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A B S T R A C T  

For estimating the shape parameter of Paretian excess claims, certain 
Bayesian estimators, which are closely related to the Hill estimator, have 
been suggested in the insurance literature. It turns out that these estimators 
may have a poor performance - just as the Hill estimator - if a certain 
location parameter is unequal to zero in the Paretian modeling. In an 
alternative formulation this means that a scale parameter is unequal to 1. 
Thus, it suggests itself to add the scale parameter in the modeling and to deal 
with Bayesian estimators of  the shape and scale parameters in a full Paretian 
model. These estimators will be applied to fire and motor reinsurance data. 
The performance of these estimators will be illustrated by means of Monte 
Carlo simulations. 
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I .  I N T R O D U C T I O N  

We deal with an excess-of-loss reinsurance cover for the excess claims z over 
a certain priority u. First, let us assume that the normalized excess claims 
Yi = Z / u  and their arrival times ti up to time T can be distributionally 
described by a Paretian distribution function 

Fa(y) = 1 - (1 +y)-O,  Y > 0, (1) 

with unknown shape parameter a > 0, and by a homogeneous Poisson 
process with unknown intensity A > 0. Keep in mind that the mean and, 
respectively, the variance of a Paretian distribution does not exist if a <_ 1 
and a < 2. 

ASTIN BULLETIN. Vol, 29. No, 2, 1999. pp. 339-349 



340 R.-D.  REISS  A N D  M. T O M A S  

Given the data (t l ,yt) ,  ..., (tk,yk), the maximum likelihood estimate 
(MLE) of (A, c~) is 

(£'&) = '~ i<klog(  ! +Yi) " (2) 

Hereby, & is the Hill estimator (in the original paper by Hill (1975) a random 
threshold, namely the kth largest order statistics, is utilized instead of a fixed 
threshold u). One obtains an unbiased estimator of e (cE Rytgaard, 1990) 
with minimal variance (cf. Schnieper, 1993) if & is replaced by 

k - 1  

~i<~- log( l + Yi)" 

Another early reference to the Hill estimator, applied to excess claims, is 
Reiss (1989). 

Next, Bayesian estimators of A and c~ are defined for independent gamma 
priors. We merely deal with Bayesian estimators with respect to the 
quadratic loss function. Therefore, these estimators are expectations of 
posterior distributions. For the general background of Bayesian estimation 
we refer to the books by Hartigan (1983) and Klugman (1992). 

The gamma densities 0r,~. and ~,,d with shape parameters r, s and 
reciprocal scale parameters c, d are taken as priors for A and c~. Recall that 

C 
13r,c(.k') = ~'~7~ (CX) r-I exp(--CX), X > 0. 

The mean, variance and coefficient of  variation (that is the standard 
deviation divided by the mean) are r /c ,r /c  2 and r -V2. The mode is equal to 
( r -  1)/c for r > 1 and equal to zero, otherwise. 

The Bayesian estimates of A and c~ are 

r + k  s + k  .~ 
= d + 

(3) 

(cf. Hill (1975), Rytgaard (1990), Schnieper (1993) and Hesselager (1993) 
and the literature cited therein). It is apparent that the estimators in (2) and 
(3) are asymptotically equivalent as k tends to infinity. Also, these estimators 
are identical if we formally take r = s = c = d = 0 which corresponds to 
the use of improper priors with densities 1/x. 

Next, we study fire and motor reinsurance data in that context. These 
case studies will be continued in Section 4 after the preparations made in the 
Sections 2 and 3. 

Case Study I (Fire Reinsurance Data). The claim sizes in Table I were 
extensively investigated by Schnieper (1993) and further discussed in Reiss 
and Thomas (1997). The original claim sizes are detrended, indexed and 
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made anonymous. Our attention will be focused again on the estimation of  
the shape parameter c~ for a Paretian modeling. 

T A B L E  I 

CLAIMS SIZES OVER A PRIORITY OF u = 22.0 MILLION N K r  FROM 1983 TO 1992. 

