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ABSTRACT 

We derive some decision rules to select best predictive regression models in a 
credibility context, that is, in a ' random effects' linear regression model with 
replicates. In contrast to usual model selection techniques on a collective 
level, our proposal allows to detect individual structures, even if they 
disappear in the collective. 

We give exact, non-asymptotic results for the expected squared error loss 
for a predictor based on credibility estimation in different models. This 
involves correct accounting of random model parameters and the study of 
expected loss for shrinkage estimation. We support the theoretical properties 
of the new model selectors by a small simulation experiment. 
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I INTRODUCTION 

In the open market economy of today, one of the most challenging tasks of 
an insurer is the design of a rating system catching all relevant factors and 
omitting all irrelevant ones. Mathematically, this may be modelled as the 
endeavour of finding those covariates which lead to the best possible 
predictions, for example in a regression model. 

In classical statistics, with a frequentist interpretation, this problem of 
model selection has been widely discussed, cf. Akaike (1970, 1973), Mallows 
(1973), Schwarz (1978), Rissanen (1989). For an overview, see also Linart 
and Zucchini (1986). It may be worth to recall the well known fact, that the 
machinery of testing hypothesis is often hTappropriate for searching a model 
with optimal predictive potential. This, because generally, the optimal 
predictive model-structure is not equal to the true model-structure. An 
intuitive (and mathematically correct) reason is that unknown parameters 
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have to be estimated, each of them contributing (usually in an additive way) 
to an increase of the variance of the estimated predictor. Moreover, selection 
of Bayes and Empirical Bayes models is fundamentally different from 
selection of models with fixed effects, because the parameters themselves 
contribute as random variables to statistical uncertainty. And in the case of 
credibility models with collateral data structure, we have to consider the fact 
that shrinkage estimation is used. 

Unlike the more traditional use of Bayes factors, the predictive point of  
view in Bayes model selection has been studied among others in Gelfand and 
Gosh (1998). As usual, the solution depends on the specification of the prior 
distribution. In addition, Gelfand and Gosh (1998) take the approach to find 
an optimal model conditioned on the data which is often a good strategy. 
However, in actuarial applications one typically aims for optimality on 
average (minimizing the overall expected loss of the insurer) instead of 
conditioning on the data. The Empirical Bayes predictive point of  view for 
optimal model selection on average with the effect of  estimating hyper- 
parameters seems unknown. Neuhaus (1985) considers a weakly related 
problem about the effect of additional parameters in a credibility model. But 
no explicit penalty for using additional model parameters is given. 

We develop here an approach for selection of general linear credibility 
regression models which is natural in the credibility philosophy. The set-up 
is as follows. 
(a)The expected squared loss of a predictor at a design point is used as a 

predictive criterion for optimality of a model. 
(b)No specification of a prior distribution for structural hyper-parameters is 

required. The assumptions are only in terms of first and second order 
moments (and a linear regression structure). 

(c)The focus is on best linear prediction, but still involving shrinkage 
estimation. 
Rather than the view to condition on the data, issue (a) is more 

appropriate for an insurer, as already mentioned above. Point (b) leads to a 
'robustness' against misspecification of the prior distribution. It is an 
analogue of the Gauss-Markov conditions in classical linear models leading 
to best linear unbiased estimators which is the issue (c). We are giving some 
exact, non-asymptotic results for the expected squared predictive loss which 
in turn can be estimated from the data leading to a data-driven model- 
selector. Besides the theoretical justification we also consider the quality of 
our model-selectors in a small simulation study. 

Our model selection approach helps to prevent from the dangerous anti- 
selection phenomenon in insurance. To explain why, we briefly mention a 
frequently used (but bad) strategy in practice: a model for the collective data 
is selected with frequentist methods for fixed effects and for such a chosen 
model, credibility is then introduced in a second stage. This approach is 
missing individual structure which averages out in the collective; see also 
Figure 6.1 in section 6. It is clear that such collective decision making 
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potentially leads to anti-selection. One has to account for individual 
structure: this is what our approach does and it is not mislead by the 
collective view. 

2 THE CREDIBILITY REGRESSION MODEL 

Consider a class of  individual risks r E {1, 2, ..., N}, each of  them with risk 
parameter Or and observations Xr = (XI~, ..., Xn~)'. For simplicity, the 
individual sample size n is the same for all risks r. The risk parameter is 
modelled, in the Empirical Bayes sense, as a random variable. The individual 
correct premium for 'period' i is denoted by 

]..Li(Or) = 1E[.r~ir[Or] , i =  1, ..., n. 

We then write 

Xi,  = #i(0,) + ¢i(O,), i = 1, ..., n, (2.1) 

lE[~i(Or)lOr]-~-O, IE[E'~(0r)l'0r] ~---ty2(~r)/V~ r), i = l ,  ..., 8l. 

The interpretation of  the heteroscedastic conditional variances a2(Zgr)/V~ r) is 
given through different volumes V~ r) (which are just weights in the statistical 
terminology) for the different 'periods' i and risks r. The individual premium 
is assumed to follow a linear regression structure, 

IZ(Or) = D/3(~gr), 

~[Z('Oqr) = ( # l ( 0 r ) ,  ' " ,  JAn(Or)) , ~(19r)=. ( ~30(0r)' ' " ,  ~v_l(Or)) t  (2.2) 

with n x p design matrix D(p < n) being the same for all r E {1, ..., N}. The 
specifications (2.1) and (2.2) describe the main part of the model. Thereby we 
tacitly assume that the risks are drawn in an i.i.d, fashion, i.e., Vgl, ..., ON 
i.i.d, on the structural level, implying that 

fl(01), ..., fl(0N)i.i.d., 

¢(01), ..., ¢ (0N) i . i .d . ,  where E(0~)= (el(0r), ..., ¢,(0r))', 

ei(tg~), ej(O.~) independent for all i , j  = 1, ..., n and r :fi s. 

