also efficient in the sense of 
modern portfolio theory: that is, it has the lowest instantaneous volatility 
for a given rate of return. 

Classical portfolio theory has been extended to include liabilities by Wise 
(1984), Wilkie (1985), Sharpe and Tint (1990) and Keel and Mfiller (1995). 
Working in discrete time and using a quadratic loss function Keel and 
M011er (1995) find that the composition of efficient portfolios can be altered 
by the inclusion of  liabilities: in particular, where liabilities are random and 
not independent of  the asset returns. 

The precise form for V(t,x) is, of course, still not yet known: we only have 
expressions for c* and p* involving V(t,x). 

It is necessary that the loss function is a strictly convex function of  c. This 
ensures that the inverse of Lc exists. This requirement excludes, for example, 
downside loss functions which are convex but not strictly convex. 

Here we restrict ourselves to the following quadratic loss function: 

L(t,c,x)=(c-cm)2+Zp(c-cm)(x-xp)+(k+pZ)(x-Xp) 2 (I1) 

where k >_ 0. 

Thus L;' ( -e  at V.,-) = Cm - p(x - Xp) - ~e 3' V.,. (12) 

(that is, if c=c,,,-p(X-Xp)-exp(3t)I/,,./2 we have Lc(t,c,x)=-exp(flt)V,.). 
A special case of this loss function is the one suggested by Haberman and 
Sung (1994) (in a discrete-time framework). 

We apply this to the Hamilton-Jacobi-Bellman equation to give: 

0=e  -/J' -~e~tV.,. +k(x-Xp)  2 +V,+(6ox-B)V , -ArD-I~AxV. , .  

] /3t [ X 2 (  "'v ~ ,~To-loo-I,~--~O~b I ( 1 3 )  +g-"-"[ ,,xV.,..,.] 
Given the form of the objective function (Markov and time-homogeneous) it 
is clear that the optimal strategies c* and o* depend only upon x and not 
upon t. Thus V(t,x) will be of the form e-mF(x) and therefore: 

I 2 0 =~F, .  + k ( x  - xp) 2 - / 3 F +  (~50x - B)F,. - ArD- 'A F2 
• e x  x 
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Try F(x) = Px 2 + Qx + R, and write e = ArD-IA. Then:  

= _ l ( 2 P x  + Q)2 + k(x - xp) 2 - / 3 ( P x  2 + Qx + R) + (a0x - B)(2Px + Q) 0 

1 (2Px+ Q)2 
+ (Cm- p(X -- Xp)) (2Px + Q) + Po-~b (15) ~e 2P 

=> 0 = x 2 [_p2 + k - / 3 P  + 2P~o - Pe - 2pP] 

+ x [ - P Q  - 2kxp - /3Q - 2PB+ Q~o - Qe - pQ + 2P(Cm + pXp)] 

+ -  O2+kx - R- O- (16) 

Define /5  = 2~o - fi - e - 2p. Then we find that: 

/5+ x / ~  + 4 k  
P(k) = 2 

Q(k) = 2 [P(k ) (B-  Cm -- pXp) +/,'Xp] 

I [ ~ kxp2 Q(k)2¢ 
R ( k ) = ~ -  Q(K)2+ - B Q ( k ) -  4P - - +  (c,,, + pxp)Q(k ) + P(k)~r~] 

(17) 

(19) 

This is an admissible solut ion provided /5 > 0. 
We find then that: 

1 (2P(k)x  + Q(k)) (20) c*(x) = c,,, - p (x  - xp) - 5 

or c*(x) = c~ - c~x (21) 

p*(x) = (2P(k)x  + Q(k) )o_ ,A  (22) 
2P(k)x 

or p*(x) - p~ + p~x (23) 
x 

where p~ and p~ are both n x I vectors which are propor t iona l  to D-IA. 
Note  that  when x = - Q ( k ) / 2 P ( k ) ,  p*(x)= 0: that  is, we are invested 

entirely in the risk-free asset. Fu r the rmore  if a portfolio,  A, is synthesised 
from the n risky assets in the propor t ions  D - t k  as described earlier, then, 
given a funding level of  x, we should hold a p ropor t ion  of  the fund: 

~(x) = erp*(x) = - 2P(k)x  + Q(k)erD_lA (24) 
2 P ( k ) x  

in portfol io A and 1 - /5 (x)  in cash. ( e r =  (1, ..., 1) is the unit vector.) 
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We can also note that F(x) is minimised at x = -Q(k)/2P(k),  which we 
will denote by Xmi,, say. As discussed in Section 3.6 this presents, to a certain 
extent, a barrier through which it is difficult for the funding level, X(t), to 
pass. Depending upon the relationship between Cm, k and Xp this could take 
the form of a ceiling or a floor. 

It is important to note that P(k) and Q(k) do not depend upon erb. It 
follows, therefore, that the optimal control strategy (both contributions and 
investments) do not depend upon al,. Thus, demographic variability is a 
factor which affects the value function V(t,x) only and we should treat small 
funds in the same way as large funds. 

It is also important to note that the precise proportions of each asset held 
in portfolio A do not depend upon the form of the loss function, nor does it 
depend upon crh. 

Remark 
The non-linear ordinary differential equation (14) is subject to the boundary 
condition 0 _< F(x) for all x. We have two degrees of freedom in how we 
solve this equation. Numerical work suggests that there are also solutions to 
(14) which either have singularities (which we regard as an inadmissible 
solution) or which are asymptotically linear as x-- ,  +oo. Now if 
F(x) ~ a + b x  as x ~  +oo, c*(x),,~c,,,-b as x---+ +oo. With such a 
solution we may find that X(t) will drift off to infinity. This drift, however, 
is countered by the asset-allocation strategy which is quite extreme: 
o As X(t) gets very large the fund goes very long in cash and very short in 

risky assets. This ensures that there is a very inefficient strategy which 
more-or-less throws away money in order to get back to the target 
funding level Xp. 

o As X(t) gets very small the fund goes very long in risky assets and very 
short in cash to get a high expected return to help us get back to a better 
funded position as quickly as possible. 

In the quadratic-F(x) case these problems with the asset-allocation strategy 
also apply but they are much less extreme. Furthermore, the optimal 
contribution rate is a linear function of X(t). It is a necessary condition for 
stationarity that the contribution rate is at least linear. (Note, however, that 
linearity is sufficient only when the slope c~ is greater than a certain 
minimum level described later in this paper.) 

Thus we can reasonably put in the further boundary condition that 
F ( x ) / x  2 --~ constant as x ~ 4-00. 

3.2. Constraints on cash 

We have up until now assumed that the amount of money invested in cash 
could vary without bound. Here we go to the other extreme and assume that 
we invest a proportion p,,, of the fund in risky assets and 1 -p,, , ,  in cash, 
where p,,, is fixed. It is reasonable that Pm< 1 allowing for a small but fixed 
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amount  in cash to provide short-term liquidity for the fund to cover 
immediate benefit payments.  (A typical figure for a U K  pension fund in the 
UK is 5% cash and p,,, = 95% risky assets.) Subject to this constraint,  there 
is total freedom in the proport ions invested in the n risky assets. 

