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INTRODUCTION 

Risk Theory for Life Insurance is simplified by  the fact that  the 
distribution tF (x) of claim amounts x approximately coincides 
with the distribution of "Risk sums" (not exactly, owing to differ- 
aences in the claim frequency with age and actual state of health), 
ond this distribution is comparatively stable *).--The dependence 
on the claim frequency is eliminated by  the introduction of a new time 
variable, and the system reduced to a (stationary) Poisson Process, 
which should be valid at least for large risk systems and for the 
total Life branch for a moderate sequence of years. 

In almost all non-life branches, partial claims will dominate and 
LF (x) can only be determined by risk statistics, leaving a certain 
space of indetermination, in particular for large claims and for 
mediumsized statistical risk groups. 

In my previous analyses, in particular New York 1957 , interest 
has been concentrated on traffic and motor car insurance, where the 
risk depends on cars insured and on the meeting traffic (including 
road conditions). In one year the same car can be involved in many 
accidents and double claims (=collisions) are rather f r e q u e n t . -  
According to my experience, this system is best represented by  a 
sequence of single and double risk situations in time (for individual 
cars or for risk groups). 

Analysis is simplified for Fire Insurance (and many other non-life 
branches), because the risk system is composed of mostly independent 
insurances (or risk objects), which are best described by  the ordinary 
Individual Risk Theory. 

In the following text,  I will t ry  to give methods and formulas, 
which are the result from many years of practical risk analysis and 

*) I have conserved the notation u/'(x) from New York 1957 in order to 
simplify eventual comparisons. 
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studies in risk statistics. In particular, I will t ry to prove that 
numerical analysis in Individual Risk Theory is almost as simple 
as in Collective Risk Theory, although the risk system is non- 
stationary and non-homogeneous. 

T H E  RISK MODEL 

Individual Risk Theory analyses a finite system of Risk Objects, 
representing insurances or part  of insurances. 

Every risk object is characterized by  some parameters, representing 
tariff classes and well-defined statistical parameters. In analysis, 
however, continuous parameters are always reduced to risk intervals, 
owing to the fact that  risk statistics are always limited to a fairly 
small number of risk groups or risk classes. Further subdivision 
will lead to diffuse figures, where the stochastic error will generally 
exceed figures obtained by  statistics. 

C l a i m  s are genera ted  from these risk objects under the following 
Hypotheses: (I) For every f ixed period--in particular for every 
i n s u r a n c e  year - -and  for every  r i s k  object  (i) there exists a well- 
defined probability (pi) for the occurrence of one claim and in case of 
a claim occurred also for the distribution ~i(x) of the claim amount (x). 

(2) All claims in fire (and other non-life branches) are p o s i t i v e  (x 
> o) and uniformly bounded. 

(3) The corresponding probability for two, eventually three, claims 
(P~2 Pi3 uEi~(x) ~i3(x) is small in comparison with pi and is often 
neglected. 

(4) Contagion from neighbouring risks is included in pi-- i f  this 
risk is insured in the same risk system there will be a small error or 
correction for number of claims but the claim amount is given correctly. 
Otherwise risk obiects are independent. 

From this system follows that  individual risk theory is con- 
structed with a minimum of hypotheses, in principle reduced to 
the existence of a definite probability for claims and claim amounts 
for each individual risk obiect, and for every statistic period. 

This existence is proved or at least made extremely plausible, if 
we start from the modern concepts of physical science and neglect 
the problem of free will. In this case the probabilities will exist 
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as defini te  probabil i t ies  at  the  beginning of each insurance year .  
On the  o ther  hand,  the risk for each individual  risk object  for a 
sequence of t ime intervals  will oscillate and evolve with an unknown 
t rend.  E v i d e n t l y  the  sys tem is well defined, bu t  not  s ta t ionary ,  and 
p robab ly  the  risk in f i f ty  years  will be radical ly  changed. 