Year Claim size Year Claim size 

1983 42.719 23.208 

1984 105.860 1990 37.772 

1986 29.172 34.126 

22.654 27.990 

1987 61.992 1992 53.472 

35.000 36.269 

1988 26.891 31.088 

1989 25.590 25.907 

24.130 

Applying the Hill estimator, the value c~ = 2.219 is obtained by Schnieper. 
As noted in Reiss and Thomas (1997), an application of the MLE, 
implemented in Xtremes, for the generalized Pareto model (see Section 2) 
yields an estimate c~ = 3.9. We remark that the MLE in the Xtremes 
program is numerically evaluated with the moment estimator taken as the 
initial value. The visual insight, gained from mean excess functions, speaks 
in favor of the later estimate. Thus, the estimated upper tail of the claim size 
distribution is less heavy than found by Schnieper. A related remark holds 
with respect to the collective claim degree distribution with a gamma prior as 
presented in Schnieper (1993). This should also have some impact on the 
choice of  the prior for the shape parameter a. 

The estimates of the shape parameter ~ given in the next example will be 
confirmed to some extent by the investigations in the subsequent sections. 

Case Study 2 (Motor Reinsurance Data). These claim size data are taken 
from Rytgaard (1990). The reinsurer has access to claim sizes exceeding 
u = 1.5 millions over a period of five years. This data set was further 
investigated by Hesselager (1993). 
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TABLE 2 

CLAIMS SIZES OVER U = [ .5  MILLIONS DURING FIVE YEARS. 

Year Claim size Year Claim size Year Claim size Year Claim size 

1 2.495 1.650 3 3.215 5 19.180 

2.120 2 1.985 2.105 1.915 

2.095 1.8 IO 1.765 1.790 

1.700 1.625 1.715 1.755 

It is ment ioned by Rytgaard  that " F o r  fire losses, we will usually expect an c~ 
near 1.5 - for  mo to r  liability an c~ perhaps near 2.5". The  Hill estimate and a 
certain linear credibility estimate o f  a are 2.314 and 2.496. Hesselager 
specifies a gamma prior  for  c~ with parameters  s = I1.1 and d = 5.6 and 
obtains a Bayesian estimate 2.24 o f  oz. 

In the subsequent  section, we suggest to include a scale parameter  cr > 0 
in (I)  and to compute  Bayesian estimates o f  A, c~ and or. 

It is well known that the Hill es t imator  is still consistent in the extended 
model,  yet this es t imator  is inaccurate for larger parameters  c~ (see, e.g., 
Reiss and Thomas  (1997), pages 120 and 149). Because o f  the close 
relationship between the est imators in (2) and (3) one may conjecture that 
this remark  is also relevant for the Bayesian est imator  & of  c~. 

2. INCLUDING A SCALE PARAMETER IN THE PARETIAN MODELING 

OF EXCESSES 

Our  statistical model  for normalized excess claims y = z/u over the priori ty u 
consists o f  Pareto  dfs 

Fc~.a(y) = 1 - (1 ÷ y/a)  -~, y > O, (4) 

with shape and scale parameters  ~, cr > 0. 
Next,  we describe in detail the relationship between the scale parameter  cr 

and the location and scale parameters  # and 77 o f  an initial Paretian tail. 
Assume that  the actual claim size df  F(x) is close to a Pareto  df  o f  the form 

° 

= 1 - , x > + ,7, ( 5 )  

in the upper  tail ( that  is, for all values x exceeding a higher priori ty 
u > # + r/). Then,  the exceedance df  

F [u](x) = F(x) - F(u) 
l - F ( u )  , x > u ,  
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is close to W [ul (x)  = W . . . . . .  (x)  for x > u If one deals with normalized 
excesses y = z /u  = ( x -  u) /u  instead ofexceedances x, one arrives at a dfF~,,  
with a scale parameter 

a = 1 - # / u  

as mentioned in (4). This argument also reveals why the Hill e s t i m a t o r -  
being the MLE for the submodel with cr = 1 - is consistent within the full 
model defined in (4) when the priority u goes to infinity as the sample size 
increases. 

The parametrization in (4) is similar to the parametrization taken for the 
generalized Pareto family. The standard generalized Pareto dfs are given by 

W.r(x  ) = 1 - (1 + "7x) -I/'r, 1 + 7x > 0, (6) 

with Pareto and certain beta dfs when 7 > 0 and 7 < 0, and the standard 
exponential df as a limiting case when 3' goes to zero. In (4) we have 

= 1/~, > 0 and the factor ~, is omitted. We refer to Falk et al. (1993), 
McNeil (1997), Embrechts et al. (1997) and Reiss and Thomas (1997) for 
more details about the generalized Pareto family. 