Recall the Hamilton-Jacobi-Bellman equation: 

0 =  inf~.,p ( e - ~ ' L ( t , c , x ) + V t + [ ( 6 o + p r A ) x + c - B ] V x + ~ V , . . , . ( x 2 p r D p +  
erp=p,,, 

where e = (1, ..., 1) r. 

(25) 

We differentiate the expression in brackets with respect to c as before to get: 

0 
O---c (') = e-St L° + l/.,. = 0, where Lc = OL/Oc (26) 

c*(t, x) = L-~' (e -;st V.,-) (27) 

To minimise over p subject to the constraint  we use the method of  
Lagrangians. Thus we minimise the function: 

1 . 2  
G(P,7) = xVxATP + ~.x VxxpTDp + 7(eTp -- Pro) (28) 

over p and 7. 

OG _ xV,.A + X 2 VxxDp + 7e = 0 (29) 
Op 

OG _ eT p _ P,,, 0 (30) 
07 

for which the solution is: 

p = p ( x ) =  p,, ,+ V,. eTD_.A ~ D - ' e - - -  A (31) 
xV,..,. ] e D-  e xVx.,. 

= d 0 + d l  D - l e  -----:--  A (32) 
- XXl  X Vxx 

Pin 
where do -- eTD_le 

eTD-]A 
and dl - - -  

e T D - l e  

We note, as in the previous section, the connection with modern portfolio 
theory. We have already discussed the relevance of  D-~A. Here we note that 
portfolios which invest in the same proport ion as D- le  have the minimum 
variance given that there are to be no investments in cash. Furthermore,  all 
efficient portfolios are linear combinat ions of  D-IA and D-le .  
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Again because of the form of the value function we substitute 
V(t, x) = e-5'F(x).  

Now L(t,  c, x) = (c - Cm) 2 + 2p(c - c,,)(x - Xp) + (k + pZ)(x - xp) 2 (33) 

I 
L;  I (-eet  V., -) = Cm - p(x - xp) - ~F,. (34) 

We apply this to the Hamilton-Jacobi-Bellman equation to give: 

=~F~ + k (x  - x?) 2 - flF 0 

_ 1 - B / F v  + [ ( ~ 5 o + A r D - l ( d o e + ( d l e - A ) ~ ) ) x + c m - p ( X - X p )  -~]z,. 
] 

'[  ] 
As in the unconstrained case this has a quadratic solution 
F(x) = P(k)x  z + Q(k)x  + R(k).  The form of p(x) indicates that we require 
two portfolios A and B. Portfolio A is made up of fixed proportions of assets 
1 to n in proportion to the vector D-IA, while portfolio B is synthesised 
similarly but in proportion to the vector D-~e. 

As in Section 3.1 portfolios A and B are independent of the form of the 
loss function. 

3.3 .  F u r t h e r  d i s c u s s i o n  o f  the  g e n e r a l  m o d e l  

We now consider the optimal asset-allocation strategy in more detail. In 
particular, consider the instantaneous rate of return on the investments: that 
is, 6o + ATp*(x). Consider the unconstrained case first: 

2P(k)x  + Q(k) ArD_ I 
~5o + Arp*(x) = 6o - 2P(k)x  A (36) 

Q(k) ArO_ I = 6o - ArD- IA  2P(k)--mv A (37) 

Now D is positive definite so that A r D - t A  is positive. Furthermore, P(k) is 
positive and Q(k) is normally negative. Hence 60 + Arp*(x) is normally a 
decreasing function of x. 

Similarly consider the constrained case. 

[ 2P(k)x + Q(k ) (d lD- ' e  - A)] (38) Arp*(x) = AT d°D-l~° -~ 2P(k)x  

Q(k) ATD_I(dl e __ A) ( 3 9 )  = d°ArD- le  + d l A r D - t e  - ATD-IA + 2P(k)-~x 
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Note that eTD -I  (dte-A)=0. Hence ATD -l  ( d l e - A ) = - ( d l e - A ) T D  - l  (die-A) 
<0 since D is positive definite. Again P(k)>0 and normally Q(k)<0 so that 
ATp *(x) is a decreasing function of x. 

Furthermore an analysis of the instantaneous variance of the investments 
confirms that as the instantaneous rate of return decreases, the instanta- 
neous variance decreases also and then starts to increase as we go long 
(effectively) in low-risk assets and short in high-risk assets. 

Thus we find that when the funding level is low we invest more in high- 
risk assets and as the funding level rises we shift from high-risk into low-risk 
assets. This is a rather counterintuitive investment strategy. We would expect 
that as the funding level falls that we might shift into lower-risk assets to 
protect our position. The strategy we have found here does the opposite. The 
reason for this is because of the quadratic form of the objective function. 
This, in a sense, defines an ideal funding level Xp and an ideal contribution 
rate cm. If the funding level is below this then we invest in high-return, high- 
risk assets to increase the chance of getting quickly back to the ideal level. 
Conversely if the funding level is too high then we are prepared to invest in 
what is effectively an inefficient, high-risk, low-return investment strategy in 
order to get back to the ideal level. Indeed the fund will go long in cash and 
short in equities. In effect the scheme would be throwing money away since, 
for the same level of risk (that is, volatility of asset returns) it could have a 
higher expected return. The inefficiency here turns out, with hindsight, to be 
a result of the quadratic loss function. This actually prefers the positive 
target contribution rate, c,,,, to refunds. In other words, it is better to throw 
money away than to take a refund. (There is nothing new in this 
observation. Related problems in other branches of financial economics 
come to the same counter-intuitive conclusions where, for example, 
quadratic utility functions are employed.) 

Now consider the optimal contribution rate. Sometimes this is written in 
the form (co - ClXp) - c l ( x  - Xp) where x - Xp is the surplus relative to the 
target fund size Xp. c~ is the rate at which we try to remove surplus or 
amort ize  this surplus. It can be noted that the optimal amortization rate, 
c~ = P(k), depends on k, 60, A and D but not on cm, Xp or ~ .  

On the other hand, c; also depends on Xp and c,,, but again not on o-~. 
Similarly it can be seen that p*(x)  does not depend upon o'b 2. Thus, it has 

been demonstrated that for such a quadratic loss function L(.) the optimal 
contribution and asset-allocation strategies do not depend in any way upon 
the randomness in the level of benefit outgo (at least where this uncertainty is 
uncorrelated with investment returns). 

Later in this paper we will return to the dynamic optimisation problem 
where we have a different objective function and where there are constraints 
on the investment strategy and on the funding level. 
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3.4. Optimal strategy when p is fixed 

Suppose instead that the asset-allocation strategy is static: that is, p(t, x) = p 
for all t, x, for some p. We can still apply the Bellman equation but minimise 
over c(t, x) only. Thus we find that 

O=[~F~ +k(x-Xp) 2] -/3F 

+i,0x +(c,,, (40) 

Again we try t o  find a solution of  the form F(x) = P x  2 4- Qx + R and we 
find that 

/5+  v/ -~-  + 4k 
P = P(k)  = 2 (41) 

where /5 = 2~o - / 3  - 2prA - 2p + pTDp (42) 

Q = Q(k) = _2[kxp + e ( k ) ( B - c , , , -  pXp)] (43) 
P(k) +/3 - ~5o + pTA + p 

R = R(k) = ~ - Q(k) 2 + kxg - BQ(k) + (Cm + pxp)Q(k) + P(k)~r (44) 

The question now arises: how do we choose the optimal static p? 
We will consider one option here: minimise P(k) over p. This 

means that the optimal curve F(x) will be as close as possible in the 
limit as x tends to -+-oe to the superior solution derived in Section 3.1. 
Clearly the solution derived in Section 3.1 will be lower for all x 
regardless of  the value of  p. (Other possibilities include minimising 
F(x) over p for a specific value of  x. or minimising the minimum of  
F(x) over p.) 

