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ABSTRACT 

Consider a classical compound Poisson model. The safety loading can be 
positive, negative or zero. Explicit expressions for the distributions of the 
surplus prior and at ruin are given in terms of the ruin probability. 
Moreover, the asymptotic behaviour of these distributions as the initial 
capital tends to infinity are obtained. In particular, for positive safety 
loading the Cram6r case, the case of subexponential distributions and some 
intermediate cases are discussed. 
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I .  INTRODUCTION 

We consider here the classical risk model 

Nt 

X~ = u + ct - ~ Yi 
i=1 

where u > 0 is the initial capital, c > 0 is the premium rate, (Nt) is a Poisson 
process with rate A and ( Y i : i  Eft,l) are iid positive random variables 
independent of  (Nt). We denote the distribution function of Y by G, its 
moments by #,, = E[Y"], its moment generating function by 
Mr(r)  = E[exp{rY)]. For simplicity we let # = #z. Here all stochastic 
objects are supposed to be defined on a complete probability space (~, .Y, P). 
By ( f t )  we denote the smallest right-continuous filtration such that (Xt) is 
adapted. 
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This model was introduced by Lundberg (1903) and extensively studied 
by Cram~r (1930). It is therefore often called Cram6r-Lundberg model. This 
model is a good approximation to reality in cases where the portfolio of 
single contracts considered is large. It has, however, to be regarded as a 
technical model. For instance, time has to be considered as operational time 
because the size of the portfolio will change with time. Moreover, in reality 
premiums may not be constant over time and dividends paid will depend on 
the surplus. But in order to take decisions, analysis of the classical model will 
be helpful. 

Let T = inf{t > 0 : Xt < 0} denote the time of ruin. As usual inf!? = oe. 
The ruin probability is ~,(u)= P[~-< oo{X0 = u]. In this paper we are 
interested in the quantity 

f ( u ; x , y )  = PIT < o c , - X r  > x, Xr_ > y] , 

the probability that ruin occurs, the surplus prior to ruin is larger than y and 
the surplus at ruin is smaller than - x .  In particular, this gives information 
on the claim causing ruin, 

/0:/0 Ply- < oo, x , _  - x ,  < z] = f ( u ;  dx,  ely). 

The function f (u ; x , y )  is interesting to study because one would like to get 
information on how ruin occurs. If the capital prior to ruin XT_ is known 
one can be sure to be "safe" as long as the surplus is far from this capital. 
One is also interested in the capital at ruin. The ruin time T is a technical 
term. The initial capital u is the money a company is willing to risk for a 
certain branch of insurance. If  ruin occurs and - X ,  is not too large, the 
company will not become bankrupt. Indeed, the surplus from other branches 
will cover the losses. 

The classical quantity studied in literature is tb(u) = f ( u ;  0; 0). Results on 
"~(u) can be found in the text books Gerber (1979), Grandell (1991) or Rolski 
et al. (1999). The functionf(u;x,O) was introduced by Gerber et al. (1987). 
For u = 0 and positive safety loading c > A# the formula 
of(0; x, 0) = A f ~  (I - G(z))dz is well-known. 

The functions f (u;  x,y) have been investigated by Dufresne and Gerber 
(1988) and Dickson (1992) in the case of positive safety loading and under 
the assumption that the claim size distribution is absolutely continuous. 
These results can also be found in Rolski et al. (1999). Dufresne and Gerber 
(1988) found the formula 

oo 1 - ~ ) - f ( u ;  
f ( u ; x , y )  = - i O, dz) 

based on the observation that given X~-_ = z a claim of at least size x + z has 
to occur in order that X~- < - x .  Dickson (1992) considered the function 
f(u;O,y).  He solved the cases u < y and u > y separately. For u < y he split 
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the event {w < cxD, X~-_ _< y} into {T < OO, suP0<,<~ Xt < y} and 
{ T < o o ,  sup0<j<~ X, _> y, X~_ _< y}. For u_>y he observed that if ruin 
occurs and X~_ < y then the process (X~) has to enter the set [0, y) first. The 
probability that the latter happens is ~b(u -y ) - f (u -y ;y ,O) .  These 
considerations led to f (u ;  0,y). Combining these with the results of  Dufresne 
& Gerber (1988) the function f(u;x,y) was found in the absolutely 
continuous case. Numerical procedures for the calculation o f f ( u ;  x,y) are 
discussed in Dickson et al. (1995). Recently, Willmot & Lin (1998) obtained 
upper and lower bounds forf (u;  x, 0) andf (u ;  0,y). These inequalities can be 
applied in particular if the distribution function is N W U E  or NBUE (see 
Willmot & Lin (1998) or Rolski et al. (1999) for a definition). 

