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ABSTRACT 

We consider an alternative to the usual credibility premium that arises from 
squared-error loss, namely, a so-called equitable credibility premium 
(Promislow and Young, 1999). We derive formulas for the credibility weight 
in certain cases and give sufficient conditions for exact credibility. 

I .  INTRODUCTION 

When setting premiums for insurance, inequities will necessarily arise when, 
due to imperfect information, some policyholders are charged more than 
they should be and others less. By building on the previous work of 
Promislow (1987, 1991), we deal with the problem of choosing premiums to 
minimize this inequity (Promislow and Young, 1999). Much of our work 
parallels classical credibility theory, but in place of the traditional squared- 
error loss functions, we use the family of entropy loss functions. This is a 
familiar family that has frequently appeared in the economics literature for 
the purpose of measuring income inequality. We obtain formulas for the 
optimal premiums, and in certain cases, we obtain explicit formulas for the 
best affine approximation to the optimal premiums. A natural question, 
then, is to ask how good the affine approximations are. A basic result of the 
classical squared-error approach is that they are often exact. This occurs 
(given certain regularity conditions) when probability distributions are 
chosen from the linear exponential family with conjugate priors (Jewell, 
1974a,b). The purpose of this note is to investigate conditions of exactness 
for a particular case of an entropy loss function. 

In Section 2, we set our notation and assumptions and briefly review 
previous work in credibility theory, including some of our work in 
Promislow and Young (1999). We consider a specific case of our equitable 
credibility estimator. In Section 3, we study the case for which the equitable 
credibility premium is constrained to be an affine function of the claim data. 
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For the special case investigated in this paper, we have an explicit expression 
for the credibility weight and determine a sufficient condition for exact 
credibility. 

2. BACKGROUND 

Assume that the total claims of a policyholder, or risk, in the i 'h policy 
period, is a random variable Xi whose distribution depends on 
0, i = 1, 2, ..., in which 0 varies across policyholders and may be vector- 
valued. Assume that the Xg are independent (conditional on 0) and 
identically distributed. The value of 0 completely determines the claim 
distribution of  the policyholder. Assume that the value 0 is fixed for a given 
risk, although it is generally unknown and unobservable. Denote the 
probability (density) function of 0 by ~-(0), also called the s t r u c t u r e  f u n c t i o n  
(Biihlmann, 1970). 

One goal of credibility theory is to calculate a premium for period n + 1 
of  a policyholder, given that the policyholder's claim experience in the first n 
periods is X,, = x,, = (xl, x2, ..., x,,) E (R+) '', or more generally given any 
information, such as a demographic data. Consider general credibility 
estimators, denoted by Y, in which Y is a real-valued function on the 
information given, such as (R+) '', if the information is prior claim data. We 
use a capital letter to denote the credibility premium Y to emphasize that it is 
a random variable. If we constrain Y to be a linear function of the claim data 
x, then we write L for Y. 

If one knew the value of 0 that determines the claim distribution of a 
policyholder, then E(X,,+IL0) would be the most equitable premium for 
period 17 + l, or more simply E(X]0). Let ~L(0) denote E(X[0); also, let p, 
denote EX. The inequity of any other premium is measured relative to this 
most equitable premium. A general procedure is to select an appropriate loss 
(or unfairness) function U and then to choose Y(x , , )  to minimize 

EU[(r(x,,), 

In Bfihlmann's classical theory (1967, 1970), the loss function U is taken to 
be the traditional squared error. That is, 

U[(Y(x,,), /,L(0))] = (Y(x,,) - #(0)) 2. (2. I) 

The resulting credibility premium is the posterior expected value of the 
conditional mean 

Y(x,,) = f E(X, ,+I  ]O)Tr(O[x,,)dO. (2,2) 
J 
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By restricting the form of the credibility premium L to be a linear 
combination of prior claims, and by assuming that the claims are 
conditionally independent and identically distributed, one deduces the 
credibility estimator 

L(x,,) = (1 - Z);~ + ZX, (2.3) 

in which # = EX = E[t~(0)] is the overall, or grand, mean; Yc is the sample 
mean, 

I1 
Z - k '  (2.4) n +  

in which 

k - E[Var(XI0)] (2.5) 
Var[tz(0)] 

is the ratio of the expected process variance to the variance of the 
hypothetical means. 

In certain cases, the predictive mean (2.2) is an affine function of the 
sample mean and, thus, equals the linear credibility estimator (2.3). Jewell 
(1974a,b) verifies conditions under which this exact credibility occurs: Under 
certain regularity conditions, exact credibility occurs for probability 
distributions from the linear exponential family when one uses the conjugate 
prior. 