To minimise P(k) over p we differentiate: 

dP dPd/5 
dp d/sdp 

(~ 1/5(P2 + 4k)-½)(-2A + 2Dp) = +-~ 

=>/5 = D-IA 

(45) 

(46) 

(47) 

A consideration of  the form o f / 5  as a function of  p shows that this is a 
minimum at ~b. 

We note that the proport ions in the risky assets as given in /3 are the 
same as those derived in Section 3.1. Furthermore,  we find that, given 
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P = P ,  b = 250 - / 3 - 2 p - A T D - I A  (again the same as in Section 3.1). This 
means that: 
o for large or small values of x the loss of optimality as a result of fixing p 

does not become too great; 
* - = * - c*tx then '* is not affected by the restriction on o if we write c ( t , x )  c o c I 

the investment strategy (that is, the rate of amortization of surplus or 
deficit is not affected). 

3.5. Comparison of the strategies 

Let us consider a specific example to compare the effectiveness of the optimal 
strategies derived in Sections 3.3 and 3.5 compared to that in Section 3.1. 
The fixed parameters are as follows: 

 004) 000 ) 
60=0.03,  6 =  \0 .06 ' S =  20.0.5 , B = I ,  ab=0 .1  (48) 

The control parameters are: 

Cm=0.6, k=0 .001 ,  x p = l O ,  /3--0.03, p = 0  (49) 

In this and in subsequent sections we define the funding level, X ( t ) ,  as the 
value of the assets divided by the expected rate of benefit outgo. 
Alternatively, if expected benefit outgo is defined as it is here as B = 1 
then X ( t )  is also the fund size. 

The optimal value functions F ( x )  are plotted in Figure 1 and their 
stationary distributions (as derived later on in Section 4) are plotted in 
Figure 2. 

Selected statistics are given in Table 1. From Table ! and Figure 1 we can 
see that the unconstrained solution is significantly better that the other two. 
The unconstrained and static cases are quite similar in some ways (shape and 
contribution strategy) but the lack of flexibility in the investment strategy 
adds on a fixed and substantial penalty. The constrained (no cash) case looks 
much more different. By reference to Figure 1 it performs well in the middle 
of the range and, indeed, attempts to stay there by applying a more 
aggressive amortization strategy. For more extreme values of x this strategy 
is much poorer than the static case. However, by-looking also at the 
stationary densities of the funding level under the three strategies (Figure 2) 
we can see that such extreme values will occur very rarely indeed. 
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FIGURE I: Comparison of value functions for three investment/contribution strategies. (a) (solid line) 
unconstrained optimum. (b) (dotted line) optimum under the constraint of no cash (p,,, = I). (c) (dashed line) 

optimum under a static investment strategy. 
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FIGURE 2: Comparison of stationary densities for three investment/contribution strategies. (a) (solid line) 
unconstrained optimum. (b) (dotted line) optimum under the constraint of no cash (Pro = 1). (c) (dashed line) 
optimum under a static investment strategy• (The funding level ~s defined here as fund size divided by the 

expected rate of benefit outgo•) 
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T A B L E  I 

COMPARISON OF OPTIMAL STRATEGIES WITH AND WITHOUT CONSTRAINTS 

P Q R Minimum F(.v) c~ c[ 

U n c o n s t r a i n e d  0.073 - 1.60 9.00 0.19 1.40 0.073 

C o n s t r a i n e d  (p,,, = 1) 0 .086 - I . 7 5  9.79 0.85 1.48 0 .086 

Sta t ic  0.073 - I . 6 0  16.70 7.89 1.40 0.073 

As mentioned in Section 3.1 we can look at Figures 1 and 2 and see that 
under the unconstrained investment strategy the value function is 
minimised at x,,,i,, = - Q / 2 P  = 11.01 and that this, in effect, turns out to 
be a ceiling (although X(t) can have brief excursions above this value 
because of volatility in the benefit outgo). Under such circumstances 
(that is the existence of, effectively, a ceiling) some of the criticisms of 
the approach with the quadratic loss function become somewhat 
irrelevant since we are practically never at a funding level where we 
choose effectively to throw away money (in the sense described in 
Section 3.4). 

Under other circumstances (for example, here if we took k --- 0.001 and 
Xp = 10 as before but changed c,,, from 0.6 to 0.8) the ceiling would turn 
into a floor at 8.99 and the funding level would spend most of the time 
above this floor. While this appears to be an appealing strategy the 
reservations about the investment strategy discussed in Section 3.4 are well 
founded here. 

Under the constrained strategy the value of x,,,i,, is 10.19 but we can 
see that the funding level can frequently go above this level. At x,,,i,, note 
that the fund here is invested in proportion to the minimum variance 
portfolio D-re. 

Finally we can see from Figure 2 that the static investment strategy leads 
to much wider fluctuations in the funding level which could only be reduced 
by increasing the value of k in tile loss function. 

We will return to this example in Section 5. 

3.6. Power and exponential loss functions 

3.6. I. Power loss function 

Let us complete this section now with a short analysis of the special case 
where ab = 0 and 

i ( c , , , _c )  "1 f o r c < c , , ,  f o r 0 <  < 1. L ( t ,  c ,  x )  = - - "r ( 5 0 )  
+ 0 0  f o r  c > Cm 
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Again we assume that the optimal value function takes the form 
V(t, x) = exp(-flt)F(x). Then the Hamilton-Jacobi-Bellman equation takes 
the form: 

i nf{-~(c,,,-c)'-/~F+[('o+p":,)x+c-~]F,+~F,,x2pTDp}=O (51) 
(We restrict optimisation to strategies which keep the fund size positive. 
Without this condition it is clearly optimal to take contribution refunds of 
infinite size.) 

Now 

0 ~(.) = 0  

( c , ,  - c)  "-I  + F,. = 0 

=~ C*(X) = C , , , -  ( - F x )  1/(7-1) 

o( 
.) = o  

=:¢, p*(x) = -D- '  A Fx 
X Fx A. 

Inserting c*(x) and p*(x) into equation (51) we get 

( F ~ )  v/('t-l) -t3F+(6oX+Cm B)F,. 2Fxx 

We try for a solution of the form F(x) = - k ( x -  x,,,)% 
Inserting this into equation (57) we get, for all x. 