Eve n  if we admit  free will, most  a rb i t r a ry  changes will occur a t  
defini te  t imes before the  corresponding risk situations, for example  
choice of new tenants  in a house insured. In  t h a t  case def ini te  
probabil i t ies  will still exist  before claims, a l though not  a t  the  
beginning of the insurance year.  

Final ly,  remaining inde te rmina t ion  might  be expressed b y  an 
error  t e rm Q', similar to the  t e rm Q which is analysed in a following 
section as an effect of inhomogeni ty .  

C O M P A R I S O N  W I T H  R IS K STATISTICS 

In most  cases risk statist ics are analysed by  punched  cards, 
with one card for each period and risk object insured,  and one card 
for eve ry  claim occurred.  These cards are divided into a series of 
risk groups by  tariff  classes and even tua l ly  some addi t ional  risk 
parameters ,  and the statistic material takes  the form 

Risk classes and year  = 0c ~ "f 8 (=indices)  

Risk objects  within a risk class, number  = N 
to ta l  sum i n s u r e d = S  

Claims occurred d: o n u m b e r  = n* 
individual  amoun t s  = xi* (j = i , . .n*) 
to ta l  amoun t  = y* = X xj* . . . .  
approx ima te  dis t r ibut ion = ~ *  (x). 

Der ived quotients"  loss f requency  = ** = n * / N  in °/o 0 
mean  value = x* = y*/n* 
risk p remium = ¥* = y*/N 
d: o re la t ive = q* = y*/S in °/o o 

where * signifies s tat is t ical  values = values a posteriori. 

For  an independen t  sys tem of risk objects  (within the  risk group 
(~ f3 7 8) the corresponding mean  values a priori are expressed b y  

n=X;p i  n . ~ ( x )  = X p i ~ i ( x )  i = I , 2  . . . .  N~'r~ 

y = X pi" xi where xi = .f x d ~ i  (x) 
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Observe that  ~F (x) represents the mean conditional distribution 
of one claim once a claim has occurred. The distributions of n and 
y are obtained by  more complicated methods, Cf 0 (y). 

Inversely figures from risk statistics represent approximations 
of risk figures which can be used as a basis for risk analysis. 

This fact explains, why analysts with extensive practical ex- 
perience, always accentuate the mean values or a priori values 

n, x, y = n . x, ~F (x) and n*, x*, y* = n* . x*, ~ *  (x) 

as the principal ob1'ect for risk statistics, and also for an independent 
system that,  when joining arbitrary risk groups, 

N, S, - - n ,  y =  nx, n . ~ ( x ) , - - n * ,  y * = n * . x * ,  n* .~*(x )  

are a d d i t i v e .  

By this comparison we have defined the principal object of risk 
theory as 

a) the determination of the distribution of total claim amount 
0 (y) from ~ and ~ (x). 

b) aids in the analysis of risk structure from statistical figures 
for a system (o~ ~ ~ 8) of risk groups or risk parameters. 

QUESTION OF INHOMOGENITY 

Risk theory is simplified if we assume that  statistical risk classes 
are homogeneous, and this hypothesis is reasonable in preliminary 
analysis. A direct analysis of homogenity, however, is possible in 
branches with a large claim frequency, say, IOO °/o o per annum or 
more, in particular motor car and accident insurance--simply by  
comparing the relative frequency of risk o b l'e c t s with no, I, 2, 3, etc. 
claims in the same period (year) with the common Poisson distribu- 
tion. Different figures have been published from Sweden, Germany, 
USA and other countries, proving an inhomogenity, more or less 
similar to my  own figures for motor car 

75 % with frequency = ~o, 24,5 % with 3.q~o, o,5 % with ~0 > i. 
In some analyses the influence of the last group ( = v e r y  bad 

risks) covers an important part  of the total risk volume (=cla im 
amount). 