Promislow (1987, 1991) and Promislow and Young (1999) argue that 
squared error is inappropriate for measuring unfairness, and they justify 
using the entropy family in its place. Squared error is a function of the 
absolute difference between the charged premium and the true premium, 
while unfairness should depend on the relative difference between these two 
quantities. For example, we consider an individual who should be charged 
l unit but is actually charged l0 units to be treated more unfairly than an 
individual who should be charged 1001 units but is actually charged 
1010 units. 

Promislow (1987, 1991) and Promislow and Young (1999) show that 
appropriate loss functions to meet this objective are of the form 

U(Y, #(0)) = #(O)g(r), 

in which r denotes the ratio Y/Ft(O). That is, loss is expressed as a function of 
the relative difference, weighted by the true premiums. It is shown, 
moreover, that the function g should be convex and satisfy g(I) = 0. In 
this paper, we will deal with the case in which g(r) = r 2 - 1, which leads to 
the loss function 

rZ U2(Y, Iz(O))-iz(O ) ~ ( 0 )  ( 2 . 6 )  
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In place of g, we could take the function h given by h(r) = ( r -  1) 2 . Since h 
differs additively from g by a multiple of (r - 1), it is not difficult to see that 
there will be no effect on the result when we compute expectations. It is of  
interest to note that the classical squared error loss can be expressed in a 
similar form but at the cost of  distorting the weights. We can write (2.1) in 
the form 

u(r ,  ~(0)) = ~(0)2h(,'), 

in which h(r) = ( r -  1) 2 . The weights now are the squares of  the true 
premiums, which give much higher weight than before to the high cost 
situations. Also, we can also compare this with squared percentage error, 
where the loss function is 

u(r ,  ~(0)) = h(r). 

In this case, the weights are distorted by being independent of the true cost. 
Note that the loss function in (2.6) equals Uc(Y, #(0)) from Promislow 

and Young (1999) in the special case for which c = 2. We will restrict our 
attention to this case for the remainder of  this paper. In place of formula 
(2.2), one now gets an optimal premium of 

Y2(x,,) = ~ (2.7) 
I 

There is a convenient analogue of formulas (2.3) through (2.5). Indeed, (2.3) 
holds with Z replaced by z2 given as follows: 

n 
z2 = j , (2.8) 

n --I- 

'V2 ] I-Var(XI0)-] 
in which J =  E ~ - / ~ =  E[-~ ~ -[, and W(A) = E ( A )  E(A - I ) -  l, 

for any positive random variable A (Promislow and Young, 1999). Note that 
z2 approaches 1 as n goes to infinity. 

The expression in (2.8) is similar to the formula for Z, given by (2.4) and 
(2.5), with J replacing the expected process variance E[Var(X[0)] as a 
measure of the variability in X given a value of 0, and with #W(F~(O)) 
replacing the variance of the hypothetical means Var(l~(0)) as a measure of 
the heterogeneity of the risks. See Promislow and Young (1999) for further 
discussion of the "variance" measures J and W and for the derivation of z2. 
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3. C O N D I T I O N S  FOR EXACTNESS 

For the linear exponential family and conjugate priors, we derive a sufficient 
condition for exact credibility. By exact credibility, we mean that the 
equitable credibility estimator Y2(x.) given by (2.?) is an affine function of  
the sample mean and, therefore, equals the credibility estimator 
L2(x,~) = (I - g 2 ) #  qt_ Z2~% with z2 given by (2.8). 

Suppose X]O is distributed according to a distribution from a linear 
exponential family. Specifically, the pf or pdf of X]O is of the form 

f (  xlO ) - P( x )e-"° 
q(O) ' 

for x>_0  and for 0 taking values in an interval (00, 0t), where 
-cx~ _< 00 < 01 < oo. Note that q is the Laplace transform of p because 
q(O) = ~oP(X)e-~°dx. The conditional mean of  X[O is given by 

# ( 0 ) -  q'(O) 
q(O)'  

(Klugman et al., 1998). We concentrate on linear exponential families 
because if the sample mean is a sufficient statistic for 0 and if the support of  
the pdf of the continuous random variable XIO is independent of  0, then the 
distribution of XI0 comes from a linear exponential family (Lehmann, 1991, 
Theorem 5.4). 