(i,.~)~/(~-,)(x_ ,.,,,)~(~,-,)/(~-~) ('~ ~____2 l) 
+/3k(x-  x , , ) " - 6 o ( x  B~oC'")kc~(x- x,,,)~-' 

k2ot2{x x" ~2a-2 
1 L ~_--5,,,,j_____ ATD_~A 

+ 2 k a ( a  - 1)(X--Xm) °-2 = 0 

(52) 
(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

B -  Cm 
X m  -- - -  

6o 

I 
and k = - c7 -l 

where el = ]____7~ 

(59) 

(60) 

(61) 

(62) 
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Hence 

c*(x) = c,,, - c, (x - Xm) (63) 

p*(x) = O- 'A  (x - Xm) (64) 
(l -y)x 

We note the similarity of the problems and solutions here with a well-known 
optimal-consumption problem described by Merton (1971, 1990). Equiva- 
lence is achieved by equating the controllable level of consumption with 
B - c * ( t )  in the current model. This enables us to speculate that recent 
extensions of  this work to include the effects of transactions costs can be 
applied to the present problem. For example, the problem of proportional 
transactions costs has been considered by, amongst others, Davis & Norman 
(1990) and Shreve &Sone r  (1994). 

As with the quadratic loss function, contributions decrease linearly with x 
with the amortisation rate Cl being determined by the discount rate/3 and the 
risk-aversion parameter 7 (but not the maximum acceptable contribution 
rate, c,,,). 

Investment in risky assets, p*(x), x increases linearly in x above the 
minimum x,,,, and therefore appears to conform better with conventional 
wisdom. However, it turns out that this solution gives rise to one of two 
trivial stationary solutions for X(t): that is, X(t) ---, x,,, or +eo depending 
upon the value of/3. 

Returning to the dynamics of the funding level X(t) we find that c*(x) and 
p*(x) give rise to 

d X ( t ) - = ( X ( t ) - X m ) [ ( 6 0 + l - ~ T A r D - I A - c l ) d t + l - ~ T A T S - ' d Z ( t ) l  (65) 

l ArD_IA_c I d t + l _ ~  -x,,,) 60+1_ 

where 2 ( 0  is another Brownian motion. It follows that (and inserting the 
known form of cl): 

X(t ) -x , , ,=(X(O)-xm)exp[  (6o+2( II~_7) A T D-'  A - /3 ) t+  I_,7 
1 

(67) 
That is, X(t) -x , , ,  is a geometric Brownian motion which tends to zero if 
/3 > 6o + ATD-IA/2(I - 7) and to +oo if/3 < ~50 + ATD-IA/2(1 - 7). 

There are some similarities between this solution and that of Boulier et  al. 
(1995) under which x,, - X(t) is also a geometric Brownian motion. 

With either the introduction of  volatility in benefit outgo (orb > 0) or with 
restrictions on the amount of cash we cannot have both a lower bound on 
the funding level and an upper bound on the contribution rate. 
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The loss function L(c) = c'~/7 for c > 0 and 3" > 1 has been considered by 
Siegmann & Lucas (1999). They obtain similar results to those described 
above, except that x,,, becomes a maximum, and contributions are bounded 
below by 0 rather than above by c,,. 

3.6.2. Exponential loss function 

Similarly, we can consider the exponential loss function (for example, see 
Siegmann & Lucas, 1999): 

L(t, c, x) = exp(Tc - Ox) (68) 

where 7 > 0 and 0 > 0. Here the relationship between 7 and 0 determines the 
relative emphasis on the employer and the members. 

This gives us the solution: 

F(x) = exp(a - bx) (69) 

where b = 76o + 0 

7 - 1 3 + ( 7 6 o + 0 ) B + ( 7 6 o + 0 ) / 7  - I A r D - I A  
and a = log 76o + + 0 (';,60 + 0)/,,/ 

c*(t) = co - ctx (70) 

1 
p*(t) = xPO (71) 

-/3 + (760 + O)B + (3'60 + 0)/3"-  ½ A T D-I/~ 
where co = 3'6o + 0 

Cl = 60 

D - I A  

andp0 3'60+0 

This solution is more like the quadratic loss function considered in earlier 
sections: that is, the proportion of the fund invested in risky assets decreases 
as x increases. If we increase 0 then P0 decreases. This reflects the fact that 
there is a greater degree of risk aversion when we consider the interests of the 
members, so we invest less in risky assets. 

With a little algebra we can see that X(t) follows a Brownian motion 
with d r i f t ~  ( - /3+(3 '60+0) /3 '+½ATD-IA)/ (3 '60+0)  and volatility 

T I v"-~= ~/ArD-UA/(3'60 +0).This means that the solution is unsatisfactory 
because it is both non-stationary and because it gives rise to a 'counter- 
intuitive' investment strategy. 
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4. THE STATIONARY DISTRIBUTION OF X(t) 

4.1. General model 

Assume now that 

c(t,x) = c(x) = co -C lX  (72) 

p(t, x) :- p(x) = po + p ,x  (73) 
x 

where P0 and Pl are n x 1 vectors. 
The reason for assuming a linear form for c(x) and xp(x) is simple. They 

are consistent with the optimal dynamic controls derived in Section 3 when 
we use a quadrat ic  loss function. Fur thermore  let us recall the value function 

If 3 W(t, x)(c,p) = E exp(-/3s)L(s, c(s, X(s)), X(s))dslX(t ) = x (74) 

As / 3 4  0, / 3 W ( t , x ) ~  E[L(s,c,X)]: that is, the limiting optimal dynamic 
controls are also optimal in the static case if we use the same quadrat ic  loss 
function. 

The dynamics of  the fund size, X(t), are then 

V # . d t -  vX.dt+ (a+/3X+TX 2) V2dZ (77) 

where 2 ( 0  is a s tandard n-dimensional Brownian Motion,  and Z(t) is a 
s tandard Brownian motion which depends upon 2 ( 0  and Zb(t), 

11, = c0 - B + p~-A (78) 

u = cl - 60 - p ~ A  (79) 

a = p~Dpo + a~ (80) 

/3 = 2p~Dpl (81) 

"7 = p(Dp, (82) 

In order to discuss the properties of  this model we state the following 
theorem: 

Theorem 4.1.1 
Let the continuous-time stochastic process X, satisfy the stochastic d~ffbrential 
equation 

dX, = (5 +/3X, + "TX~)~/2dZ + ~clt - ~,X, dt (83) 
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subject to the constraints on ttte parameters ¢x > O, 3' > O, /3 2 - 4o~ 7 _< O, 
I-t > 0 and u > O. 
(a) If/3 2 - 4c~7 < O, the stationary density function of  Xr is 

fx (x)  = K exp[2a tan-l X + b] (cr + /3x (84) 

for - cxD < x < o<) 

1 
w h e r e a -  /4aT_/32(ff~/37 + 2 #  ) 

b=~___ 
27 

-/32 
C - -  

27 

(b) If/32 _ 4c~7 = 0 and Xo > -b ,  the stationary density function of  Xt is 
( 

fx (x)  = ~ K(x + b)-° exp[-49/(x + b)] 

t 0 

where b /3 
27 

u/3 + 2/_t 7 
49- .y2 

that 
0 - 1 > 0  
(X - k)- '  ,,~ Gamma(og fl).) 