In fire insurance where the claim frequency for a risk group 
varies from i °/o o to, say, io °/o o, a direct analysis seems impossible. 
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On the other hand, logical analysis of a well-defined risk group--  
say one-family houses--makes it extremely possible that  the risk 
will vary with small differences in construction and still more with 
inhabitants and their manner of living. Assuming a large group 
of IO.OOO similar houses with the claim frequency I °/o o and an 
(unknown) small group of IOO houses of very bad risks with the 
frequency ioo °/o0, both will lead to an average number of IO 
claims a year. Evidently stochastic variation of number and amount 
of claims is strongly influenced by a small number of bad risks. 

Probably still more common is the system, where most risk 
objects are much better than the mean risk = I to 2 °/0 o, and this 
frequency generated by a fairly small number of second rate risks. 

From these examples it is easy to derive a measure of inhomogenity. 
With the same notations as above we have for the analysed risk 
group of N objects 

z¢ n 2 z¢ 

Z p i = n  ~ _< X pi* _< n* (0 < pi < I) 

and putting X pi* ~- n *.Q _< n 2/L (L = integer) Q represents an 

exact and L an approximate measure of inhomogenity. At the same 

time X pi.pi ~- ½ ( n 2 -  Z pi~). 

As a quadratic measure Q has some properties in common with 
the variance, although the decrease with growing material is less 
regular, owing to the influence of very bad risks. 

We might also observe that  a priori risk values should be regarded 
as (unknown) constants, and consequently the maximum and mini- 
mum of the variation under the condition Q (or L) is well-defined 
and possible to calculate--contrary to a* which only gives limits 
for mean values and no information on exact variation for some 
few "stochastic experiments". 

I n d i v i d u a l  r i sk  theory--reduction to standard distributions: 

An independent system of risk objects can be analysed by for- 
mulas similar to generating functions. 

The combined risk for number of claims n is expressed by the 
following formulas, where the coefficient of X k expresses the pro- 
bability of exactly k claims. 
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/v 2q 

= r i  i+ q, where q, I + qi I -  pi 
¢ - 1  ( - t  

= A  o + A x x + A ~ x  2+. . .A~vx N = A  o(I + B l X + B 2 X  ~+. . .  BNX 2v) 

(An interesting fact is that  these formulas can be derived by 
elementary probability theory). 

The successive coefficients Bk are symmetric functions of pi 
and all Oi are positive. 

In previous papers (New York 1957) I have analysed the extrema 
of symmetric functions of p o s i t i v e  variables under the conditions 

N iv 

X q~ = n '1 ; X qi 2 = n '~ . Q < n'~/L ' (L' = integer) 

and proved that  m a x i m u m  is attained for the system with m a x i m u m  
symmetry  

q; = n ' /N  (i = 1,2,3 . . . .  N) 

and m i n i m u m  is obtained for the system with m a x i m u m  asymmetry  

q~ = n ' / L  for i < L  

q~ = O for i > L 

By this theorem further analysis is reduced to two homogeneous 
binomial systems with the claim frequency 

q(1) = n ' /N  and q(2) = n'/L 

respectively. For a large risk group (N large) the upper limit is 
approximately equal to the ordinary exponential or Poisson distribu- 
tion. 

The approximation error depends on the lower limit which depends 
on the measure of h o m o g e n i t y  (----L), or on the estimate of the degree 
of inhomogenity. For the total system (or total f ire  branch) utilized in 
ruin problems--in particular the question of an addition to pre- 
miums for safe ty- -L might be estimated from the risk frequency 
for different risk groups with some estimated additions. 

The corresponding analysis of the distribution O(y) for the total 
sum of claims starts from the analogeous formula 

N 

n ((~ - -  p~ ) + x p~*) ~'~ (x) 

where, however, products of distribution functions, e.g. 
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+ ~  

• i (x)* %(x)  = .f 'F~ (x-t) d ~ j  (t) = ~ ~ (x-t) d ~ i  (t) 
- ~  0 

should be calculated by  convolutions=asterisk products,--or even- 
tua l ly  uFi (x) are replaced by  the corresponding characterist ic 
functions. 