This then induces also independence between Xir and Xjs for all i , j  = 1, ..., n 
and r -¢ s. Since the parameter vector/3(0~) is a random variable, we have a 
'random effects' linear model with replicates over different r's. In the 
actuarial literature, the model is known as 'credibility regression model', cf. 
Hachemeister (1975). 

In the sequel, we assume orthogonal design together with componentwise 
uncorrelated regression parameters /3(0~). Reasons for this are given in 
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Bfihlmann and Gisler (1997). More  precisely, we assume for the structure 
in (2.2), 

t! 
DiiDik Vff I = 0 for j -¢ k and all r = 1, ..., U. 

i=1 

We assume here that 

qi = Vf f ) /Vf f  ) is independent of  r, where V! r) = ~ Vff ~. 
i=[ 

Then, or thogonal i ty  as above can always be achieved by an appropr ia te  
reparametrization.  Moreover ,  we assume uncorrelated components  of  the 
parameter  vector in (2.2), 

Cov(13(0r)) = diag(~-02, ..., T,~_,)for all r = 1, ..., N, 

and the expectat ion is denoted by 

• = (b0, ..., b , _ , ) ' .  

Finally, we also assume conditionally uncorrelated components  for the 
errors in (2.1), 

(0"2(Or) Gr2(Or)~ 
C o v ( • ( 0 r ) [ 0 r )  = d i a g \  Vi--- 5 , ..., ~ - )  . 

We also denote by IE[a2(Or)] = 0 "2, r = 1, ..., N. 

2.1 The problem of selecting the optimal model 

Let us ask the question how to possibly reduce the set of  regression 
parameters  (covariates) 

to an optimal subset, 

. . . ,  

{~J'l (Or), "'', ~jm (Or) }, "~ ~ P] 

or how to find an optimal subset regression model, 

~i(Or) = f-'~Oi, i)J~jk(Or), i =  1, ..., n. 
k=l  

Optimali ty is here always with respect to the expected squared error loss, 
see also subsection 3.1. In the sequel, we denote by b/_C {0, ..., p - 1} a 
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subset of the regressor indices and write the corresponding subset regression 
model as 

#iu(#') = Z DU/fj(#,). 
j~U 

We then speak of the L/-submodel. Obviously, the full model 
/.4 = {0, 1, ..., p - 1} is a possible choice, too. 

It is worthwhile to remember the fundamental argument for selection of  
fixed effects models in frequentist statistics. 
(a)Each (fixed) parameter /3jk that we retain needs to be estimated, 

hence leading to a higher variance of the estimator for 
p - I  

, , ,  ~i = ~:=0 Oijl3j, l =  1, 2, ..., n. 
(tUUn the other hand, any relevant parameter that we miss will cause a 

model bias in the estimator for #i. 

All model selection procedures in frequentist statistics rely on an optimal 
compromise between (a) and (b), the so-called bias-variance trade-off ,  which 
is estimated with the observed data. We mention here various approaches 
such as C e (Mallows, 1973), FPE (Akaike, 1970), AIC (Akaike, 1973), BIC 
(Schwarz, 1978) and MDL (Rissanen, 1989). The tool of hypothesis testing is 
not tailored towards optimality (with respect to some risk function such as 
expected squared loss) of  a model. The reason is that generally, the optimal 
model is not equal to the true model. For the latter, testing is appropriate, 
but not for the first. The shift in focus from the 'true model' (associated with 
testing) to the optimal approximating model (associated with risk-optimal 
model selection) is often very fruitful in prediction problems. 

For credibility models, the uncertainty of each parameter/3jk is measured 
differently. 
• By the nature ofj3jk = 13jk(O) as a random variable (in the Bayesian sense) 

with a structural prior distribution. 
• By the uncertainty in the relevant hyper-parameters of the structural 

distribution. Following the Empirical Bayes route, estimation of hyper- 
parameters introduces an additional source of variance contribution. 

We propose in this paper model selection rules for the homogeneous 
credibility estimator in regression. 

3 INDIVIDUAL PREDICTIONS UNDER KNOWN COLLECTIVE STRUCTURE 

Unless explicitly mentioned, we assume in this section that the structural 
parameters in the underlying full regression model are known, 

o.2 = lE[o.2(,O)], ~.2 = Var(j3j(0)) ( j '= 0, ..., p -  1). 

Given are the risks r = 1 ... . .  N and for each risk the observations 

x ,  = (X~r ,  . . . ,  Xo,)'. 
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For  any risk r from this collective we want to find an optimal U- 
submodel .  As we shall see, depending on the volumes of  observed data  for 
different risks, the optimal choice of  a U-submodei  can vary form risk to 
risk. Optimali ty is here, as usual in credibility theory, with respect to the 
expected squared loss between the predictor and the observat ion to be 
predicted. 

More  precisely, we wish to predict ,a (future) observat ion for risk r at a 
(future) design point  c = (Co, ..., c'p_~) E IRP, 

p - I  

x,,+~,,(~) = ~ c~.~j(o,) + ~,,+, (~,), 
j=O 

where 

~(~,) 
Ek, ,+ , (~r ) l~ r ]  = o, ~ [ ~ L , ( ~ , ) I ~ r ]  -- v(r) , 

• n + l  

Cov(e,,+l(0r), ei(9s)ltgr, 9; )  = 0 for all i = 1, ..., n and r , s  = 1, ..., N ,  

and v(') is the volume associated to the (future) observat ion X,,+j, ,(c).  We • n + l  
can think of  X,,+l, ,(c)  as the next observat ion of  claims generated at the new 
design point  c (the new set o f  covariates) with volume V (')" this new n + l  " 
observat ion is condit ionally uncorrelated from Xi,, (i = 1, ..., n) and of  
course independent  o f  )(is (s ¢ r; i = 1, ..., n).  