In each case K is a normalizing constant. 

for x > - b  tf 0 > 0  

for x < - b  /f 0 < 0  

otherwise 

(85) 

is. the Translated-Inverse-Gamma distribution with parameters -b ,  
and 49 > 0 (TIG(-b,  O -  I, 49)). ( I f  X. . .  TIG(k,c~,/3) then 

Proof: Proofs of these two results have been provided before by a number of 
authors. Distribution (b) was first derived in the context of pension funding 
by Dufresne (1990) in the case where there is one risky asset, no cash and no 
demographic volatility (ab = 0). Dufresne also noted that the stationary 
distribution of the funding level was the same as the distribution of a 
perpetuity. An alternative proof  for the distribution of the present value of a 
perpetuity was also shown to have distribution (b) by Yor (1992) and by 
De Schepper el al. (1994). F611mer and Schweizer (1993, Theorem 5.1 and 
erratum) considered the diffusion process defined above as underlying a 
model for stock prices. They derived both of  the limiting distributions given 
in (a) and (b). 
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The two distributions above are also known as Pearson type IV and type 
V distributions respectively (for example, see Johnson et  al.,  1994). 

Let us consider the Pearson Type IV distribution. This distribution has 
four degrees of freedom. The fifth degree of freedom used in the dynamics of 
the fund size determines the speed of the process. 

Following the notation of Johnson et  al. (1994) we define It', = E[Xq. We 
define #'-t = 0 and have 1~{) = I. It is easy to show that the ~'~ satisfy the 
following recursive relationship: 

- k o r # ' r _  - _ = ,+(/,'3 ( , '+l)k,) t , '~+(l  (r+2)k2)F~'r+l 0 (86) 
a /3 "r / 3 - 2 u  

wherek0-2(3`+u------~, kl-2(3`+-------3, k2-2(3`+u~,  k3-2(3`+u-------- 3 (87) 

Hence we have 

E[< =d, _kl (88) 
1 - 2 k 2  u 

, k o + ( 2 k l - k 3 ) # / u  o ~ u + / 3 # + 2 #  2 (89) 
E[X2] ='u2 = 1-3k2 - u(Zu-  3`) 

= V a t [ X ] =  °~u+/3`L+2/-L2 /~2--uz(ct+/3~+3`~) -°~+/3E[X]+TE[X]2 (90) 
u (2 u -7 )  u 2 u2(2u-3`) 2 u - 7  

I.L 
r r  t=',,LLCL~)I = co - c, E[X] = Co - c , -  (91) 

/] 

c~ +/3E[X] + 3`E[X] 2 (92) 
Var[c(X)]  = c'~ Var[X] = c~ 2u - 7 

The stationary distribution exists if and only if 2(1 + u / 3 ` ) >  1: that is 

cl > ~50 +pMrA-2 3  ̀ (in fact, 3`~/2 is the asymptotic volatility as Ix[ ~ oc). 
, i  

Similarly E[X] exists if and only ifc~ > ~50 +p(A and Var[kq exists if and only 
1 

ifcj > 60 +plrA +~3`. 

Coming back to the optimal solution for the dynamic problem we found 
'* = P ( k )  = P ( k , / 3 ) .  Thus the condition for stationarity is that c~ 

, T  1 , T  , 
P ( k )  > 60 + Pl A -- ~P l  DPl (93) 

where p~ = -D- IA (unconstrained case). 

P ( k )  > 60 +3ATD-IA (94) 
Z 
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N o w  P(k,/3) is a decreasing function of/3 and an increasing function of  k, so 
the condit ion above is less likely to be satisfied if fl is large or k is small. 
Under  such circumstances the funding level will diverge as t tends to infinity. 
The situation, therefore, is that with a relatively large value of/3 we pay more 
attention to control o f  short-term variability in the contr ibut ion rate at the 
expense of  larger fluctuations in the long term. Likewise, if the value of  k is 
too small then we also pay too much attention to short-term contr ibut ion-  
rate stability. 

4.2. Continuous proportion portfolio insurance 

The idea of  cont inuous  propor t ion  portfol io insurance (CPPI) was 
introduced by Black and Jones (1988) and Black and Perold (1992). 

The previous sections in this paper  have concentrated upon quadrat ic  loss 
functions. The motivat ion behind CPP1 is that in certain countries there exist 
minimum funding constraints: that is, there exists a floor below which the 
funding level must not fall. CPPI was proposed as a means of  reducing the 
risk that the fund falls below this floor. 

Under  CPPI  if the funding level is low then the fund will be invested more 
in low-risk assets (in particular, those which will best match variations in the 
floor). As the funding level improves the fund can be shifted more into risky 
assets which provide the fund with higher upside potential. 

Suppose that the minimum funding level (or floor) is M. We have a low- 
risk portfolio A with a propor t ion 7r,4g of  the fund invested in asset i (i = 1, 
2 . . . .  , n). We also have a higher-risk portfolio B which invests in propor t ion 
to the vector Tr;;. At funding level x a propor t ion p,4 (x) of  the fund is invested 
in portfolio A and po(x) = 1 --pA(x) in portfolio B. Since A is less risky we 
have (normally): 

~r~,,k < 7cer,k (that is, A has a lower expected return) (95) 

TraDer,4 < 7r~DTr;; (that is, A is lower risk) (96) 

We define p,(x) in one of  the following ways: 

x - M  
p/3(x) - - -  (97) 

x 

or/~o(x) = max - ,0 (98) 
x 

We will concentrate here on p~(x) for the sake of  mathematical  convenience 
since it is normally the case that the probabil i ty that X(t) falls below M 
under this strategy is very small if A is very low risk. 
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The vector o f  p ropor t ions  invested in each asset under  CPPI  is thus: 

M x - M  
pc(X) =- -TrA + - - 7 r 8  (99) 

x x 

Pco + Pcl x 
- ( l o o )  

X 

where p~o = M(TrA -- ~rB) 

Pcl ~ 7rB 

We can, therefore,  apply all o f  the results discussed in Section 4.1 to CPPI.  
For  example,  it is of  interest to compare  the effectiveness o f  CPPI relative to 
a static investment strategy. Let us look first at the s ta t ionary mean and 
variance of  the funding level. In the equat ions below we use a subscript c for 
calculations under  CPPI  and s where we are considering the static strategy. 
Thus: 

E[Xc] - "" - c o  - B + p~A 
u~ el - 6o - p ~ A  = m~ (101) 

and Var[Xc] c ~ c + f l c m ~ + T d n ~  2 say. (102) 
= 2uc - "7c = sc 

We will assume that the floor, M, is sufficiently small and that portfolios A 
and B, and the contr ibut ion strategy have been chosen in such a way that 
X(t)  is s ta t ionary with M < mc < oc. 

Now suppose that we will employ a static investment strategy under 
which we hold assets in propor t ion  to the vector psTrA + (! -ps ) r r8  for all x 
where p.,, is some scalar quanti ty.  Then we have: 

E [ X . , . ]  = c o  - B = m~. (103) 
Cl -- 60 -- (psTrA + (1 - -  ps)TrB)TA " 

Now choose Ps in such a way that ms = m~: that is, 

m , . ( c ,  - 6o - ~ : ~ )  - ("o - B )  M ( ~ A  -- ~ B ) ~ A  M 
p~. . . . .  (104) 

mc(:~A - ~8)r .X  . , c ( ~ A  - :~e)r~  ,,7. 

