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In the discussion in the ASTIN Colloquium 1962, which followed 
my lecture on the numerical evaluation of the distribution functions 
defining some compound Poisson processes, a remark was made, 
which drew my attention to the paper quoted here below under 
reference number (I), On composed Poisson distributions I. 

As I have the impression that  this remark may induce some 
confusion of the terms "compound" and "composed", the more 
as the same French word (composd) is used for the two terms, a 
comparison between the two kinds of processes shall be made. 

I. The most general propositions of (I) are a theorem which concerns 
a general homogeneous Markoff process (1.c. § 2) and a theorem for 
the family {P(k,p)} of distribution functions of positive integer- 
valued variables with mean p, where p runs over all non-negative 
numbers, and where the convolution of P(k,pl ) and P(k,p,) is 
equal to P(k,pl + p,) (1.c. § 3). By these propositions the characteris- 
tic functions corresponding in the I st case to the distribution 
functions defining the homogeneous Markofff process, and in the 
2 nd case to the distribution functions belonging to the family 
{P(k,p) } can all be written in the same form, namely 

exp ~ c~(euk I) ,  (a) 

where u is an entirely imaginary variable, p is the parameter of 
the process, respectively of P(k,p) and cl, c~. . .  non-negative 

constants such that  ~ ck converges. If, in the ist case, ~ k ck con- 
k - 1  k - t  

verges, and as, in the 2 nd case, this series converges, the distributions 
defined by these characteristic functions are called composed Poisson 
distributions, which define homogeneous composed Poisson processes. 

2. The compound Poisson processes, defined in my lecture, were 
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defined by  probability distributions of the number m of changes 
in the time-interval (o, t) in the form of the Laplace-Stieltjes 
integral 

(vt),. dU(v,t)/m', (b) 
0 

where U(v,t) is a distribution function, which may depend on t 
(compound Poisson processes in the wide sense) or be independent 
of t (compound Poisson processes in the narrow sense). These 
processes are in the general case heterogeneous in time, though 
the inhomogeneity in particular cases can be eliminated by  a 
change of the time scale. These particular cases are the Poisson 
process and the Polya process, for which by the introduction of 
the new time parameter p for the natural time T leads to homogene- 
ous processes, where p and v are connected by  the relations p = 

I 
c(v)dv for the Poisson process and p = ~  log (I + zS) for the 

o 

Polya process. In (I) it has also been proved that the Poisson 
process is a composed Poisson process, which fulfils one of the alter- 
native conditions, either that  c,~=O for n ~ 2  in the expression (a), 
or that  the variance for a fixed value of p of P(k,p) is minimal as 
compared with other members of the family {P(k,p}, and that  the 
Polya process has a composed Poisson distribution, where cn = 

- - ~ n  Iv+p] n = I, 2 . . . .  This transformation of the characteristic 

functions defining a Polya process is equivalent to Ammeter's 
transformation of such a process for the case where the conditioned 
distribution of the size of one change is the unity distribution and 
to Lundberg's transformation of the same process (cf. (5), P. 183, 
(6), pp. 67-69). Other compound Poisson processes are, however, 
"genuinely" heterogeneous in time taken to mean (cf. R~nyi, (2), 
p. 87) that their heterogeneity cannot be removed by  the trans- 
formation of the time scale (Lundberg, (6), p. 58). Further, com- 
pound Poisson processes, except the Poisson process, are processes 
with dependent increments, i.e. their distribution functions do not 
generally fulfil the condition that the convolution of P(k,Pl) and 
P(k,p2 ) is equal to P(k,pl + P2) (cf. Lundberg, 1.c. pp. 89-91 ). 
According to my opinion the results of (I) cannot, generally, be 
applied to the compound processes, as defined in my lecture. - -  In 
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(I) is also given a sys tem of equat ions for the calculat ion of ok, 
k = I ,  2 , 3 ,  4. 

3. In another  paper, R6nyi (2) has extended the class of composed 
Poisson processes to include also t ime-heterogeneous Markoff 
processes. In Theorem I of (2) it  is asserted tha t  the character is t ic  
function defining a process of independent increments, which fulfils 
a certain postulate of " r a r i ty" ,  can be wri t ten  in the form (a) with 

t 
p = I and with the subst i tu t ion of j" ck (v) dv for ok, k = x, 2 . . . .  