We allow the set o f  possible regressors {/30(t9,), ..., 13p_1(0,)} to be too 
large, i.e., the full model can be overparametrized.  For  example, for some 
index j0 E {0, ..., p -  1} it could be that IE[~jo(Or) ] =0,  Var(/3j0(Or)) = 0 .  
Conceptual ly,  we could alternatively write for the new observat ion 

x,,+,,,(c) = ~ q~j(o,) + ~°+, (o,), 
jET 

where 

is the index set of  the true regression parameters.  
The predictor based on the submode l /4  is as follows, 

^ ( u )  

x,,+,,,/c) = E 
jE/.g 

where ~j(#,)  denotes the homogeneous  credibility estimator,  

axT(e) 
~j(Or) (r) X z}r)) EL I  ~JeL"J 

= z )  bjr + ( I  - El=, Z¢ 
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The elements of this credibility estimator ~j(O,) are, cf. Btihlmann and Gisler 
(1997), 

b)Xr = g i l l  XirDij V: r) = ~ ' i ' = l  ~(irDij V: r) V: r) 
V.(,) ' 

n 

s, , = Doqi,  q i -  
i= I ~;~1D~ Vl! r) S 0. Vo (r) 

z}r )  _ Sjj  Vo(r) 

Sjj Vo (r) +0-2/52" 

Here and in the sequel, a dot denotes summation over all corresponding 
indices. 

3.1 Expected loss and model selection 

The accuracy of the predictor ^ (u) X,,+l,,(c ) from the H-submodel is measured 
with the expected squared loss, 

It depends on the risk r, the submodel H, the future design point c and of 
course also on the true underlying probability distribution which is implicitly 
used in the expectation operator 1E. It is instructive to decompose this 
expected loss as 

L!U)(c) tr2]v(r) "~- ~ QI" ~J'(Or) -- ~j(Or) : v /  n+ l  

= I + H + I I I + I V .  

A derivation is given in section 8. The interpretation is as follows. 
L Uncertainty of claim around the correct individual premium. 
II. Uncertainty of  parameters chosen in L/ which are true relevant 

parameters. 
I l L  Model bias due to underparametrization. 
IV." Error due to overparametrization. 
Formula (3.1) is conceptual and not useful for estimating L!U)(c) from the 
data. In particular, the set of  true parameters T is not known. By the fact 
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that/3j(O,) ~ 0 for j R  T ,  it is straightforward to write the expected squared 
loss as 

L~U)(c)=o'2/VtI~i +• L)(flj(t~r)--~j(t~r) +~ C)~j(Or) , (3.2) 

where/hi c = {0, ..., p - 1 }\hi is the complement of  the set b /wi th  respect to 
the full basis model {0, ..., p - 1}. Formula  (3.2) can be explicitly rewritten 
in terms of  the structural parameters,  see section 8, 

L?l(c)=o~lVOl + ~ c )  ~ + - " n + l  jEl.g tSI'/V~ z~r) (I z~r)) ZT.~j 
(3.3) ( )' 

+ EcJbJ +22 22 c ) 5 .  
EU c jEU c 

Each parameter  chosen in ~ contributes to a variance t e rm 

Ljelg c) [ ~  11._7 pena l i z ing  large models, whereas the 

parameters m /.,/'~, which are not chosen, generate a (model) bias t e rm 

t9 ~ 2 

Based on (3.3), the optimal submodel is then given by 

U~o),(c ') = argminuc_( o ..... p- , iL~U)(c)  • 

R e m a r k  A.  In the special case with N = 1 (no collateral data) and Vi -=- I 
(i = 1 . . . .  , n + 1), we obtain from (3.3) the expected squared loss in classical 
frequentist linear fixed effects regression 

o ~ V  " ff  0"2 + Z...a X-"" D 2 ~- 9bJ  
j~u ~ i=1  ij kj.~u ~ ] 

This formula is different from that obtained by the classical discussion 
aiming for models minimizing 

~ ( u / ( d i )  . n -1 IE X , , + l ( d i ) - . . , , + l  
i=l  

This is a mean squared error averaged over the observed design points 
d~ = (D~o, ..., Ds.p_~)',  cf. Weisberg (1985, App. 8A.I) in connection with 
Mallows Cp. In contrast,  we consider here the expected squared loss at a 
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particular (future) design point c measuring optimal prediction at this point c. 
We feel that this comes closer to the aim in actuarial practice. However, 
unlike to selection of fixed effects models in frequentist statistics which are all 
of the form of a penalized residual sum of squares, the approach of optimal 
prediction at a point needs explicit consideration of a model bias term. 

So far, we have assumed that the structural parameters are all known. If 
this is not the case, the standard approach in credibility procedures is to 
replace unknown structural parameters by their estimated versions. Here, 
the expected loss L~U)(c) can then be estimated from the data with the 
estimated structural parameters 6 -2,/~j, ~2 (j = 0, ..., p,~ 1) and ~!0, given in 

J ms gwen by the (5.1)-(5.4). Formally, the estimated squared loss L~r J(c) " '~ 
following plug-in scheme, 

b.,, v0, ) , . . . ,  T/~_ I, Z0 ,  ---, Z p - i  , 
(3.4) ) . . . .  , - - - ,  20 ,  ..., 2p_ ,  , 

where G(.) is the function as described by formula (3.3). We prefer the 
notationally appealing plug-in formalism including Zj's as arguments, 
although the (optimal) Zj's are functions of cr 2, ~! and hence not intrinsic 
structural parameters. We select the optimal model from the data as 

~o(~(c) = argminuc{ 0 ..... p_.}L~U)(c). (3.5) 

Like the truly optimal submodel Lt~t(c), the estimated optimal submodel 
/~,~(c') depends on the future design point c (where prediction is made) and 
on the risk r. The estimator L~ u)(c) is consistent as the number N of risks 
grows to infinity, and thus also our selection procedure. 