Note  that 0 < Ps < 1. 
We now claim that Va,'[Xs] < Var[X~]. 

=o~/~ + M2(TrA - 7rB)TD(TrA - 7rB) + 2M(TrA - 7ro)VDTrsmc + 7r~DTrBm~ (106) 

=o~h + ( M(Tr,4 - ~rB) + mcTrB)T D( M(Tr A -- 7rlt) + mcTrlt) (107) 

=cr~b + (p:rA -I- (1 -- pc)TrB)rD(p,TrA -t- (1 - p ( l ) T l B ) / , ]  12 (108) 

where Po = M / m , .  
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We also have: 

a~ +/3~m~ + %m2s = ~ + (p,rrA + (1 - ps)rrB)rD(psrrA + (1 -- p,)rrA)m.{ (109) 

But  m~ = m~. and  Pc = P~ so that  ctc -I-/3~mc + 7cm~ 2 = C~s 4-/3~ms + %m~. 
N ex t  consider :  

% = - ( l l O )  

- (PTA + (I --p.,.)TrB)rD(p.,.TrA + (1 --p.~)TrB) (111) 

= 2(c, - 60 - 7rTA) -- 7rTDTrB -- 2ps(TrA -- 7rB) TA . (112) 

(ll3) + [TrTDTrB--(p.~Tr,4 + ( 1 - - p s ) T r B ) T D ( p T A + ( 1 - - p s ) r r s ) ]  

N o w  0 < Ps < 1, (rrA - 7re)r)~ < 0 and 

[TrTDTrB--(psTrA+(l--ps)TrB)TD(psTrA+(l--ps)TrB)l > 0  (114) 

(since the express ion  in square  bracke ts  is convex ,  q u a d r a t i c  in Ps and  
7rT DTr A < 7r~DTrs). 

There fo re :  

Hence:  

2t<,. - 3'.; > 2u~ - "),c. (115) 

Oes +/3sins + "ysm 2 oec +/3dnc + "7cm2~ < 
2u,. - "7~ 2u~ - % 

Var[Xs] < Var[Xc] 

This  can be summar i s ed  in the fo l lowing  theorem:  

(116) 

(117) 

Theorem 4.2.1 
For any CPPI  investment strategy let me and s 2 be the stationary mean and 
variance o f  the fimding level X,. There exists a static investment strategy under 
which the stationary mean fimding level, m.~, is equal to mc but the stationary 

2 is less than ,2 variance o f  the funding level, s s , '~c" 

Interpretation: In the var iance  sense, the stat ic s t ra tegy  is more efficient than  
CPPI :  tha t  is, given a C P P I  s t ra tegy  we can a lways  find a stat ic s t ra tegy  
which delivers the same mean  funding  level bu t  a lower  var iance .  

One  example  i l lustrat ing this result  is p lo t ted  in F igure  3. Here  we use the 
same fixed pa r am e te r s  as in Sect ion 3.5. In add i t ion  we have co = 1.5 and  
cl = 0.07 for  bo th  the static and  C P P I  strategies.  U n d e r  C P P I  we have a 
f loor  o f  M = 10 with 7r T = (0 ,0)  and 7r T = (0 .2 ,0 .8)  (mean ing  tha t  at  the 
f loor  ( (X(t )  = M) the fund is invested 100% in cash).  This  gives rise to a 
mean  funding  level ( that  is, assets d ivided by expec ted  benefit  ou tgo )  o f  17.1 
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while the variance of the ftmding level is, in fact, infinite. Under the 
matching static investment strategy the expected funding level is also 17.1 
while the standard deviation of the funding level is 5.4. This marked 
difference in the variances is caused by the fatness of the tail of  the CPPI 
distribution although this is not clear from Figure 3. What we can see in 
Figure 3 is that the two distributions are quite different. 

One might ask why would we use CPPI when the static strategy has been 
shown to be more efficient. The answer to this is that it depends upon the 
objectives of  the pension fund. If the objective is to minimise variance then 
clearly the static strategy is superior (although we have shown in Section 3 
that a form of "inverse" CPPI is better still). On the other hand, if the 
objective is to minimise the probability that the funding level falls below the 
floor, M, then CPPI is clearly superior. 

0 
O4 
0 

1.0 

5 

c ~ d 
" 0  

d 

q 
0 

~CPPI 

' \ "\ static 

0 10 20 30 40 50 

funding level, x 
FIGURE 3: Compar i son  o f  s ta t ionary  distr ibutions for static and CPPI investment strategies. Both 

distr ibutions have the same mean. 
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5. N U M E R I C A L  EXAMPLES 

We consider now an example in which the following parameters are fixed (as 
in Section 3.6): 

(0.04) :0.05 0005 ) .  60=0.03, 6=\0.06J' S=\0.05 , B = I ,  orb=0.1 (118) 
Here we consider an analysis of  the sensitivity of  the optimal control 
strategies to variation of  the input parameters in the value function and the 
loss function. The central parameter values which we will use are: 

c , , = 0 . 6 ,  k = 0 . 0 0 1 ,  xp=  10, / 3 = 0 . 0 3  (119) 
Furthermore, we assume that none of  the fund can be invested in cash (as in 
Section 3.3 with Pm = 1). Throughout this analysis we keep the fifth input 
parameter p equal to 0. 

In Tables 2 (Dynamic optimisation) and 3 (Stationary optimisation) 
below we give the values of  the input parameters (c,,,, k, Xp and /3), the 
optimal values of  p0, Pl, co and cl, and the mean and standard deviation of  
the stationary fund size and the contribution rate. 

The values given for pB0 and Pm relate to the proportion of  the fund 
invested in the more risky but efficient portfolio B: that is, the portfolio in 
which investments are in proportion to the vector D-~A. In particular, the 
proportion of  the fund invested in portfolio B is pB(X)= (PBo +pmx)/x. 
Since Pm = I the remainder of  the assets are invested in the minimum 
variance portfolio A: D-le / (erD-le) .  

TABLE 2 

DYNAMIC OPTIMISATION 

El'. C m k xp ~ Gb pl~ PBI CO Cl E[X] SD[,~] E[C] SO[(.] 

I 0.6 0 - 0.02 

2 0.6 0 - 0.03 

3(*) 0.6 0.005 10 0.03 

4 0.5 0.05 10 0.03 

5 0.6 0.005 10 0.03 

6 0.6 0.005 15 0.03 

7 0.6 0.005 10 0.03 

0. 

0. 

0. 

0. 

0. 

0. 