The natural conjugate prior of 0 has the form 

7r(O) = {q(O)}-ke-I'k°, Oo < 0 < 01, 
c(#,k) 

for some # and k > 0. The value c(F*, k) is a normalizing constant for given 
values of  # and k. Assume that 7r(fl0) = 7r(01). It follows that EX = #, the 
posterior density of 0 given x,, is of the same form as the prior with 

k* n + k and #* #k + n~" = - , and the predictive mean equals 
k + n  

k n 
= 

in which k = E[Var(X]O)]/Var[F,(fl)]. Thus, we get exact credibility for the 
predictive mean. 

To obtain exact credibility for the equitable estimator Y2, assume that 
~-(fl0) = rr(fll) and that 7r(fl0) v(flo) = 7r(fll) v(fll), in which 

v( f l ) -  q(fl) 
q'(fl) 
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is the multiplicative inverse of the conditional mean. We next prove the 
following result for exact credibility. 

T h e o r e m  3.1 Suppose that {f(XI0)} is a linear exponential family and that the 
natural conjugate prior satisfies the regularity conditions on its boundary given 
above. I f  v satisfies the differential equation 

It V : a v  t 

for  some constant a, then tile equitable credibility estimator Y2 is exact. 
Specifically, 

Y 2 ( x )  = ( |  - -  Z2)/-I, if- Z2-~- 

11 
Moreover, z2 -- 

n + k - a /#  

Proof :  
E[~(0)lx]-'= ~ v(O)~r(Ol~)dO = c(k*, ~*)-' ~o' u(O)q(O)-k'e-"Oe-OCk'-")OdO" 

Note that [q-k, ve-,O]'= _ k ,  q-~'-~ q, ve-,O + q-k" v, e-,O _ aq-k" ve-,O. By using 

the definition of v and the fact that v' - av is a constant, we deduce that 

[q-k" ve-aO]'= Kq-k" ve-,O 

for some constant K. 
We next integrate by parts and obtain 

E[t,(O)lx]_,_ K 
#*k* - a" 

Since #*k* = #k + nYc, we have that 

Y 2 ( x )  - t~(n + k) - a (/~k + n.2 - a) ,  

and the result follows. [] 

Remarks." 
(1) Note that z2 will be equal to, greater than, or less than the corresponding 

Bfihlmann credibility weight Z, according as a is zero, positive, or 
negative. 

(2) The possibilities for v are limited, l f a  = 0, then v(O) = clO + c2, for some 
constants cl and c2. If a ¢ 0, then v(O) = q e  "° + c2, for some constants 
cl and c2. After the following examples, we determine the functions q 
and p that correspond to these forms of v. 
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Example 3.2 (Gamma-Gamma) Let X[O ,,~ Gamma(3', 0) with conditional mean 

0 and conditional variance ~ ,  in which the shape parameter 3' > 0 is known, 

and let 0 ~ Gamma(a,/3). The differential equation of Theorem 3.1 holds with 

a = O, z2 - n a3'/3 1 a - 1  = Z ,  r 2 ( x ) = ( 1 - z 2 ) . - - + z 2 . . ~ = E [ X , , + l l x , , ] .  [] 
n - - b - -  

"7 
Example 3.3 (Poisson-Gamma) Let XIA ,-~ Poisson(A) with conditional mean 
A, and let A ~ Gamma(a,/3).  To put this in standard form, let 0 = -ln(A). 
Then, v (O)= e °, and the differential equation for v holds with a = I. 

n 17 
The credibility weight z2 equals versus Z - - -  and 

17 +/3 - / 3 / a  n +/3' 
a 

Y 2 ( x ) = ( 1 - z 2 ) . ~ + z 2 - . L  Note that Z < z 2 ,  so that the equitable 

premium Y2 gives more weight to the policyholder's experience than in the 
Bfihlmann credibility estimator. [] 

Example 3.4 (Binomial-Beta) Let Xlp ,,~ Binomial(r,p) with conditional 
mean rp, and let p,-~ Beta(a,/3). To put this in standard form, let 
0 = - l n ( p / ( l - p ) ) .  Then, v(O)= (1 +e°)/r,  and the differential equation 

/7 
for v holds with a = 1. The credibility weight z2 equals (a + / 3 ) ( a -  1) 

n-~ 
r a  

17 r a  
versus Z -  a +  /3, and Y 2 ( x ) = ( 1 - z 2 ) . - ~ - ~ + z 2 . , ~ .  Note that 

n + - -  
r 

Z < z2 because a > 0, as in Example 3.3. [] 