The model selector in (3.5) is useful and quite easy to implement. 
However, the standard argumentation in credibility, namely to treat in a first 
stage the structural parameters as fixed and replace them in a second stage 
by their estimated versions, discards uncertainty about structural parameter 
estimation. The expected loss L~U)(c) does not account for this uncertainty 
and can in this sense be misleading. For practical purposes, as long as N is 
'sufficiently large', the selector in (3.5) is appropriate for discriminating 
among 'sufficiently different' prediction models. A more detailed discussion 
about this issue is given in sections 6 and 7. We describe in the next section a 
more complicated scheme which accounts for estimation of structural 
parameters. 

4 U N K N O W N  HYPER-PARAMETERS: 

NON-OPTIMAL AND ESTIMATED CREDIBILITY WEIGHTS 

If the structural_ parameters of the collective are not known, we need to 
Z~r) ((j " = 0, ..., p -  1) for constructing estimate the credibility estimator. 

Such an estimate is given in (5.4). 
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The expected loss L~U)(c) in subsection 3.1 is correct if the structural 
parameters and hence the credibility weights are known; in particular, this 
means that the credibility weights are optimal for unbiased linear estimation. 
But of course, estimated credibility weights are never exactly optimal; hence, 
the expected loss L!U)(c) is not correct. We first address the problem of 
obtaining the true expected squared loss for fixed, generally non-optimal 
credibility weights between 0 and 1, which are denoted in the sequel by 
Zj (j = O, ..., p - 1). In statistical terminology, we study the expected loss 
for a shrinkage estimator with fixed shrinkage factors. The problem of 
treating the credibility weights as random, which is the case when they have 
been estimated, is more delicate and we discuss it in subsection 4.1. 

The quantity in formula (3.2) that depends on the credibility weights is 

the variance term ~ j e u 4 1 E  ~j(O,) - ~j(tgr) . By using arbitrary, fixed 

credibility weights, the expected squared loss IE[(  ^ (u) )2] X,,+l,r(c ) - X,,+,,~(c) is 
L J 

ul ( c ) = / v I'l n+ I 

+ 9bJ +z_ . , JJ ,  
x;~u c / j~u c 

, 14,1 

A derivation is given in section 8. The notation M!U)(c) distinguishes this 
expected squared loss with arbitrary, fixed credibility weights from L!U)(c) 
for the optimal credibility weights. Of course, L!U)(c) is just a special case of 
M!U)(c) when optimizing over the credibility weights Zj in (4.1). 

Remark B. The quantity M~U)(c) in (4.1) is the exact expected loss for the 
homogeneous credibility estimator with fixed arbitrary credibility weights. 
This is also of special interest in statistical theory: our result describes model 
risks in connection with shrhtkage estimation for fixed shrinkage weights. In 
actuarial practice we advise to use (4.1) instead of (3.3) whenever the 
credibility weights are determined by other reasons and are not estimated 
from the collateral data structure. The difference between the expected losses 
in (3.3) and (4.1) can also be used in a sensitivity analysis when considering 
the stability of an optimal model under variation of the credibility weights 
around their optimal values. 

Estimation of M!U)(c) with fixed, given z!r)'s can be done with plugging 
in the estimate 6 -2,/~j and ~2 from (5.1)-(5.3)! 
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Remark  C. Another estimate of M~U)(c) than the one discussed above could 
be as follows. Plug in all estimated structural quantities 62, b,, 72 and 
~ ) r ) =  ~r )  from (5.1)-(5.4). But this would coincide with L~U)(c) f~om j (3.4), 
since the credibility weights Z! ~) are of the optimal structural form 

• J . . . " 

Accounting for the randomness when plugging m such est imated credibility 
weights is given in the next subsection 4.1. 

In the special case where all the volumes are the same, i.e., 
V~ ~) - V ( i =  1, ..., n + 1, r = 1, ..., N), the fixed credibility weights 
should not depend on the risk r. We denote them by Zj  (j = O, ..., p - 1). 
Then, 

M~U)(c) -= M(U)(c) = cr2/V 

j•U 

EH c jEU c 

4 =  2/(sjj'v) • 

(4.2) 

4.1 Estimated credibility weights 

For simplicity we consider here the case with equal volumes as in (4.2). But 
all what follows can be written down straightforwardly for the general case 
with different volumes. When estimating credibility weights we consider, 

SjjnV 
2J=s ,v +a2/ 2 0=0, . . . ,p-I) .  

Sliin V These estimators are consistent for the true optimal weights Zj = s o,,v+~V~ 

as N ~ oo. Direct plug in of estimated structural quantities is discussed in 
Remark C. We write 
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When using Zj = Zj in formula (4.2) (ignoring first that the Zj's are 
random), we obtain 

M~u/(~) = M/~>(~) = ~ / V  

1-Zj N - I ~  1 N-I 2~" 
.i,E~ 

9 ¢ )- +  2cjbj 22  c)5:, 
EU c jEU c 

d=: / ( s :v ) .  
(4.3) 

Note the correspondence to formula (3.3) as well, since the Zj's are the 
optimal fixed credibility weights. To evaluate (4.3), we need a 'reasonable' 
value of &}. Approximately, IE [~j] ~ 0 and thus, the expected value of Ax~ is 
approximately 

the variability of Zj. As a reasonable but non-exact value we find. 

V a r ( A j ) . ~ I 2 Z } ( I - Z j , 2 ( ~ ( I +  2°2 + ~" "~ , o ~ 2 2 

2 [ J . I "~ if~2=0. 

(4.4) 

See section 8. Replacing the quantities zX~ in (4.3) with the values in (4.4) 
yields another expected loss 

R~Ul(e) = R(U)(c) given by (4.3) and (4.4). (4.5) 

Notationally, we distinguish this expected squared loss R(U)(c) for the case 
with estimated, random credibility weights from the one in (4.2) with fixed, 
arbitrary credibility weights. Note  that in (4.5), the credibility weights Zj are 
optimal as in (3.3) (but the expected loss is, unlike as in (3.3), for the 

• ^ ( u )  _ ^ ( u )  

predictor Xn+l,r(C ) = X+l(C) with estimated, unknown credibility weights). 