0.2 

20.7 - I .97  1.00 0.038 8.9 3.8 0.660 0.146 

20.7 - I .97  0.89 0.028 7.0 oe 0.699 o o  

20.1 - I . 97  1.48 0.086 9.6 1.5 0.651 0.132 

19.8 - I .97  3.00 0.238 9.9 0.8 0.647 0.194 

22.1 - I . 97  1.47 0.086 9.7 1.6 0.633 0.141 

26.0 - I .97  1.74 0.086 14.2 2.3 0.512 0.194 

20.1 - I .97  1.48 0.086 9.6 1.6 0.651 0.139 
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T A B L E  3 

S T A T I O N A R Y  O P T I M  [ S A T I O N  

ex. cm ~ x, # o~ p~  p,, co ~, e[x] so[xl e[c] so[c] 

I 0.6 0 - - 0.1 20.7 - 1 . 9 7  1.21 0.058 9.7 2.2 0 .644 0.127 

2 - - 

3 ( ' )  0.6 0.005 10 - 0.1 20.1 - I . 9 7  1.68 0.105 9.8 1.3 0.647 0.141 

4 0.6 0.05 10 - 0.1 19.9 - [ . 9 7  3.16 0 .254 9.9 0.8 0.647 0 .200 

5 0.5 0 .005 10 - 0.1 2 2 . 4 - I . 9 7  1.70 0.105 10.3 1.4 0.619 0 .152 

6 0.6 0 .005 15 - 0.1 2 5 . 6 - I . 9 7  1.97 0.105 13.7 1.9 0 .526 0 .197 

7 0.6 0 .005 10 - 0.2 20.1 - 1 . 9 7  1.68 0.105 9.8 1.4 0 .647 0 .149 

5.1. Notes  on the numerical examples  

o Examples 1 and 2 show the effect of changing the risk-discount rate /3 
when k = 0. Note how the variances in the dynamic case become infinite 
as/3 increases. However, when/3 = 0.03 the dynamic optimum still has a 
stationary distribution, albeit with infinite variances. 
When k = 0 we can also see that the optimal asset-allocation strategies 
for the dynamic and static cases are the same and do not depend upon/3. 
We also see tha.t c~ = c s - / 3  if k = 0. 
As /3 tends to 0 the optimal dynamic solutions converge to the same 
values as the optimal static solution. The effect of /3 is therefore to 
suppress variance in the short term through a lower value of c~. A low 
value of c~ may reduce variance in the short term but it increases it in the 
long run by allowing fluctuations in the fund size to persist. 
In Example 1 we also see that E[C] > era. This reflects that fact that the 
minimum variance of C falls as E[C] increases (and E[X] falls). 

o In Example 1, the fund is invested 100% in portfolio B when X equals 
about 7.0. Below this the fund goes long in portfolio B and short, in 
portfolio A. Conversely, when X reaches just above 10.5 the fund has 
100% in portfolio A. When X goes above this there is a long position in 
portfolio A and a short position in portfolio B. 
Similar ranges apply for each of the other examples. 

o Examples 2, 3 and 4 show the effect of increasing k. This shifts the 
emphasis onto reducing the variance of the fund size rather than of the 
contribution rate. The principle effect is that c~ increases with k: that is, 
surplus or deficit is amortised more quickly. The changes in P0 and co are 
primarily a knock on effect. 

o Examples 3 and 5 demonstrate the consequences of changing c,,,. Pl 
remains unchanged as it does throughout. The changes in the remaining 
control parameters have the effect of shifting the mean values principally 
but also affect the variances. 
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o Examples 3 and 6 consider the effect of changing the target fund size x?. 
There is no change in Cl orpl .  P0 and co change in order to shift the mean 
fund size. The variance rises because the target fund size is being moved 
away from the more natural mean observed in Example 3. This increases 
the tension on the mean contribution rate since a target fund size of 15 is 
not entirely consistent with a target contribution rate of 0.6. 

o Examples 3 and 7 show the influence of the uncertainty in the level of 
benefit outgo. As was remarked in Section 3, ab has no effect on the 
optimal values of P0, Pl, co and el. Furthermore, the increases in the 
variances are small indicating that at this level (a6 = 0.1 or 0.2) the main 
source of variability in the contribution rate is due to investment risk. 

o The stationary distributions for the fund size for the dynamic and the 
stationary optima in Example 3 are plotted in Figure 4. It can be seen 
that the results are similar although the dynamic optimum gives rise to a 
stationary distribution which is less peaked and which has fatter tails. In 
other cases (for example, Example 6) if there is some tension between the 
target funding level, Xp, and the target contribution rate, Cm, there will be 
more of a difference between the two stationary distributions. 

c5 

-- d 
tD~ 
t-- 

C5 
tO,,,= 

O 

t..D v-. 

"- c5 (D 
"O 

O 

O 0 20 

~ "  i" stationary 

5 10 15 

funding level, x 
FIGURE 4: Example 3: Comparison of the stationary distribution of the funding levels for the dynamic and 

stationary optimal solutions. 
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6. CONSTRAINTS AND DISCONTINUITIES 

A number of possible constraints can be put in place which complicate 
considerably the proceeding analyses. These are: 
o upper and lower barriers for the funding level, X(t). These might be 

legislative requirements or self-imposed by the fund sponsor and the 
trustees. 

o an upper limit set by the fund sponsor on the contribution rate. 
o restrictions on the short-selling of assets. 

Further discontinuities might exist where the objective function has a non- 
standard form. For example, we may have 

L(t ,c ,x)  = ( c -  c,,,) 2 + k(max{xp - x, 0}) 2 (120) 

where the second term only introduces a penalty when the funding level 
drops below Xp. Such a function can also be used as a means of investigating 
the effects of a barrier since as k gets larger and larger the optimal 
contribution rate below Xp will increase in an effort to raise the funding level 
above Xp as quickly as possible. For large k this will have the effect of 
looking like a reflection off the barrier 

Analysis of many of these problems is under way but there are only a few 
interesting results to discuss at this stage. 

6.1. Dynamics in the presence of a minimum barrier 

A much simplified version of the minimum funding requirement in the UK is 
as follows. There is a floor M below which the funding level should not fall. 
If X(t) does drop below M then it is immediately increased to M by a special 
contribution. 

This problem can be approached by modifying the original setup 
described in Section 2 by adding an additional contribution rate 
c +.  m a x { M - X ( t ) , 0 } :  that is, when the funding level is below M. As c + 
tends to infinity the dynamics of the model approach that described above 
and the process reflects off the barrier M. In this limit the process can be 
written as follows: 

The new term in this formula, dL~, is called the local time of the process, 
X(t), at M and is defined as 

I' L2 ~ = dL., M. (122) 

'/o' --1ill,- I(M _< X(O < M + e)d.  (123) 
~---~0 ~" 
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where l(-) is equal to l when X(t) lies between M and M + E and 0 otherwise. 
L~  is a measure of  how much time the process spends in the vicinity of  M. 

The d L ~  term represents the additional contributions required when the 
process hits the barrier to keep X(t) above M. In a sense it gives the process a 
small upwards 'kick' every time it hits the barrier. 

It is possible to analyse the stat ionary distribution of  such a process when 
c(x) and p (x ) .  x are linear in x away from the barrier: it has a truncated 
Pearson type IV distribution. However, Var[c(X)dt + dL~/]/dt  2 is infinite 
whereas the variance is finite when there is no barrier. This inhibits the 
optimisation of, for example, qu;adratic objective functions. For  such 
problems it is easier to replace dL~ 4 by c + m a x { M -  X(t),  O}dt and consider 
what happens as c + tends to infinity. 