We will give here another proof of the results of  Section 7 in Dickson 
(1992), not needing the absolute continuity of the claims sizes, and also 
investigate the cases of  negative safety loading (c < A/t) and of no safety 
loading (c = A#). It will be possible to find explicit formulae for u = 0. We 
will also investigate the behaviour o f f ( u ;  x,y) for large initial capital u. In 
the case of positive safety loading we will discuss the three main classes of 
distribution functions. 

The cases c > A/z and c < A/z are quite different. Positive safety loading 
implies that g , (u)< 1 for all u_>0 and ' j ( u ) + 0  as u + o o .  Thus also 
f(u;x,y) ~ 0 as u + c~. In the case of  non-positive safety loading one has 
"~p(u) = 1 for all u > 0. This will make our considerations more complicated. 
The case c < A# can be reduced to the case c > A# by a change of  measure 
argument. For the behaviour off(u;x,y) as u + o¢~ we will find f(u;x,y) 
converges to a non-trivial limit if/_~ < oo for negative safety loading and if 
~2 < cxD in the case of  no safety loading. This is in contrast to the case of  
positive safety loading, where basically a non-trivial limit off(u;x,y)  as 
u + cxz is obtained if the distribution tail of the claim sizes decreases 
exponentially fast. 

Throughout the paper we will assume that the ruin probability '0(u) is 
known. For a discussion of  'g,(u) see for instance Gerber (1979), Grandell 
(1991) or Rolski et al. (1999). For methods how to calculate ~(u) 
numerically see Panjer (1981), Dufresne & Gerber (1989) or Rolski et al. 
(1999). 

2. AN INTEGRO-DIFFERENTIAL EQUATION FOR f(u; Z, y) 

In this section we first derive an integro-differential equation and an integral 
equation for f (u ;  x,y), as well as the Laplace transform off .  The derivation 
of  equations (1) and (2) below is similar to the approach in Grandell (1991), 
see also Rolski et al. (1999). The derivation of the Laplace transform (3) 
follows Feller (1971). 
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Consider now the process (Xt) in the interval [0, h A Tl] where Tl is the 
epoch of  the first claim. Then, either there is a claim or there are no claims in 
[0, h]. I f  there is a claim then either the first claim leads to ruin or not. 
Because the process is Markov  we get the following equation 

f (u;  x, y) = e - ~ f ( u  + ch; x, y) + 

 o,(r c, + f ( u  + ct - z; x ,y)  dG(z)+ 
JO 

+ [lu+ct>y G(u + ct + x ) )  Ae -xl dt 

where G(z) = 1 - G(z) denotes the distribution tail of  Y. Here, u+ch is the 
capital at time h if Ti > h, u+c t - z  is the capital at Ti if TI = t and Yl = z. I f  
Yi > u + c t  then ruin occurs, i.e. ~-= Ti. Hence X~._ = u + c t  and 
X~ = u + ct - Yl. The event of  interest occurs therefore if u + ct > y and 
Yl > u + ct + x. Letting h ~ 0 yields tha t f (u ;x ,y )  is r ight-continuous in u. 
Rearranging the terms gives 

O = c f ( u + c h ; x , y  ) - f ( u ; x , y )  1 - e  -'v~ 
ch h f ( u  + ch; x, y)+ 

i f  ' l  f'+cl ) 
~Jo f ( u + c t - z ; x , y ) d G ( z ) + l l , + c , > y G ( u + c t + x )  )~e-~tdt. 

Thus f (u;  x,y)  is differentiable with respect to u from the right and 

(f0 ) c f ' ( u ; x , y ) + ~  f ( u - z ; x , y ) d G ( z ) + H u > j G ( u + x ) - f ( u ; x , y )  = 0 .  (1) 

In order to simplify notat ion ~ denotes the derivative with respect to the first 
argument.  Replacing u by u-ch yields that f(u; x, y) is left-continuous in u 
and differentiable from the left. Denoting by d- /du  the derivative from the 
left, one obtains the equation 

d -  
C-~u f(u;  x, y) 

(jo ) +)~ f ( u - z ; x , y ) d G ( z ) + ~ u > y G ( ( u + x ) - ) - f ( u ; x , y )  = 0 .  