Remark D. The expected loss in (4.5) does only partially reflect the 
randomness of the estimated Zj's for the predictor ~((u),,+l,A , =-- X~+l ^ (u) (c). 
Formula (4.3) treats the £xj's as f ixed and we then consider afterwards 
statistical variability of these quant!ties. This route possibly misses some 
complicated correlation between Zj and the individual least squares 
estimates bkXr (J', k = 0, ..., p - 1, r = 1, ..., N). A non-asymptotic, exact 
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calculation of the expected loss when (correctly) viewing the Zj as random 
variables being functions of all the observations seems very difficult. 

The expected squared loss in (4.5) can be estimated by plugging in the 
estimated structural parameters 6 a, b), .?jz and Zj (j = 0, ..., p -  1) given in 
(5.1)-(5.4). We denote it by R(U)(c ) .  By the message in Remark D, we view 
(4.5) and its estimated version R(U)(c )  as a guide to account for effects due to 
estimation of credibility weights. Our simulation study in section 6 indicates 
that model selection based on J~(U)(c) works better than with L(U)(c )  from 
(3.4); in particular for discriminating among very similar prediction models. 
For a more detailed discussion, see sections 6 and 7. 

5 ESTIMATION OF STRUCTURAL HYPER-PARAMETERS 

When estimating the expected losses in (3.3), (4.1), (4.2) and (4.5) it remains 
to estimate the hyper-parameters cr 2, bo, ..., bp - i  and %2, ..., ~-n" 

The variance of  the errors o a = Var(e(0~)) = IE[Var(e('0~l[O,)] can be 
estimated with a residual sum of squares from the full basis model involving 
all covariates. Let 

R S S . =  Xir - . D  O " - -  
i=1 j=0 / 

N v(r)  
RSS = Z RSS~ 

r=l V(°) " 

2vi,) 
V-.(,)' 

An unbiased estimator is then given by 

V(o) 
62 R ° = S S N ( n - - p ) .  (5.1) 

See section 8. 
For the collective means we take the obvious estimator 

1) (5.2) bj = z.. .  --~.), , j~ (J" = O, ..., p - • 
r=l 

For the variance c o m p o n e n t s  ~ 2 =  Var(,Oj(,9~)), consider the sum of 
squares 

N ( N g!e)~2g(or) 
= Zr:, U_; -- V '7 
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As shown in section 8, 

IE{Wj] = q A  + (N - I ) - -  

We then use as an estimator 

-( ) s~v.~'>' A = 1 -  ~<=, v(,~lv(. > 2 

~ 2 = ~  w~ ,A (j = 0, ..., p - 1 ) ,  (5.3) 
,:, t, vC.'~) 

where u + = max(u, 0) and RSS as above. 
We then estimate credibility weights, of  optimal form, as 

S j j  V(. r) (l" = O, . . . ,  p - 1), (5.4) 3),/= 
S~v(.r> + C,-21~ 

with 62 and ,?j2 from (5.1) and (5.3), respectively. 
As usual in model selection, it is often of little concern to ask about 

efficiency for estimating unknown expected losses. We just give a few 
comments. Due to the orthogonal design, the accuracy of the individual 
estimates b x, used in Wj, is always the same, regardless how large the full 

. J . 

basis model is. On the other hand, the efficiency of  the estimator 62 does 
depend on the dimensionality of the full basis model. With increasing degree 
of overparametrizing the basis model, the estimator 62 gets more inefficient. 
Butusually,  such effects are very small. 

6 SIMULATION 

We consider two related situations. In both cases, the individual sample size 
is n = 10 and the volumes are V [  r) - ! ( i  = 1, . . . ,  n + 1; r = I, ..., N). 

D = 

The design matrix is 

{1 -4.9543369 
1 -3.8533732 
1 -2.7524094 
1 -1.6514456 
1 -0.5504819 
1 0.5504819 
1 1.6514456 
I 2.7524O94 
1 3.8533732 
1 4.9543369 

5.2223297 -4.534252 3.3658092 
1.7407766 1.511417 -4.1137668 

-0.8703883 3.778543 -3.1788198 
-2.6111648 3.346710 0.5609682 
-3.4815531 1.295501 3.3658092 
-3.4815531 -1.295501 3.3658092 
-2.6111648 -3.346710 0.5609682 
-0.8703883 -3.778543 -3.1788198 

1.7407766 -1.511417 -4.1137668 
5.2223297 4.534252 3.3658092 

(6.1) 
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This design is constructed from orthogonal polynomials of degrees smaller 
or equal to 4. Thej- th  column of D represents a polynom of degreej  - 1 (as 
a function of the row index). A submodel L/C {0, 1, 2, 3, 4} is thus given 
by a subset of  degrees of orthogonal polynomials. 

Moreover, we assume 

~(Or) = (51(Or),  ..., ClO(Or), ~ l l ( '~ r ) )  t '~J .Af l l (O, [ ) ,  

3(0r) ~ A/'5(b, Ea), E~ = diag(~ -2, ..., T2), (6.2) 

where I is the 11 x 11 identity matrix. The new design point at which 
prediction is made is 

c = (1, 1.5, -2.5, -3.5, 0.5)', (6.3) 

which is 'fairly close' to the 7-th observed design point (D70, ..., D74) t. 
The two specifications we consider are 

(M1) n = 10, N = 100, D as in (6.1), c as in (6.3), 
and for (6.2): b = (1, 0, 0, 0, 0)', E~ = diag(1, 1, 0, 1, 0), 

(M2) n = 10, N = 5, D as in (6.1), c as in (6.3), 
and for (6.2): b = (1, 0, 0, 0, 0)', E:,0 = diag(l, 0.01, 0, 0.01, 0). 