$ 

where ck (v) are non-negative, integrable functions of t ime and  

ck (.r) converges almost everywhere. The " r a r i t y "  postulate of 
k = l  

this theorem is given in the following form. A 8 > o can be found 
for an arb i t ra ry  small ¢ > o and for an arb i t ra ry  T > o such tha t  
the probabil i ty of non-occurrence of an event in the interval  (s 1, tr) 

r 
will exceed I - - ¢ ,  if for an arbi t rary  positive integer r, E (t i --si) 

< 8, sl < tl _< s,  < t, < . . .  _< s, < t, < T. - -  In (i) ,  § i ,  appears an- 
other " r a r i t y "  postulate,  which implies the exclusion of multiple 
events and  which is given in the form tha t  the fraction P1 (t)/ 
[I - - P 0  (t)] tends to i for t ~ o, where Pa (t), Po (t) are the pro- 
babilities for the occurrence of one event, respectively no events 
in the interval  (o, t) ; in this case the process reduces to an ord inary  
Poisson process. In a continuat ion of (2), Acz~l (3) has given a 
theorem, which is more general than  Theorem I of (2), as the  
" r a r i t y "  condition has been left out. Acz61's theorem has the fol- 
lowing form: "Le t  the number  of random events  during the time- 
interval  (t D t,) be independent  of the number  of r andom events 
during the t ime-interval  (t v t,), provided tha t  tx < t, < t3 < t4 and 
let wk (tx, t2) denote the probabil i ty of exact ly  k events occurring 
in the t ime-interval  (tl, t,). Then, 

w o (t 1, t2) = exp [L (t,) - -  L (tl) ] 

wk (t 1, t~) = exp [L (t,) - -  L (tl) ] 

v I + svt + ... + k r ~ = r  

F n [ c  (t,) - - c  (q)] ", (c) 
k=x ri! 



448 "COMPOUND" AND "COMPOSED" POISSON PROCESSES 

where r i > / o ;  C i (t) (j = I, 2 . . . )  are arb i t rary  functions such tha t  
co  

X [Cj (t~) - -  Cj (tl) ] exists and is equal to L (t:) - -  L (t2) (General in- 

homogeneous composed Poisson distr ibution)".  Aczdl asserts, 

z - -  w0 (h, t2) 
further,  that ,  if and only if lim ---- o, which con- 

t i - + t  1 Wl (tl, t2) 

dition corresponds to the " ra r i ty"  condit ion in (i) § i,  the process 
is an ordinary Poisson process in an inhomogeneous form, the 
inhomogenei ty  can be eliminated b y  t ransformat ion of the time- 
scale. This cannot  be done in the most  general inhomogeneous 
Markoff process, defined b y  (c), which can be considered a sum 
of an infinity of independent  ordinary inhomogeneous Poisson 
processes, the /'th process with the mean C i (t2) - -  C i (tl) consisting 
of a t-tuple of even t s - - th i s  is consistent with a similar remark 
for homogeneous Markoff processes made by  Kolmogoroff  (in (I) 
p. 2 I I ) . - - I n  this connection I want  to remark  that  Thyr ion (196o) 
used a postulate  of an infinite sequence of random processes con- 
sisting of a k-tuple of events  as a start ing-point ,  when construct ing 
a very  general class of processes in which the increments ma y  be 
dependent  or independent .  

4. The t ime-heterogeneous composed Poisson process with in- 
dependent  increments,  defined b y  R6nyi in Theorem I of (2) 
according to the previous paragraph,  will in this note in accordance 
with notat ions in (2) be called a It-process. In Theorem 2 of (2) 
R6nyi introduces a t ransform of the ~t-process, which, here, will 
be called an ~qt-process. In this theorem Rdnyi still uses the term 
composed Poisson distribution, though the decrements  of ~qt are 
not explicitly s ta ted  to be independent .  The theorem has, namely,  
the following content.  Supposing tha t  each event  of a ~qt-process, 
for which the mean of ~t exists for every t >  O, is the start ing-point  
of some happening, the durat ion of which is a variable dis t r ibuted 
with the distr ibution function I-~(%t), where t is the starting-point,  
and where ¢(x,t) is a cont inuous posit ive function for all (T,t);'~t 
denotes  the number  of happenings going on at t ime t. The character-  
istic function of ~t is, then, of the same form as tha t  ~t with 

dk(t) = / ~ ck(x) .  *k(x, t - - x )  [ I - - *  (% t - - x ) l  ,~-k dx (d) 
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subs t i tu ted  for ~ ck (~) d,. dk(t) is, evidently,  non-negat ive for all 

k, t . - - I f  par t icular ly  ~t is a t tached  to a Poisson process the charac- 
teristic function of ~t reduces to 

exp [(e , , - - I )  S c1(, ) ¢( z , t - - v )d* l  i.e. ~t is also a t tached  to a 

Poisson process. 

5. In Theorem 3 of (2) it is asserted that ,  if ~,~1, ~-,. • • ~,** are non- 
negat ive independent ,  integer-valued random variables, and if the 
probabi l i ty  for ~,k being equal to s, p,~k(s) say, fulfils the relation 
lim max  p~(o)  = o, then the sufficient and necessary condition 
~--~ x_<k<_k~ 
for the  convergence of the dis tr ibut ion function of the  sum of 
~,~ (k = I, 2 . . .  k,~) for n tending to oo is the existance of a sequen- 

ce non-negat ive numbers  c 1, c , . . .  c,, such tha t  ~ c,~ converges to 
s - I  

a non-negat ive value and tha t  

J lim N p.k(s) = Cs = o .  
# - - ~ o  a - 1 k - I  

Under  these condit ions the  distr ibution function of the  sum of 
~,k converges to a composed Poisson distr ibut ion with a characterist ic  
function in the  form of (a) with p = I .  