Here J~ -= .  f~0u~, . . . .  (we use the convention jj=rf~0,~]). This shows that 
f (u;  x, .~  Is not ~ifferentlable at y, at points where ~ , j  is not continuous or 
where G(u + x) is not continuous.  Because the number  o f  points where the 
derivative does not exist is countable,  we have that f ( u ; x , y )  is absolutely 
cont inuous in u with density given by (1). Note tha t f ' (u ;x ,y )  has to be 
regarded as density and not as derivative. 
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Let us now integrate (1) from 0 to uo. Using 

/?/o r°F f ( u  - z; x, y) dG(z) du = f ( u  - z; x, y) du dG(z) 
.10 

/o,,O/o = f (u;  x ,y)  du dG(z) 

= F ° a(uo - u) f ( u ; x , y )  du 
Jo 

we arrive at 

- A  f "  c ( f ( u ; x , y ) - f ( O ; x , y ) )  f ( u  z;x,y) G(z)dz- 
- -  JO 

fu+x _ 

-/~.>yA Jy+x G(z) d z .  (2) 

(2) looks similar to a renewal equation and will be used later. We first show 
that (2) determines the solution uniquely. 

Lemma 1: There is at most one solution to (2) for  any given value o f  
f (O;x ,y)  =f0 .  

Proof. Let flu) and jT(u) be solutions to (2) with f ( O ) = f ( 0 ) = f 0  and 
g(u) = f ( u ) - f ( u ) .  Then 

cg(u) = ~ g(u - z) ~ ( z )  dz = ~ g(z )  ~ ( , ,  - z) dz. 

Thus g(u) is cont inuous and g(0) = 0. Fix u0 > 0 such that  c > A fo ° G(z) dz. 
Let u be the point such that Ig(u)[ = sup{lg(z)[ : 0 < z < u0}. Then 

/o" /o" /o clg(u)l _< A I g ( u -  z ) lG(z )dz  < Ig(u)lA O ( z ) d z  _< A ~(z)dzlg(u)l. 

Thus g(u) = 0 and g(v) = 0 fo r  0 < v < uo. Hence 

~0 u-uO cg(~) = ~ g ( ,  - z) ~ (z )  dz . 

Using induction one can show similarly that g(u) = 0 for 0 < u < kuo. [] 
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We denote by] ( s ;  x, y) = f ~  cs"f(u; x, y) du the Laplace transform of  f with 
respect to the first a r g u m e n t . f  (s; x,y) < oo for all s > 0. Multiplying (I) by 
e -s" and integrating over (0, oe) gives 

c ( s f ( s ; x , y ) - f ( O ; x , y ) )  - Aj'(s; x , y ) ( l -  MF(-s))  + A ~y°°G(z +x)e-~'-dz 

or equivalently 

A oo cf(O; x, y) - £, G(z + x)e-'Zdz 
)(s;x,y) = (3 )  

cs - A(I - M r ( - s )  ) 

Here we used the well-known formulae 

and 

g ( s )  = - g(O) 

= (s)  

Let us have a closer look at the numerator .  Differentiating 
c s - A ( 1 - M r ( - s ) )  twice gives AM'~(-s )>0,  thus the numerator  is 
convex. The first derivative at zero is c -  .X#. Thus zero is the only non- 
negative root of  c s -  A(I - Mr(-S) )  = 0 if and only if c > A#. If  c < A/z, 
then there exists a unique positive root. We will use this observation to find 
f (0 ;  x, y). 

3. POSITIVE SAFETY LOADING 

Assume now c > Alx. Because f (u;x ,y )  <_ ~(u) it follows that f (u;x ,y)  tends 
to zero as u ~ o0. Letting u ~ ee in (2) yields, using the bounded 
convergence theorem, that  

A 6:(z) dz, (4) f ( 0 ; x , y )  = ~  .+x 

a result already obtained in Dufresne & Gerber (1988). Thus (2) can be 
written as 

cf(u;x,y) =-A f ( u -  z;x,y)G(z)dz + A G(z + x )dz .  (5) 
dO vy 

We now solve the equat ion in terms o f  G(u) and g,,(u). 
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Theorem 1 I f  c > AtL then 