Hence, the set of  the true regression parameters is in both specifications 
T = {0, 1, 3}. The full model {0, 1, 2, 3, 4} is overparametrized but still a 
good basis model for estimating the structural hyper-parameters and thus 
for estimating expected losses (relative to this basis model). Some 
realizations of the model specified by (M1) are given in Figure 6.1. 

Because ]E[flj(Or) ] = 0 for j = l, ..., 4, the individual effects almost 
disappear in the collective representation in Figure 6.1. As mentioned in 
section 1, decision making on the collective level can lead to anti-selection in 
insurance. 
For each submodel /b/ of interest we get approximations for 

IE X,~+l(c) - Xn+I,r(C) (actual expected loss), 

IE[L(U)(c)], L(U)(c) from (3,4), 

IE[R(U)(c)], R(U)(c)est imated version of (4.5), 

by simulating 50 independent realizations (of the whole model specified by 
(Ml)  or (M2)). We denote these approximations with the symbol Ave 
(average) instead of IE. Note that there is no functional dependence on the 
risk r since all volumes are V~ r) ~ 1. 
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Individual: r=l Individual: r=2 Individual: r=3 

I "l:t I x • x • • • 
o • • • • 

o • 

2 4 6 8 ,o 2 4 6 e ,o a 4 e 8 ~8 

Individual: r=4 Individual: r=5 Individual: r=6 

" •'lX t" " I'" x • • • • • 
o • • • • x • 

o 
-7 . 

a 4 6 a ,o 2 i /3 e ~o 2 4 e e ,o 
I I I 

Individual: r=7 Individual: r=8 Collective: r=l ,...,B 

i " " ° : .  " 
• | 

'~ • • • • 8 | 

2 4 n 8 e ~o 2 4 ~ e e lO 2 4 ~ ~ e ~o 

FIGURE 6. l: Eight realizations of individual samples and their joint representation as a collective sample from 
specification ( M  | ) .  

For (MI), we considered all 25 - I = 31 possible submodels. The results 
are summarized in Figure 6.2. The left panel of figure 6.2 shows that the 

actual expected loss Ave X,l+~(c ) - Xn+,,r(C') is close to Ave [L(U/ (c)] 

(the difference between Ave [L(") (c)] and Ave [k(") (c)] is invisible on this 
scale and plotted is only the first of these quantities). The four best models 
are magnified in the right panel of Figure 6.2: 

the true model {0, l, 3}, 
overparametrized models {0, l, 2, 3, 4}, {0, 1, 2, 3}, {0, 1, 3, 4}. 

Ave[R(U/(c)l produces the same ranking as the actual expected loss: in 
particular, minimal Ave [R(U) (c)] is achieved for the optimal model, being 
the true one. This is not the case for Ave [L (u/(c)l. 

For (M2), the seven most reasonable models are 
the true model {0, 1, 3}, 
overparametrized models {0, 1, 2, 3, 4}, {0, l, 2, 3}, {0, l, 3, 4}, 
underparametrized model {0, 1}, {0, 3}, {0}. 
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Four best models 

AveFes' I Ave[est. 

2 1  

5 10 15 1.2495 1.2500 1.2505 1.2510 
Actual expected loss Actual expected loss 

FIGURE 6.2: Left panel: Expected loss and averages of  their estimates with (3.4) for all 31 subset models from 
specification (M I) (every star represents more than one model). The fine dashed reference line is y = x. Right 
panel: Magnification for the best four models. The stars and circles represent averages of  estinmted expected 
losses with (3.4) and the plug-in estimate of  (4.5), respectively. The models are nurnbered as: I = {0, I. 2, 3, 4}, 

2 = { 0 , 1 , 2 , 3 } , 3  = { 0 , 1 , 3 . 4 } , 4  = { 0 , 1 , 3 } .  

The underparametrized models delete one or both elements in the set of  
regressor indices {1, 3} which corresponds to regression parameters 'close' to 
zero since bl = b3 = 0 and 7" 1 = ~ = 0.01 in (6.2). The results are displayed 
in Figure 6.3. The optimal model is the pure intercept model {0} and not the 
true model. The estimated expected losses Ave[L(u)(e)] and Ave[R(U)(c)] are 
similar. As in the right panel of  Figure 6.2, there is a slight advantage for 
Ave [&(u) (c)] : it is minimal for the best model and produces the correct 
ranking, except for model {0, 3}. 

To get an idea about variability and the distribution of  the selection rules 
we consider 

6L = Z(U~)(c) - L(u2)(c), 6R = k (u~) (c )  - k(u2)(c) ,  (6 .4 )  
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Seven most reasonable models 

O 
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FIGURE 6.3: Expected losses and averages of their estimates for models from specification (M2). The stars and 
circles represent averages of estimated expected losses with (3,4) and the plug-in estimate of (4.5), 
respectively. The models are numbered as: I = {0, 1, 2, 3, 4}, 2 = {0, 1, 2, 3}, 3 = {0, 1, 3, 4}, 4 = {0, 1, 3}, 

5 = (0, i}, 6 = {0, 3}, 7 = {0}. 

for  the selection between models  b/i and/ , /2 .  Our  choices are 

Ut = {0, 1, 3}, /./2 = {0, 1, 2, 3, 4} for (M1), 

Z,I, = {0}, b/2 = {0, 1, 2, 3, 4} for (M2). 

(6.5) 

(6.6) 

TABLE 6.1 

MISCLASSIFICAT[ON RATES WITH DECISIONS BASED ON bL AND 6n FROM (6.4) FOR THE MODELS IN (6.5) AND (66) 

~L ~R 

models from (6.5) for (M 1) 0.48 O. 12 

models from (6.6) for (M2) 0.68 0.30 
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These are the optimal and full models in both specifications (M1) and (M2). 
The approximate distributions (estimated from the 50 simulations) of  6L and 
6R in (6.4) for the models in (6.5) and (6.6) are given in Figure 6.4 in terms of 
boxplots. 