Example 3.5 (Negative Binomial-Beta) Let X I p  ~ Negative Binomial(r,p) 
with probability function 

f ( x . p ) =  ( r + x - 1 )  (1 p)", x x p" - . . . .  0, 1, 2, , 

in which r > 0 is known, and let p ,-, Beta(a,/3). To put this in standard 
form, let 0 = - I n ( I - p ) .  Then, v ( 0 ) = ( e  ° - l ) / r ,  and the differential 
equation for v holds with a =  I. The credibility weight z2 equals 

n n r/3 
( a -  1)(/3- 1) v e r s u s Z -  a - l ,andY2(x) = (1 -z2) .~-~_l+Z~_ .+L 

n + n + - -  
r/3 r 
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Note  that Z < z2 because a > 0, as in Examples 3.3 and 3.4. [] 

It is not  always the case for the linear exponential  family with conjugate 
prior,  that the equitable premium Y2 is an affine function of  the sample mean 
if, as we see in the next example. 

(x + 1)02e-X°, for x > 0, a member  of  Example 3.6 Let X[O have pdff(xlO) = 0 + ! 

02e-O 
the linear exponential  family, and let 0 have pdf  propor t ional  to OT-T' for 

0 > 0, the natural  conjugate  prior for 0. After some tedious calculation, one 
finds that for n = 1, 

Y2(x) (x c 34 4b ~ + 4b 2 2b e2b du + 32e 2b - du , 
,ll U ,]2 U 

I 1 I 3 4e2b f ~ ° e  -2b'' 1 in which - -  - du + e 2b - - d u  i L, and 
c = 4b 3 262 + 2 b  dl u tt 2 

x + l  
b -  Via numerical calculation, one can verify that Y2 is not linear 
i n x .  2 []  

Now, we return to the problem of  determining which distributions of  XIO 
lead to ~/' = av', for some constant  a. We consider the following cases: 
(1) a = 0 =:> v(O) = clO+ c2, for some constants  cl and c2, not both 0. 

(a) cl = 0 ~ q(O)= c3e -o/c2, for some constant  c3. Because p is the 
inverse Laplace t ransform of  q, we have that p(x) is a point mass at 
x = 1/C2. It follows that f (xl0)  = 1 if x = 1/c2 and 0 otherwise. 

(b) cl ~ 0 ~ q(O)= c3(c10+ c2) -1/c:, for some constant  c3. It follows 
that p(x) is propor t ional  to x'r-le -~x, in which 7 = 1/cl and 
A = c2/cl. Thus , f (x l0 )  is propor t ional  to x'r-~e -x('x+°), from which it 
follows that X]O is distributed according to G a m m a ( 7 ,  A + 0). In 
Example 3.2, we saw a special instance of  this case in which A = 0. 

(2) a :~ 0 :=> v(0) = t ie  <'° + c2, for some constants  cl and c2, not both 0. 

(a) c 2 = 0  => q ( 0 ) =  c3exp(c~cle-"°) ,  for some constant  c3. i t  follows 

that p(x) is propor t ional  to 

1 1 1 
6(x) + -  6(x - a) + 26(x - 2a) + ... + H!(acl ),""""--'----"-~ {5(.V -- ,t'l) -t-..., 

acj 2(acl)  
e-xO 

in which (5 is the Dirac delta function. Thus, f(xlO) oc 
(acl)Xl"(x/a)! ' 

for x = 0, a, 2a, .... If a = cl = 1, then we have that X]0 is 
distr ibuted according to the Poisson distr ibution with condit ional  
mean e -°, as in Example  3.3. 
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(b) c2 -¢ 0 ~ q(O) = c3(cl + c2e-aO) I/c2, for some constant  c3. It follows 

that p ( x ) i s  proport ional  to Y~',,,~=0 ( l / c 2 ] ( c l / c 2 ) ( I / c 2 - m ) ~ 5 ( x - - a m )  , 
\ ] IT/ 

under appropriate regularity conditions. For example, if 1/c2 = r, a 
positive integer, if cl = c2, and if a = 1, then we have the binomial 
distribution, as in Example 3.4. If 1/c2 = r, a negative integer, if cl = c2, 
and if a = 1, then we have the negative binomial distribution, as in 
Example 3.5. 

We see that in some sense, Examples 3.2 through 3.5 cover the simplest of  
the interesting cases for the distribution of  X]O for which the conditions o f  
Theorem 3.1 hold. Also, note from the above discussion that if #(0) _> 0, 
then a _> 0 from which it follows that z2 > Z. 
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