A 
f (u ;  x, y) - - -  x 

c - A# 

( × (1  - ¢(u)) d z -  
+), 

) --lu>y (1 - ¢ ( u - z ) ) O ( z + x ) d z  . (6) 

Proof. Consider  (3). For  x = y = 0 one obtains 

fo °°¢(u)e_,.,,du A/zs-  A(l - M v ( - s ) )  
s ( c s -  A(I - M y ( - S ) )  

where we used that f ~  G(z)e-S:dz = s- l (1 - M r ( - s ) ) .  This leads to 

f0  ~ (1 - ~(u))e  -s" du = c - A/z 
c s -  A(! - M r ( - s ) )  

Equat ion (3) can therefore be written as 

A (1 - ¢(u))  e -s" c _2-~# du G(z) dz - G(z + x) e-S~dz . 
\ J  x-t-y 

f~+y G(z)dz is a constant  and f )  G(z + x)e-SZdz is the Laplace t ransform of  

D,,>yG(u + x). Thus the inversion of  (3) yields the solution (6) noting that the 
inversion of  ~l (s)~z(S) is f~'gl (u - z)g2(z)dz. [] 

Remark.  The solution could also have been guessed from Dickson (1992). A 
direct verification gives then that (6) solves (5) and therefore must  be the 
unique solution to (5), i.e. the f u n c t i o n f ( u ; x , y ) .  • 

Example 1. If  G(z) = e -zl~`, i.e. the claim sizes are exponentially distributed, 
then ¢(u)  = A#/ce -R", where R = #-I  _ A/c. This gives 

AP e-(X+Y)/l~(e-R(u-Y)+ ? ) f (u ;  x, y) - c - A-----~ - e-R" " 

If  we condit ion on {T < CO} we get 

P[-XT  > x , X ~ -  > y[~-< oo] = e - X / " - - ~ e - Y / " (  - ? ) "  

As one expects from the lack of  memory  property of  the exponential  
distribution, -XT is condit ionally independent  of  X~ given {r  < e~} and 
exponentially distributed with mean #. • 
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We now want  to investigate as u ~ oo the asymptotic  conditional joint 
distribution of  (-X~,  ART_) given {r < oo}. We keep x and y fixed. Assume 
u > y. Consider first the last term of  (6). We have 

fyU f u+x ~(u - z) ~ ( z  + x) dz = 
Jy+x 

~- I u+x 
dO 

~ ( u  + x - ~) ~(z )  dz 

~ ( u  + x - z) ~ ( z )  dz 

f ),+x 
- ~(u + x - z) ~(z )  clz 

dO 

and using (5) with x = y = 0 we find 

l "+x c~b(u+x ) f ~  ~;(u + x - z) ~(z )  dz = ~ - ~(z )  d z .  
dO +x 

Putting the above together we have 

c A#f(u;x,y)  ~b(u f y + x  fxOO -~  = + x )  - ~ ( u  + x - z ) ~ ( z ) a z  - ~ ( u )  G ( z ) d z  
J 0 +y 

if u > y. This leads to the following 

Theorem 2 Let c > A#. Assume for each z 6 9~ the limit 

~,(z) = lim ~b(u + z) 

exists. Then 

lim P[-XT > x, XT_ > y[~ < cxz] 
l i f O 0  

( /o "+- 1 c.~(x) ,~ - ~ ( x -  z ) ~ ( z ) a z  - ~ ( z ) d z  . 
C -- A# ax+y / 

Proof It remains to show that we can interchange limit and integration in 
the middle term. Because ~b(u) is decreasing we find 

¢¢(u + x - z) < ¢ ( u  - y)  

which is bounded because it is continuous and converges to 7(-Y) as 
u ~ oo. Thus we have an integrable upper bound and the theorem follows 
from the bounded convergence theorem. [] 
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Example 2. Assume that the Cram6r condition is fulfilled, i.e. there is R > 0 
such that A ( M y ( R ) -  1 ) =  cR. Then ¢ ( u ) ~  Ce -g'' for some C > 0 and 
R > 0. This case is for instance discussed in Gerber (1979), Grandell (1991) 
and Rolski et al. (1999). The assumption of' Theorem 2 is fulfilled with 
7(z) = e -m. Thus the asymptotic distribution is 

e - n X ( c f o Y + "  Ace.,- [ °° ) c Z  X-~ -- A e m G(z) dz - G(z) dz . (8) 
J x + y  

Because A f o  eRx G(z) dz = c, (8) can be written as 

c ---Atz (e Rz - 1 ) G(z + x) d z .  