(M1) (M2) 

o 
o 

d e~ d l  

O 

O O 

f : i 

I : I 

o 9 
I ; I 

~ eq 
o ? 
O 
O I  i : I i ' I 

L R L R 
FIGURE 6.4: Boxplot representation for estimated distributions of 6c and 6n in (6.4), denoted by L and R, 

respectively. The two specifications are as in (6.5) and (6.6), denoted by (M1) and (M2), respectively. 

Note that a negative value for 6, in (6.4) leads to a correct selection among 
the two candidate models. Figure 6.4 shows that 6R is substantially more 
concentrated on negative values than tSt. (although the variability of 6R is 
larger), for both specifications and thus for large and small N. Table 6.1 
gives the misclassification rate. 

5O 

MCR = 50 -l Z 1['~,>°1 ' 
i=1 

being the relative frequency of misclassififications, where 6i denotes 6L or 6R 
from (6.4) based on the i-th simulated data-set. 

We conclude from FiNure 6.4 and Table 6.1 that not only Ave [R(U) (c)] is 
slightly better than Ave[L(U)(c)] but also the decision rule itself. 
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The little simulation experiment is reassuring. The averages of the 
estimated expected losses are almost equal to the true actual losses, even for 
a small number of risks N. The more complicated estimator R(U)(c) has a 
slightly better behavior in that respect than its simpler cousin L(U)(c). The 
model selector itself based on R(U)(c) is able to discriminate reasonably well 
among very similar prediction models. This is not true for L(u)(c) as 
indicated by Figure 6.4 and Table 6.1. However, model selection based on 
L(U)(c) is accurate if the models are ~sufficiently' different, see also left panel 
of  Figure 6.2. For many practical purposes, it suffices to discriminate among 
'sufficiently' different prediction models and selection can then be based on 
the simpler statistic J~(U)(c). 

7 DISCUSSION 

We have developed a framework for model selection in the general 
credibility regression model (linear model with 'random effects') with 
collateral data structure. As already known from frequentist statistics, the 
machinery of  hypothesis testing is not tailored towards, and inappropriate 
for, optimal prediction. The search for optimal prediction models can be 
done by direct estimation of an expected loss. 

Our approach for model selection is to minimize the expected squared 
error for prediction at an arbitrary (future) design point. We do not require 
specification of  a prior distribution for the hyper-parameters. All what we 
assume is a structure of  first and second order moments. In this sense, the 
approach is 'robust '  against misspecification of  prior distributions. This 
issue has always been a main focus in credibility models; it is an analogue to 
the Gauss-Markov conditions and BLUE estimators in standard linear 
model theory. 

As pointed out in Remark A, the Cp criterion (Mallows, 1973), and 
others like AIC, BIC or MDL,  is not appropriate for the situation 
encountered here. The reasons are: 

• We need to account for variability of (random) parameters. 
• We have to study the expected loss for shrinkage estimators. 
• We aim for optimal prediction at a (future) design point instead of 

optimality 'averaged' over the observed design of the data. 
The first two issues are major points which need to be considered. The third 
point is more our preference to do predictive model selection which is 
optimal at a particular design point. As a result, the optimal model will then 
depend on the value of this design point. It depends also on the risk r 
implying that in actuarial applications one might consider the possibility to 
use different models for different risks. 

We have given here three results for the expected loss of  the credibility 
(shrinkage) estimator. 



SELECTION OF CREDIBILITY REGRESSION MODELS 265 

(a) Formula (3.3) describes the exact expected loss for the predictor based on 
the credibility estimator with known structural parameters, i.e., with 
known optimal credibility weights. 

(b) Formula (4. I) describes the exact expected loss for the predictor based on 
the credibility estimator with fixed, given credibility weights which are 
generally not optimal. 

(c) Formula (4.5) describes the approximate expected loss for the predictor 
based on the credibility estimator with estimated credibility weights. 

Estimation of these expected losses in (a)-(c) can be done by the plug-in 
principle. The more complicated nature of the versions in (b) and (c) is the 
price we pay to get knowledge about more realistic cases than in (a). The 
version in (b) is also interesting from a theoretical point of  view since it gives 
the exact, non-asymptotic expected loss for shrinkage estimation. Note, that 
the differences between these expected losses are not substantial if N is 
'sufficiently' large, Indeed, as N--+ oo, all the versions in (a)-(c) are 
equivalent, and they are exact regardless of the size of the individual sample 
size n. Thus, the most simple, user-friendly criterion in (3.3) often leads to a 
data-driven model selector in (3.5) which is satisfactory for many practical 
purposes. To discriminate anaong very similar prediction models, there can 
be considerable gain by using R(U)(c) instead of L(U)(c). Our exploratory 
simulation study confirms these issues. 

The general strategy which we have developed here will also be useful and 
successful in many other credibility models. For example, the hierarchical 
models, cf. Jewell (1975) and Taylor (1979), or hierarchical regression 
models, cf. Sundt (1979) and Norberg (1986). 

8 PROOFS 

Proof of formula (3.1). We make use of the following facts: 

+ coy(o/x, : 0  for j + k, , . : , , ,  N 

(b) COV(&(0r), /3k(~0r)) = 0 fo r j  -¢ k, r = 1, ..., N. 

(c) Cov(e,,+t(Or), ei('0e)l'0r, Oe) = 0 for i = 1, n and r,g = 1, N. This "'" ^ ( u )  "'" 
implies uncorrelatedness of e,,+l (0r) with the predictor X,,+l (c). 