The ex t r emum theorem is still valid if we subst i tu te  

Zp i~Fi (x )  = n(x)  = n . q " ( x )  f o r Z p i = n  

and Z pi 2 ~Fi (x)* LFi (x) = [n (x)* n (x)] . Q (x) 

.~ n (x)* n (x) / L' = n 2 . uF (x)* uF (x)/L for Z pi e < nZQ < n'2/L ' 

leading to the same results. The binomial distr ibutions take  the 
form 

n - -  X p~ ~Fi (x)  
{(I --p) + X p* ~F (x)} ~ with p = ~7 ; uF (x) -- n 

and K = N o r K = L .  

In the fur ther  analysis the upper limit will lead to Bessel functions 
and the lower limit to degenerate Bessel functions. 

I n d i v i d u a l  r i s k  theory--approximation of ~F (x) 

In this section analysis is restricted to homogeneous binomial 
distributions--or more restr ict ively to the limit distr ibutions = 
exponential or Poisson distributions. 

Start ing from the well-known formulas 

x m x~ [ t" (x - -  t )~  x '~  + "  ÷ 1 
- -  * - -  = d t  = 

m! n! J re !n!  ( r e + n + 1 ) !  
a 

x x 

~ . e - ~  * ~ . e - x  = = at 
J m / n !  J m! n/ 
a o 

it  seems well-founded to call these functions " fundamen ta l  functions 
for the operation of asterisk mult ipl icat ion or convolut ion".  
In some researches the slightly more complicated function 

xm (z--x)n is also utilized. 
m/ n/ 
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In the following researches ~ (x) is normalized in the inverse 
sense, so that  T ( ~ )  = o and tY(o) = I 

The above observation makes it extremely probable that  calcula- 
tions should be simplified i f  claims distributions tF (x) are approxi- 
mated (and equalized) by exponential polynomials (including the 
degenerated form xm(z-x)n), and in my researches from 195o I have 
made extensive tests of this form, and also as an "extremal case" 

x Z 

of the Pareto distribution. Later I have abandoned Pareto, except 
in the study of monetary changes, partly because for a system of 
finite claims (x < Z) well approximating parts are separated by 
steep drops, and partly because this "step curve" will give about 
the same results as an equalized exponential curve, extended to 
infinity (all insurance claims are uniformly bounded). 

My own researches, extended to accident, sickness, third party,  
"traffic" and motor car insurance seem to prove that  except for 
exceptional branches, 

all distributions ~ (x) determined from an extensive statistic 
material can be approximated and equalized by an exponential 

trinomial 

~ (x )  = nA  1 . ~1 e-~'" + nA~ . ~ e -.~x + n A a . ~8 e-~3x 

A 1 + A s + A a : I 

with a relative error of some percent. 

These words relative error are all-important for applications (for 
the infinite branch "relative error" is exchanged to "relative 
total error, as compared with claims amount for moderate 
intervals in x utilized as subdivisions"). 
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In some cases the  last t e rm should include a factor  x k. 
Fac to r  A 1, A,, A 3 are of the same order  of magni tude  and  n .  A 1, 

n .  A2, n .  A 3 can be considered as partial numbers of claims. 

The other  principal  form of exponential polynomials 

(A i x  k + A ,  x~ + A 3 x m) e -x 

is less analysed bu t  when applicable will lead to slightly simplified 
calculations• 

A pract ical  example  was given in m y  New York  paper  1957 in 
the form (traffic insurance)• 

7,86.  tF (x) = 2.83 . 0.046 . e -°'°*** + 1 . 4 6 . 0 . 3 5  . e -°'85x +1 .7 3  . 

• 1•o 4 . e -x'°ax --~ 1.84 . 3.31 . e -3"glx (maximum difference = 1-2 %).  

We might  accentua te  tha t  coefficients in the exponents  are wel] 
separa ted  (by a factor  > 3). Consequently,  the  sys tem is easily 
calculated b y  successive a p p r o x i m a t i o n - - t h e  two first terms from 
large claims, the last t e rm from small claims while the th i rd  t e rm 
is ve ry  sensitive to correct  adaptation.--Also the  separate  t e rms  
character ize  different intervals  of x, which even can be identif ied as 
different types  of claims (Cf. New York  1957). 