Let R > 0 and define the class S(R)  of distribution functions G fulfilling 

i) lira G*2(u)/G(u) = ~ < cx~, 
11 "'~ OC) 

ii) lim G ( u  - z ) / G ( u )  = e m, 

i i i )My(R) < cxz 

S(0) is the class of  subexponential distributions, including the Pareto, the 
Iognormal and the heavy-tailed Weibull distributions. For a discussion of  
subexponential distributions see for instance Embrechts et al. (1997), Rolski 
et al. (1999) and references in these two books. The classes S(R)  are 
discussed in Embrechts & Goldie (1982). If G E S (R)  then My(r)  = cxa for 
all r > R. That means that the moment generating function jumps to infinity 
at R. All distributions of interest with a moment generating function 
jumping to infinity at R are included in this class. Embrechts & Goldie 
(1982) show that for G E S(R)  there exists G E S(0) such that 

f o ' e -mdG(z )  
G(u) = rio e _ m d ~ ( z )  • 

Example 3. Assume G E S(R)  for some R > 0 and that A f o  eRZG(z) dz < c. 
Embrechts and Veraverbeke (1982) showed that there exists a constant 
C > 0 such that ~p(u) ,-~ CG(u). Thus 3'(z) = e - m  and (8) holds. At first sight 
the result may be' surprising. However, in both Examples 2 and 3 the ruin 
probability is exponentially decreasing 

lim - 1_ log ~b(u) = R. 
U ~  C.X:~ U 

It is the exponent R that determinesf(u; x, y) as u ~ ec. We will now give an 
intuitive explanation why one would expect that l i m f ( u ; x , y ) / ¢ ( u )  should 

U--*OO 

be determined by (8). Let O(R) = A ( M y ( R )  - I) - cR. Then (e -R(x,-u}-°(R)') 
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is a martingale, see Embrechts et al. (1993) or Rolski et al. (1999). This 
martingale can be used to change the measure d Q / d P  = e -R(x'-")-°(R)' on 
.T,. The measure Q can be extended to a measure on the whole probability 
space (f~,.T). For  an introduction to change of  measure techniques in risk 
theory see for instance Schmidli (1995) or Rolski et al. (1999). Under Q the 
process (X,) is a classical risk process with claim arrival intensity 
AQ = A M y ( R )  and claim size distribution GQ(U)= f~ 'eR:dG(z) /Mr(R) .  
Expressing the quantities of  interest under the measure Q gives 

f ( u ; x , y )  _ EQ[eRX~e°(R)T;-XT > x, XT_ > y, 7- < exile -R" 

¢(U) EQ[eRX~e°(n)r; T < oo]e -Ru 

Intuitively for large u the variables ~- and (XT_,X~) become nearly 
independent,  so 

f ( u ;  x ,y )  EQ[eRXT;-X~ > x, XT- > y, T < oo] 

¢(u) EQ[eRX.rT < 

The latter expression is the same for 0(R) = 0 and O(R) < 0. Thus one would 
expect (8) to hold in all cases where G(u) is exponentially decreasing and 
f o  zenzdG(z) < exp. • 

Example 4. Assume that the distribution function i~ -t J~' G(z)dz is in S(0). 
Then Embrechts and Veraverbeke (1982) showed that  (c-A~,)~b(u),-., 
..~ A f ,~ G(z)dz. Thus 7(z) = 1. Then it follows from (7) that 

lira P [ - X ,  > x, X,_  > y]7- < oo] = 1 . 
ll--~OC 

Let x = 0 and y = u. Then (6) reads 

(c - A/z)f(u; 0, u) = A(I - ~(u)) G(z)dz .  

Dividing by ~b(u) and letting u ~ e o  yields 

lira P[XT- > U[T < 00] = 1 . 
II-'-'~ OO 

This is not surprising. Asmussen and Kliippelberg (1996) showed that 
basically for large u the process (At,) condit ioned on {T < OO} behaves like 
an uncondit ioned process until the time of  ruin, and there an enormous 
claim will happen. Recall that 7- depends on u. Thus XT_ will very likely be 
above any fixed level for u large enough, and most likely above u. This also 
implies that X~ will very likely be below any fixed level for u large enough. 