Note that (a) is due to the orthogonal design which is well known in linear 
fixed effects regression theory; (b) and (c) are true by assumption. All these 
issues imply by straightforward calculation formula (3.1). 
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Proof of formula (3.3). This is just a special case of formula (4.1) when using 
2~r) the true optimal weights for 

s+jv!'> + ~2/~ 

Straightforward calculation then yields (3.3). [] 

Proof of formula (4.1). We take formula (3.2) as our starting point. We first 

analyse right 
L" " J 

hand side of (3.2). The calculation is straightforward, using again issues 
(a)-(c) from the proof  of formula (3.1) above. The steps are: 

]E[(~J(Or)-~(Or))2]=~ z)r)(~J(~gr)-b)r)-F(l-Z)r)) ~J(Zgr) ~ T  ) )  J 

+'--+"J 2!r)l 2 (r) ~J e X 
~z!r ) 1 ~(r) \ 

2~" ~ )(,¢(o,)-g)+(l-, )~.~(pj(,)-b),)) / 
e¢,~j / j 

/ 1 2 (r) ,2  ~ F/  2(') )~2]) J 

k .I -- 2;. ) .I ) ,.r 1-[ k\g#r~J 

= I + ( I  -(r) 2 -Z) )11, 

(8.1) 
with ~ ,  as defined in (4.1). The first term I is already as it appears in (4.1). 
For tti~ second term we obtain 

H ~- IE E ~ ~j(Or) -- bff¢. (~j(Or) -- bnlg) 
~,,,,~r (~") "  
(2'") ~ [(~j(~) ~ 

2~02! ") 

, . ,~ .  (B ~'~) 
Mm 

Now use that 

_- +  or, r 

rn#r, a n d l # m .  
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Then, 

~e¢r ( 2~£) ) 2 (0~, g -~- 3~2 ) --1- ( ~e¢r "7(g) ' 2 2 Lj ) 33: 
I I =  

This, together with (8.1)gives the formula for IEl(3j(~r)-flj(Or))2]~~ and 
L- - a  

hence for the second term on the right hand side of formula (4.1). 
For the third term on the right hand side of (3.2), it is easy to see that due 

to issue (b) in the proof  of formula (3.1) above, 

L kj~uc / ~uc s~uc 

This then completes the proof  of  formula (4. l). [] 

Sfin V Derivation of formula (4.4). Write Zj=s~,,v+oVS) g(~,~?).  A first 

order Taylor expansion of g at (0 -2,'~2) yields, 

Og,  2 Og ( O 2 , r f ) ( G -  o . 2 ) + T i c  r ,rff)(~j2 _ ~2) ' (8.2) %  zJ+b7 

The partial derivatives are 

Og Og (o 2 "rj:) = Zj(1 - Z j ) / r  2. (8.3) (o2, ¢)  = - Z j ( l -  zj)/o2, , 

All we need to do is then to calculate the variances and covariances of 6 .2 
and -~? Assuming ei('gr) independent of Or and normality of j "  

3j (ff = O, ..., p - 1)) and of ei (normality is only crucial for the values of 
fourth moments),  the following result can be derived from the ideas in Klotz 
et al. (1969), 

O-2 m 2 6-2 N(n - p )  Ui, U1 '~ XN(n-p), 
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where Ux and U2 are independent. Hence, 

2 a  4 

Vat(G2) - N ( n  - p)  ' 

2~x 4 
Var(~j2) = 

( Sjjn V)2 N (n - p) 

2cr 4 
Cov(6 2, _~2", 

7j. ) = - Sjjn V U ( n  - p)  
@ 

By (8.2), 

Var(gj) ,~ ( ~ 2  (cr2, ~ ) )  2Var(~ 2 ) 

o 2 2 

t- N-Z-i  . 

)2 
+ (o.2 2 ^2 Var(~ ) 

kO 5_ ' 5 )  

Inserting (8.3) and (8.4) yields (4.4): for the case with rf  = 0 we take the limit 
as rf  -+ 0. [] 

Unbiasedness  o l d  2 h7 (5 .1 ) .  Denote by 

7"]j(Or) = b)Xr - l~ j (Or)  = C ' / = l  E i ( O r ) D o  " V}  r) sjjv?l , j = 0 ,  ..., p -  l; , -=  l, ..., N. 

Then, by the assumptions on the ei(0r)'S 

oa(O,) 
IE[7~j(Or)lOr] = 0 ,  IE[~f(Or)lOr I = 

s ,  j v ?  I " 

Therefore, the residual sum of squares as defined preceding (5.1) can be 
written as 

,,-1 ,2± 
RSS~ = ~ ~,(o,)- E ,Tj(O,)D~, v.~,} i=1 j = 0  J 

n n ,,(0 p - I  n 
= 2...L_ 2..~a)(r) i j -~Tf i -2E~rl j (Or)e i (Or)Do'~7 E El2(Or) V'') p-I V(, , 

i=1 j = 0  i=1 " j = 0  i=1 

= I + H + I I I .  
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By definition of  Sjj and TI j (Or)  , 

p-I  p-I  

S[ = ~ ~(%gr)Sj~ , I I I  = -2 ~ ~(~r)Sjj. 
j=0 j=0 

Hence, 

] 
#'/0"2 (~qr) + p - I  1 oa(19,)(n-P) 

But this implies 

I~-..~O'2(~r)(FI--p)V(r)- 
IE[RSS 2] = ~ / / ~  r--~b3F( ~ 

Lr=l v, 

which proves unbiasedness of 6 -2. 

_ o ~ ( n  - p ) N  

Derivation of the estimator in (5.3). We calculate the expected values 
I E [ W j ] , j  = O, ..., p -  1. Without  loss of  generality we assume 
bj = E[13j(Or)J = O. Straightforward calculation yields, 

,r_~l( ff2(~r)~V!r ) (N V(,) "~ 2 +ff2(Oe)(V!:)~ 2 
- z _ ,  ~--7777,m t , - i t - ; T /  • 

Thus, 

o~ ~ t' ~'~'~ 2 
IE[Wj] = ~- + Ns~v!. , tv!"J ~: o~ 

e=l 

= ~ /A  + ( N  - I) "~ 
~ T . ' ,  ' 

where A = 1 - ~ = t  \ ~ )  - This then leads to the estimator in (5.3). [] 
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