Case Studies I and 2 (Continued). For the data sets presented in Section l, 
the MLE for the generalized Pareto model attains a value within the present 
submodel of Pareto distributions. The MLE attains the values c~ = 3.9, 

= 2.13 in Study 1 and c~ --- 1.6, ~ = 0.48 in Study 2. 

It becomes apparent why there can be a greater discrepancy between the 
Hill estimate and the MLE in the generalized Pareto model: the larger actual 
scale parameter puts more weight on the upper tail of the Pareto df. If such a 
Pareto df is estimated, yet cr = 1 is kept fixed in the modeling, then the 
heavier weight in the tail due to the larger actual cr must be compensated by 
a smaller estimated shape parameter. 

The performance of the Hill estimator and the MLE in the generalized 
Pareto model may be characterized in the following manner: whereas the 
Hill estimator and related estimators have an excellent performance if cr = 1, 
they may have a large bias otherwise. On the other hand, the MLE in the 
generalized Pareto model has a smaller bias if cr :/: 1, yet always a larger 
variance. Therefore, it is desirable to make the Bayesian estimation principle 
applicable to the full Paretian model for excesses. 

We make some further remarks about the Bayesian modeling in the 
Paretian framework. Arnold and Press (1989) consider Paretian dfs of the 
form G~,o = 1 - (x/cr)  -~ ,  x > cr. Thus, the additional parameter cr is the 
lower endpoint of the support of the df and the nature of the modeling 
becomes completely different from ours. Bayesian inference within the 
generalized Pareto model is also discussed in Pickands (1994). 
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3. BAYESIAN ESTIMATORS IN THE FULL PARETIAN MODEL 

Given the pairs of  excess times and excesses ( t t ,y t ) ,  ..., (t~,yk), one may 
deduce (e.g., from Theorem 3.1.1 in Reiss (1993), where densities are 
established in a point process framework) that the likelihood function for 
our  joint  model of  Poisson times with intensity A and Paretian marks under 
parameters a and cr is determined by 

L( )~' °~' 7-) cx ( A~/G)k exp ( - (  l + °e) Z l°g( l + yi/ cr) ) 

Here, oc expresses that both sides are proportional.  
The Bayesian estimators of  A, a and cr are defined for independent priors 

with gamma densities ~br,c and ~s,d as priors for A and a and another  density 
p as prior for a. The posterior density is 

h(A, ~ ,  G) ~ L(A, a ,  o')~2r,c(A)~bs,d(~)p(o'). 

Let r' = r + k, c' = c + T, s' = s + k, and d'(o) = d + ~i<k log( I + yi/cr). In 
addit ion,  let b be the probability density such that 

(- 
Check that 

i_<k log(1 + yi/G))p(G). 

; ' , (A,  = 

One recognizes again the well-known fact that  the posterior for A is 
independent of  those pertaining to a and a, yet there is a dependence 
between the posteriors of  c~ and ~. The joint density ~bg,d,(o)(ee)/5(cr) of c~ and 
cr is represented by the marginal density /3 with respect to a and the 
condit ional density ~b,., j,(o) of  c~ given a. The condit ional density is again a 
gamma density. This representation considerably simplifies the further 
computa t ions  and, also, gives some insight in the relation between the shape 
and scale parameters. We see no possibility to define a conjugate prior for 
and G as it was done for A and c~. 
Check that the Bayesian estimates of  A, a and g are 

r + k  
c + T '  

s' _ 
c~* = / d-dT-~p(~r)da , (7) 

= [ 
! 
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We see that the Bayesian estimator of a is just the estimator in (3), if the 
prior distribution - and, thus, also the posterior - is a point measure with 
mass equal to one at cr = 1. 

Gamma priors were chosen for the parameters A and a in the restricted 
model because they possess the nice property of being conjugate priors. This 
property still holds in the full model in so far that the conditional posterior 
for a is again a gamma distribution. Such a natural choice seems not to exist 
for the scale parameter a. 