I N D I V I D U A L  RISK THEORY CX~ COLLECTIVE RISK THEORY--transfor- 
mation formulas for the system In, tF(x)l --~ 0 (x)~ 

The Poisson distribution is un ivoc ly  character ized b y  ei ther of 
the following proper t ies :  

a) When  two Poisson systems for a rb i t r a ry  mater ia l  or periods 

are joined, the  two character is t ic  values ~ = mean  value of 
number  of claims ( =  a priori number)  and ~ .  ~ ( x ) =  mean  
dis t r ibut ion of claim amoun t  for  a single claim mult ipl ied b y  n, 
are ob ta ined  by  addit ion,  y = n . x is also addit ive.  

b) A Poisson sys tem for an a rb i t r a ry  period can be calculated b y  a 
t ime-homogeneous  sys tem (based on the mean  values ~ and 

(x) for  this f ixed p e r i o d -  a l though both change f rom 
year  to year).  
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Assuming that one individual risk system has converged to the limit 
(or Poisson) system (except for a determined error term), the t rans-  
f o r m a t i o n  from mean values a p r io r i  n and ~ (x) o,z ap- 
p r ox ima te  s ta t i s t i ca l  f i gure s - - t o  the d i s t r i b u t i o n s  of  n and 
y (=total claim amount=sum of claims) is expressed by the well- 
known series : 

® nk 
0(y) = e -n .5o~ .  t [ ~  (x)] k* where [ ~  (x)] k* = [w~ (x)](k-1), . ~  (x) 

n k 
where the first factor e-•. k.t expresses the probabi l i ty  of exact ly  k 

claims and [ ~  (x)] k* the corresponding distr ibution of claim 
amoun t  (y = x). 

Remark:  This formula, combined with the following method oJ 

calculation, represents my contribution to the excess problem with 

exceptional number of claims or exceptional claims values--only I 
f ind it very difficult to combine very small probabilities with any 
reasonable explanation of practical consequences---probably values 
should be interpreted as measures,  which might be utilized in the 
compar i son  of  d i f ferent  re- insurance sys tems.  

The transformation problem is easily resolved for the fundamental 
functions, for example [n, ~ e-~x] is resolved by  

} ' e - n - ~ x "  k :  ----~ ' ( k  - -  I ) !  - -  } n  . e - " - ~ *  k !  (k + I)/ - -  

k - 1  k = 0  

= 0 (n, ~B, x) = ~ n .  e -'~-~* . I 0 (2 g~nx) 

where I 0 (2 V~-x) = imaginary  Bessel function of zero order. 
Different forms of O(y) are easily derived from this expression, also 
the important distribution of claim mean value ( =  x). 

In order to extend the t ransformat ion  to exponential trinomials 
we should observe t ha t  the Poisson system 

[n, WF (x) = A 1 n . ~1 e-~lx + A z  n . ~ e -O'x + A 3 n . ~a e - ~ x ]  

is generated by ioining three fundamental systems 

0 (A 1 n; ~x; x) 0 (A 2 n; ~2; x) 0 (A 3 n; ~3; x) 
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proving tha t  the joint distribution is expressed by 

O (A l n; ~l; x) , O (A Sn; ~ ;  x) . O (A 3n; ~3; x) 

This asterisk product is easily calculated for a series of values n by 
Hollerith multiplier or by electronic calculators, and the program has a 
form tha t  will express the joint distribution 0 (x) as a function of x. 
The complete table also contains a series of values of n. (This table 
applied to Collective Risk Theory gives a solution for moderate 
and large time intervals). 

By this system I hope to have presented a (first) complete nu- 
merical  solution of the t rans format ion  problem 

En, • (x)l 0 (y) 
applicable un i fo rmly  for  small  and large values of n, for 
approximate or exact Poisson distributions. (First communicated 
N T A = t o  some Scandinavian actuaries, in 1956 ). 