A more suitable loss function which accommodates  local time as a result 
of  the existence of  upper and lower barriers is: 

L(c) -= Ioc + d l  + IT(c-/2) 2. (124) 

Note that as c ~ +oo, L(c) ~ (Io + Ii )c, while as c ~ - o o ,  L(c) ,.~ (Io - Ii )c. 
This asymptotic linearity is required to ensure that the expected value of  the 
loss function does not become infinite when a reflecting barrier and local 
time is introduced. If  l0 < Ii then L(c) is increasing and convex. In other 
words, the fund sponsor prefers to pay less rather than more and prefers 
stability to instability. Furthermore,  the employer will be prepared to pay a 
higher average contribution rate in the long run in return for lower volatility 
in the contribution rate. 

6.2. No short-selling of assets 

Suppose that the holdings in each asset must be non-negative: that is, 
0 < p( t , x )  _< 1 for all t, x. 

Let us consider the following piecewise linear model for the proport ion of  
the fund invested in the more risky asset 2 in a 2-asset model: 

C ( X )  = C O - -  C I X  for all x (125) 

1 i f x  < x0 

x o ( x l - x )  if x0 ~ x < x l  (126) 
p2(x) = (xl x0) x 

0 if Xl < x 

In the unconstrained case: 

p2(x) = x0 

( x , - x 0 )  

X I m X) 

X 
(127) 
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for all x. The use of  x0 and xl here makes it easier to see where the 
constraints lock in. For  asset 1 and cash we have: 

Pl (x) = 1 - p2(x) (128) 

po(x)  = 0 (129) 

Over each interval [0, x0), [x0,xl) and [xl, ~ )  the stat ionary distribution 
function is a scaled Pearson type IV with different parameters over each 
interval. Since p ( x )  is continuous the stat ionary density function is 
continuous.  This allows numerical evaluation of  an objective function and 
hence optimisation over co, cl, x0 and xl.  

Let us consider a numerical example. We use the same model parameter 
values and objective function as in Section 5. In the unconstrained problem 
the optimal solution is linear in x as usual. In the constrained problem the 
optimal solution will not be linear or piecewise linear in x, but here we 
optimise only over piecewise linear strategies. 

It can be seen by referring to Table 4 that the effects of  the constraints in 
this example are fairly small but, nevertheless, significant. The size of  the 
effect of  the constraint  depends upon to what extent the interval [x0,xl) 
comes into play in the unconstrained case. If  X(t)  falls into [x0,xl) most of  
the time then the effect of  the constraint  will be small. Here, in the 
unconstrained case, most  of  the time the fund is invested long in the low-risk 
asset 1 and short in the high-risk asset 2. 

TABLE 4 

STATIONARY OPTIM[SATION UNDER CONSTRAINTS 

c ,  se x. x, ~o ~, e[x] so[x] e[c] so[el e[L(c,x)] 

Constrained 3.87 7.40 1.77 01123 9.29 1.50 0.628 0.184 0.0485 

Unconstrained 3.96 7.89 1.68 0.105 9.85 1.35 0.645 0.142 0.0315 

6.3. Upper limit on the contribution rate 

Boulier et al. (1996) considered the effect of  an upper bound on the optimal 
contribution rate. This resulted in a nearly linear form for c(x) and a bell- 
shaped curve for p(x ) .  Their solution required the existence of  a risk-free 
asset for the fund and zero volatility in the benefit outgo: otherwise the 
dynamics of  the model would be non-stat ionary since a sufficiently large 
deficit will eventually build up which cannot  be eradicated. 
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7. CONCLUSIONS 

This paper has considered the optimal control of  a pension fund using the 
asset-allocation strategy and the contribution strategy. 

Optimal solutions have been derived for power and exponential loss 
functions (with no demographic risk -¢7h = 0) and, in more detail, for a 
quadratic loss function. In most cases the contribution strategy appears to 
be sensible and conforms with current practice. In each case aspects of the 
solution were not completely satisfactory. First power and exponential loss 
functions were found to give rise to non-stationary solutions. Second, when 
we considered the quadratic and exponential loss functions, the optimal 
asset-allocation strategy derived was rather counterintuitive: moving, say, 
out of  equities into bonds when the level of surplus is growing. 

This has one of two explanations. Funds may be operating in a very non- 
optimal way. Alternatively, they may be operating optimally but with 
different objectives. For example, in the UK, the government has recently 
introduced minimum funding legislation. This should lead to loss functions 
which heavily penalise events when the fund size falls below the legal 
minimum. Boulier et al. (1996) considered a related problem in which the 
contribution rate was subject to an upper constraint (say, twice the target 
rate). However, in the present framework (in which all assets are risky and 
where there is volatility in the benefit outgo) it is not possible to constrain 
the contribution rate in this way, for otherwise the fund size would 
ultimately drift off to minus infinity. 

There is, however, some sense in a shift out of equities if the fund size 
is well above its target level. First if there is too much surplus then there 
will be pressure on the sponsoring employer to use this surplus to pay for 
discretionary pension increases which, perhaps, had not been promised. In 
any event the members would be benefitting from good investment returns 
while the employer has to pay when things go badly. Second if the 
employer is able to take a refund, the refund may be liable to tax (for 
example, in the U K  this is 40% with the aim of inhibiting exploitation of 
the tax advantages enjoyed by a pension fund). Third, too much surplus 
may lead to the removal of part o1" all of the fund's special tax status 
(again this is the case in the UK). All of these reasons mean that it should 
be advantageous to put a bigger proportion of the fund into low-risk 
assets when the fund has a large surplus. The results described in this 
paper back up this viewpoint. 

It is clear from the results contained in this paper that we must look for 
alternative loss functions. The target are ones which give rise to stationary 
solutions and sensible asset-allocation strategies. 

The results presented in this paper and in that of Boulier et  al. (1995) also 
draw attention to the following issues: 
o what objective functions (if any) are used by pension funds? Are pension 

funds currently operating in a sub-optimal way or do they have different 
objective functions from the one considered here? 
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o what constraints (if any) on contributions and investments are appro- 
priate? Can investment constraints be circumvented by prudent use of 
derivatives? 

o is too much emphasis placed on the calculation of  the so-called actuarial 
liability when this may have no relationship to the target funding level 
under the optimised objective function? Here the problems have been 
analysed solely with reference to the objective function. A framework 
which relies heavily on the actuarial liability might result in a solution 
which is sub-optimal with reference to this stated objective function. 

It must be stressed again that we have assumed a stable membership 
structure in the pension plan. In many problems there may be a reason, for 
example, to incorporate changes in the membership as a sponsoring 
company evolves or restructures. Such situations would require an 
adaptation of, for example, the use of X(t) = F(t)/W(t) as the key process 
and of the objective function. The findings in this paper suggest that the 
interests of  the employer and fund members might be served better by a 
combination of dynamic control theory and more traditional actuarial 
valuation techniques. In this respect, theoretical solutions to simplified 
problems give us a basis for investigations of more complex situations. 
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