After some Monte Carlo simulations for small sample sizes, we decided 
to take reciprocal gamma distributions instead of gamma distributions as 
priors p for or. We remark that this is identical to taking gamma priors for 
the reciprocal scale parameter r = l/or and estimating the functional 
parameter T(T) = 1/r. 

Notice that a random variable X has a reciprocal gamma density 

1 (x/b) -0+~) exp(-b/x) ,  x > O, 
- b r ( a )  

(8) 

with shape and scale parameters a, b > 0, if 1/X has the gamma density ~ba,b. 
A prominent example of a reciprocal gamma density is the sum-stable L~vy 
density with index a = 1/2. The mean, variance and coefficient of variation 
are b / ( a - l ) ,  b 2 / ( ( a - l ) Z ( a - 2 ) )  and ( a - Z )  -I/z, if a > l  and a > 2 ,  
respectively. The mode is equal to b/(a + 1). 

If the hyperparameters a and b are not estimated from the data, then it 
can be plausible to choose these parameters such that ~a,b is centered around 
cr = 1. In our applications, we take a different centering because there is a 
greater deviation between the value or= 1, suggested by asymptotic 
considerations, and the value obtained by the MLE in the generalized 
Pareto model. The choice of the centering influences the Bayesian estimation 
to some greater extent if this method is applied to data sets of smaller sizes. 

4. APPLICATIONS AND SIMULATIONS 

To give a first insight, we simulate the Hill estimator under Paretian samples 
of size k = 20. The distributions of the Hill estimator are represented by 
kernel densities based on 4000 simulated data. The Paretian data are 
generated according to the distribution F~,o in (4) with parameters a = 4 and 

= 0.5, 1, 2. 
One recognizes the unfavorable performance of the Hill estimator if a 

deviates from i. This property also becomes apparent from the fact that the 
Hill estimator is not invariant under a scale parameter. We remark that the 
performance of the Hill estimator improves for smaller shape parameters a. 
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Fig.  I. S imu la t ed  densi t ies  o f  Hill e s t i m a t o r s  under  Pa re t i an  d a t a  wi th  k = 20, c~ = 4, ~ = 2 (dot ted) .  c~ = 1 

(solid) and  cr = 0.5 (dashed) .  

If a = 1, then the distribution of the Hill estimator is nicely centered 
around the true shape parameter c~ = 4. Otherwise, there is a stronger 
deviation from this parameter. There exist numerous research papers about 
the Hill estimator presumably because of the simple analytical structure of 
this estimator. Yet, one should carefully control the statistical modeling 
when this estimator is applied to real problems. 

In the following case study, we also estimate the net premium 

- 1  (9) 

for the excesses over the priority u for the next period. For that purpose, we 
plug in the empirical estimator - also being the MLE - for the density A, and 
the Bayesian estimators for c~ and cr. Other important functional parameters 
of this kind would be, e.g., the T-year initial reserve (as introduced in Reiss 
and Thomas (1997), Section 9.4) for a reserve (risk) process. 

Case Study 1 (Continued). Corresponding to the choice of hyperparameters 
in Schnieper (1993), we firstly take s = 30 and c = 16. Then, the Bayesian 
estimator for c~ in the restricted model (1) has the value & = 1.99. Yet as 
mentioned before, the collective distribution of claim degrees, as given in 
Schnieper (1993), indicates shape parameters centered around 4, if the 
evaluation is done in the full Paretian model (4). Therefore, we choose a 
gamma prior for ~ with parameters s = 4 and d = 1. Thus, the prior has the 
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mean 4. We remark that the median of this prior distribution is about 3.7. 
The variance and coefficient of variation of magnitudes 4 and I/2 reflect the 
greater uncertainty in the choice of the prior for c~. 

There is a greater deviation between the mean, median and mode of the 
chosen priors for a and, therefore, we provide all three values in the 
following two tables. The medians are numerically evaluated. The estimated 
intensity is A = 1.7 which is the average number of excesses in each year. 

In the first table, the hyperparameters a and b of the reciprocal gamma 
prior for a are chosen such that the mean is equal to 2 which is close to the 
value 2.13 of the MLE of o. 