In (4) Pr6kopa gives a cont inuat ion of (2) (in a paper  presented 
by  R6nyi) which contains an interesting modificat ion of R6nyi 's  
developments .  He  proves  the  following theorem. Let  J denote  a 
finite interval  on the t-axis and J1, J 2 . . . J -  a subdivision of the  

ao 

interval  I, so tha t  X J ,  = I, and ~j the  increment  of a r andom 
t - 1  

function in the  interval  J .  If the variables ~j,  are mutua l ly  in- 
dependent  for k = I, 2 . . . n ,  if ~j only assume the values of a 
countable  set of real numbers  ~o = o, X x, X a . . . .  which set is in- 
dependent  of the special selection of J ,  and if, further,  I-Wo(j) --~ o, 
when J contracts  to a fixed point,  where Wx(j) is the probabi l i ty  
of ~j = X, then the characterist ic  function of the accumnula ted  sum 
of 4! can be wri t ten 

e x p I ~  C x , ( / ) . . .  ( e X ' ~ - - i ) ]  (e) 
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where C~, (I) = ~ W~ k (J), x ~ o ;  ~ C~(I) = S E 1 - -  Wo(J)l < oo, 
l k-I I 

the integrals being taken in the sense of Burkill. The theorem is 
proved by  an indirect proof which is a generatlization of the proof 
of Theorem 4 in (2) and by  a direct proof which is a generalization 
of the deduction in the first section of (2), where Xk is identical with 
the set of non-negative integers. For the last-mentioned case, 
Pr6kopa (§3, (4)) gives an explicit form of Wk(I) in the terms of 
Bessel functions. 

6. By  Theorem 4 of (2) the class of composed Poisson distribu- 
tions can be characterized as the class of infinitely divisible distribu- 
tions of non-negative integer-valued variables, which assume the 
value zero with a positive probability. The proof of this theorem is 
given only in terms of c~ being independent of time, i.e. the proof 
relates, directly only to the homogeneous composed Poisson 
distributions. By the developments in (4), the theorem holds also 
for heterogeneous composed Poisson processes, if the increments 
are independent. This means that  also the distribution functions 
of the ~t-process are infinitely divisible. If the functions ~(~,t) 
appearing in the Theorem 2 of (2) are defined such as to ensure 
the independency of the decrements of ~qt, the assertion holds also 
for the ~qt-process. The ~rprocess is a particular transform of the 
t-process. Even if the increments of the JOt-process should be 
mutually dependent, one. cannot expect the compound Poisson 
processes to be contained in the class of the "~rprocesses. 

7. For the elementary compound Poisson process in the narrow 
sense the probability of non-occurrence of an event in the time 
interval (o,t) can be written 

Po(t )  = f e-vt dU(v) (f) 
o 

and the characteristic function of the number of events occurring 
during the same time-interval 

P o  - -  e,,)], (g) 
where u is an entirely imaginary variable (cf. (6), pp. 71 and lO3). 
By definition the characteristic function corresponding to U(v) in 
(f) can be written 
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Po(- -u)  = J'e "v dU(v) = exp ~ Z, u*/"~! , (h) 

where X~ is the ~th semi-invafiant of v, and u, as before, entirely 
imaginary. Consequently, by comparing (g) and (h) and by writing z 
for e u, we may, provided that the sum in the exponent converges, write 

r 7 

(i) 
L V--I J 

Supposing that the series converges absolutely for t<T, the 
expression can be transformed, after expansion of (l-Z) ~ according 
to Newton's binomial theorem, by the reversion of the order of 
summations, and by some easy computation be written in the form. 

exp (e~"-I) Z (-I) ~-~ z,t~/~l for t < r (j) 

which is of similar form as the characteristic function corresponding 
to a composed Poisson distribution (cf. (a)). As, however, the com- 
pound Poisson process, in the general case, are processes of dependent 
increments, (i) is not, generally, to be considered a particular case 
of the characteristic functions corresponding to the class of in- 
finitely divisible distributions. In this case Rdnyi's theorem 4 (2) 
and Prdkopa's theorem (4) are only applicable to the Poisson 
process or to the Polya process after Ammeter 's  transformation 
of the time scale. 

The deduction of the last paragraph can straight forwardly 
be generalized, by  the introduction of the semi-invariant functions 
X, (t), say, of U(v,t) for X,, to include also the compound Poisson 
processes in the wide sense. 
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