(I have always been interested in this problem because for me 
it has seemed evident that  the ordinary asymptotic formulas by 
Esscher and others will always give a good approximation for a 
very large system in the neighb0urhood of the mean value, say for 
m ! * or even m i 2 ,  - -  and also, say, outside m ::k 6 ,  (=o).  
Most applications, however, apply to small probabilities (o,oi to 
o,oooi) and in this space homogenizing is less advanced, and a small 
absolute error is not sufficient to prove a small relative e r r o r . -  
The question is easily tested by above exact methods). 

SOME HINTS FOR NUMERICAL ANALYSIS 

(I) As a first approximation of • (x)* we might use two exponential 
monomials or fundamental functions, representing an upper limit 
~F + (x) and a lower limit ~ -  (x). The final 0 (y) must lie between 
0 ÷ (y) and 0- (y). The resulting probabilities for differences in 
from the mean value y exceeding a fixed value, are often obtained 
with quite acceptable precision. 

(2) In most researches the statistic figures will give an approximation 
of ~F (x), which is more or less exact for small and medium sized x, 
but uncertain for large x. In this case, we should introduce either a 
variable factor (I i ¢) in the first term of the trinomial or else an 
extra error term 

A.  e-~'xl~ (=square  root error). 

~5 
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Representing the estimated upper and lower limits of the empirical 
distribution curve by kF ÷ (x) and ~ -  (x), a corresponding error term 
is obtained for 0 (y) and for any calculated "probabili ty that  the 
error will not exceed a given limit". 

(3) In particular i f  the first form of error term is utilized, the above- 
mentioned error can also be expressed by  a modified value of y 
equivalent to an error 

n (~ ± ~1) x (~ ± ~)  ~1 + ~ 2 ~  ~ (x) 

The somewhat surprising result is, that  errors in the empirical 
values ~, x and nF (x) will enter in the f inal  expressions in much the 
same way--very  comforting for the poor actuarial conscience 

A I D S  FOR STRUCTURE ANALYSIS,  IN PARTICULAR FACTOR METHODS 

A m e r i c a n  tar i f f s  are often constructed in the f a c t o r  f o r m  (e.g. 
motor car and f i re) :  

Starting from a short series of basic tariffs--calculated from the 
total statistics for these tariff dasses,--modifications in per cent 
are introduced for quite a number of secondary "risk factors" or 
parameters, and these in their turn are calculated from the joint 
material of insurances, including the specified parameter. The 
actual tariff premium equals this product for all actual parameters. 

Probably, this "factor system" starts from the concept of mutually 
independent risk factors. It  is not evident, however, that  this system 
constitutes an equitable tariff system, although American risk material 
should be sufficiently large to furnish equalized results for tariff 
companies. 

My analyses, however, for traffic and motor car in 195o, seemed 
to indicate some factor dependence, and were developed to a method 
for structure analysis in factor form, including numerical calculation. 

Assuming, that  risk statistics are produced by  Hollerith cards in 
the form (for notations vide previous section): 

N~.~ n ~ s  Y*~8 absolute and additive 
t¢ $ 

~0~*~, . ~ 8  Y ~ ,  relative, non-additive 

where eventually x = tariff, [~ = geographical district, ~ = car value, 
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B=year ,  and that  all parameters involve from 3 to IO alternatives, 
we will indicate sums according to one or more parameters by ex- 
cluding the corresponding indices. 

We will now introduce the fac tor  h y p o t h e s i s  in the form 

~:~vs °°  ~ , *  ~ ~ " A~ " B~ . C v . D* ~ = n*]N 

x:~,8 oo ~ ~ 2 . A'~ . B~ . C~ . D~ ~ = y * / n *  

and eventually 

7~*¢~ c'° Y~8  -~ 7 . A~ . B E . C~ . D~ ~ = y*/N 

Calculations are now performed by successive approximations, 
or as I prefer to say "par la mdthode de balayage de M. Poincard." 
Loss frequency and mean value (or risk premium) are here considered 
as a field of crossing forces in the field (~, ~, y~ ~), emanating from 
the four margins in ~ } y 8 respectively. 