TABLE 3 

PARAMETERS a, b, MEAN, MEDIAN AND VARIANCE OF RECIPROCAL GAMMA PRIOR; BAYESIAN ESTIMATES 
O,* AND o*, ESTIMATED NET PREMIUM (IN MILLIONS) BASED ON O~* AND o*, 

Net 
Mean Median Mode Variance ~* or* 

premium 

a = 2, b = 2 2 1.2 2/3 oo 3.,47 [.84 27.8 

a = 3, b = 4 2 1.5 I 4 3.59 1.92 27.7 

a = 4, b = 6 2 1.6 6/5 2 3.65 1.96 27.6 

In the second table, the centering of the prior for o- is done by means of  the 
median. We take hyperparameters a and b so that the median of the prior is 
equal to 2. 

TABLE 4 

PARAMETERS t//, h, MEAN. MEDIAN AND VARIANCE OF RECIPROCAL GAMMA PRIOR: BAYESIAN ESTIMATES O~* 
AND tT*, ESTIMATED NET PREMIUM (IN MILLIONS) BASED ON O~* AND O'*. 

Net 
Mean Median Mode Variance c~* a* 

premium 

a = 2, b = 3.35 3.4 2 1.1 e~ 3.93 2.22 28.4 

a = 3, b = 5.34 2.7 2 1.3 7.2 3.94 2.21 28.1 

a = 4, b = 7.32 2.4 2 1.5 3.0 3.93 2.20 27.9 

There seems to be a greater stability in the estimated values if the centering 
of the prior is done by the median. Particularly, the values ~* in Table 4 
correspond to those of  the MLE in the generalized Pareto model. 

The estimated net premiums correspond to the estimated net premium 
27.23 based on the MLE in the generalized Pareto model. If one takes the 
Hill estimate c~ = 2.219 and o = 1, the estimated net premium is 30.7. Thus, 
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one gets a reasonable estimate o f  the net premium al though the estimated 
parameters  are inaccurate (the smaller estimate o f  c~ is compensated  to some 
extent  by the smaller value ~r = 1). 

Our  Bayesian analysis confirms that o f  Hesselager (1993) to some extent. 
This is related to the fact that,  as indicated before, the Hill es t imator  
becomes more  accurate for smaller actual shape parameters .  

Case Study 2 (Continued).  Hesselager (1993) takes a gamma prior  for the 
shape parameter  ~ with parameters  s = 11. I and d = 5.6. Thus,  the gamma 
distr ibution is centered a round  2. The  Bayes estimate in (3) is & = 2.24. The 
values obta ined from the Bayes est imators in (7) are c~* = 1.73 and a* = 0.53 
if the same pr ior  is taken for c~, and the reciprocal gamma prior  with 
parameters  a = 3 and b = 1 is taken for the scale parameter  ~r. 

We conclude this paper  with simulations of  distributions o f  Bayesian 
est imators  c~ and c~* under  Paret ian data  o f  size k = 20 for a shape 
parameter  c~ = 4 and scale parameters  cr = I, 2. The hyperparameters  of  the 
gamma and reciprocal gamma priors for c~ and a are s = 4, d = I, a = 3 

I I I 

o.8-  / \ ,' ,, \ 
, /  

/ \ ,' ) \ 
# I # / ~1 i 

/ ' 

0 ~- " ~  
2 4 6 

Fig. 2. Simulated densities of  Bayesian estimator d for Paretian data under e = 1 (solid), e = 2 (dashed), and 
of  Bayesian estimator o" under o- = 1 (dashed-dotted), e = 2 (dotted). 

and b = 4. The distributions are represented by means of  kernel densities 
based on 4000 simulated estimates. 

The per formance  o f  the Bayesian est imator  6 in the restricted model 
resembles that of  the Hill est imator  (cf. Fig. 1). The Bayesian est imators c~* 
in the full model  reveals a greater invariance under the variat ion of  or. 

The Bayesian estimates in (7) are computed  numerically. We use an 
adapt ive Gaussian integration as described in Klugman (1992). All the 
computa t ions  are carried out  with the help of  the statistical software 
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package Xtremes. The performance of the Bayesian estimators can be 
extensively simulated with the help of the program bayessim.sp stored in 
http://www.xtremes.math, uni-siegen.de/spprograms.htm. 
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