As first approximation we might take the American margin 
system, identifying A~ B~ C v D 8 etc with their margin values. The 
obtained approximation, however, is not very good for the simple 
reason that  the basic distribution of N~y8 is asymmetric and 
non-stochastic. (Values might be improved by the following method) 

The basis for successive approximation is the previous observation 
that  n:~va and y~*~ are the only additive values. Consequently, 
all calculations are performed not on relative but  with absolute 
values=any intermediate factor table (i) is utilized to calculate the 
resulting approximations in n and y. 

i ~ v a  = N=~v~. ~ .  iAx. iB~ . iC~. iD, compared with n~*~v 8 

- * ~ - A  . . . .  * ~ y ~  = n~v8. . ,  ~. ~B~. iCy. iD 8 compared with Y~v~ 

The resulting approximation, say in ~, is tested by 

~ o o  n: (¢¢ = 1 , 2 , 3  . . . . .  ) 

oo y:  = 1 , 2 , 3  . . . . .  ) 

These sums furnish improved factors in ot 

~+xA~ ledaing to ~ + z ~ s  = N~v~. ~ .  ~+xAx. ~B~ . ~C~. ~D~ 

i+xA~ leading t o  t+lY~l~y$ = n : ~ y ~  . ~ . ~+xAx. iB~ • ~C v . ~D, 



378 RISK THEORY AND STATISTICS IN FIRE ANSURINCE 

With these improved values of i+l~t~y8 and i+ lY~3v8 the same 
adjustment  is made in ~, then in 7, then in 8. After a cycle of four 
steps = i + 4, the approximation is much improved. 

Starting from "all factors = I" ,  calculations made by  Hollerith 
cards will generally be complete in two or three cycles, as further 
adjustments are irrelevant. 

T h i s  d e f i n i t e  f a c t o r  s y s t e m  is u t i l i z e d  f o r  f u r t h e r  s t ruc-  

ture  a n a l y s i s :  

(I) The fit t ing is tested by the method of least squares applied to all 
minor groups in (o~ ~ 7 8) and also to some maior groups. 

Previously, I have proved that the relative error in numbers n* 
is expressed by  (i ± I[Vn ) and relative error in amounts y* by (I 
± v[Vn ), where for branches with small uniform risk sums v c~z 3 
and for branches where a large proportion of claim amount derive 
from very large claims v c~o 6. Utilizing the corresponding ap- 
proximate variances the X ~ measure can be calculated. 

(2) By  the system of calculation the following equations are satisfied: 

* * * -~- ~ v  * ~ ~ 

The goodness of fitting is further tested by  making the same 
comparison on the two-parameter margins o~ ~ o~ 7 ~ ~ ~ 7 ~ ~ 7 8. 

This test is mos t  i m p o r t a n t ,  because it gives a reliable answer to 
the question i f  risk structure is multiplicative and i f  a factor tariff is 
equitable. (If not, some few parts of the risk system are often 
approximately multiplicative. Analysis is often improved if ordinary 
claims and excess (=large) claims are analysed separately). 

(3) The factor system calculated for several years (8) should 
furnish a very good r e p r e s e n t a t i o n  of the a priori risk. Starting 
from this system we have an opportunity to reintroduce stochastic 
tests, which were previously m e a n i n g l e s s  owing to the non- 
stationary character of the risk system. 
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ELEMENTARY FACTOR ANALYSIS 

Sometimes the tariff system is recently revised by  statistics. 
In that  case risk factors from the tariff hypothesis might be intro- 
duced as "risk a priory" or better  expected claim frequency and 
risk premium. 

Comparing these "expected values" for all risk groups (~yS),  
with claims occurred we have an additive system, and although 
risk for minor groups is uncertain, the risk for different major groups 
wighin (o~ ~ ~ ~) will lead to acceptable tests. 

This method, however, is somewhat double-edged as non-occurred 
large claims might have a large influence on the comparison. 