Assume now that y(u) _> u and x(u) are some functions. Then we find 

x (1 - ¢ ( u ) )  ~ ¢ ( x ( u )  + y(u)). 
f ( u ;  x(u), y(u)) -- c - A-------p (u)+y(,,) 
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If x(u) and y(u) are differentiable then 

f (u ;  x(u), y(u)) ,~, (x'(u) + y'(u)) G(x(u) + y(u)) 

If for example (7(z)~-, L(z)z  -~ for some c~ > 1 and some slowly varying 
function L(z), i.e. L ( t z ) / L ( z ) ~  I as z ~ c x ~  for all t > 0 ,  then 
~b(u) ~,, CL(z)u l-~ for some constant  C > 0. Thus 

lira f ( u ;  au, bu) _ (a + b) I-~ 
, , - o o  

provided a >_ 0 and b > 1. 
Assume that GO(z) is not regularly varying. Goldie  and Resnick (1988) 

showed that under quite mild assumptions the distr ibution G is in the 
maximum domain o f  at traction o f  a Gumbel  distribution exp{-e -X} ,  i.e. 
there exists a,, > 0 and b,, E IR such that lim (G(a,,z + b,,))"= exp{-e -X} .  

11....4~ 

Then, see Balkema & de Haan  (1974), there exists a function a(u) such that 
G ( u + z a ( u ) ) / G ( u )  ~ e -L  The function a(u) can be chosen as 
E l Y - u l y  > u]. The distribution function G is then of  the form 

where g(u) > 0 is absolutely continuous,  g'(u) ~ 0 and c(u) ~ c > 0 as 
u ~ oe. It follows that a(u) ~ g(u). This gives 

lim f ( u ;  x(u), u + zg(u) - x(u)) _ lira (1 + zg'(u)) G(u + zg(u)) = e- z 

provided x(u) < zg(u). If the claims are Weibull distributed 
G ( u ) = e x p { - ~ x  3} with ~ > 0  and O < f l <  1, then c ( u ) = e  -~ and 
g(u) = ui-.~/(o~fl). This gives 

lira f ( u ;  x(u), u + zul-~ / (afl) - x(u) ) = e -z 

provided x(u) < ul-~/(eLfl). 

4. N E G A T I V E  SAFETY LOADING 

In practice the mean value of  the claims and the claim arrival intensity have 
to be estimated from data. Est imation of  the claim arrival intensity is usually 
no problem. But observat ion of  the claims only gives information abou t  the 
distr ibution on a finite interval. Thus  it may happen that the estimate of  ~ is 
far from the true value. In such a situation it is possible that c < A#, even 
that ~ = cx~. The latter case, however,  usually is excluded in the contract  by 
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defining a maximal loss. If now a wrong premium has been specified it would 
be interesting to know how ruin will occur. Namely, if the capital prior to 
ruin will be small, as in Examples 2 and 3, one has time to observe the 
business until action has to be taken. If  the capital prior to ruin will be large, 
as in Example 4, it would not be possible to observe negative safety loading 
before ruin occurs. We will see below that the latter can only happen if 
J ~ =  OO. 

Assume now c < A#. This includes in particular the case ~ = cxz. The 
equation c s - A ( I -  M y ( - s ) )  has then a strictly positive solution R. We 
define the new measure Q under which (Xt) is a classical risk process with 
premium rate c, intensity AQ = A M y ( - R )  and claim size distribution 
Go(x) = f f fe -RYdG(y) /Mr(-R) .  The expected claim size is 
M y ( - R ) / M r ( - R )  giving AQ/.zQ = AM'y(-R) .  Because s~--~cs- 
- A ( I -  My(-S) )  is a convex function with derivative c -  AM~,(-R) at s 
= R we find c -  AM~,(-R) > 0. That means under Q the safety loading is 
positive. We denote by ~bQ(U)= Q[r < oo] the ruin probability under 
measure Q. ^ 

Because f ( R ; x , y ) < o o  and the numerator in (3) is zero also the 
denominator has to be zero, yielding 

f(O; x, y) = 7 G(z + x)e-R-dz . (9) 

Remark. We could also have obtained (9) from the following consideration. 
Note that A c - l f ~  e-mG(z)dz = 1. Let g(u) = Ac-le-R"G(u). Multiplying 
(2) by e -R" yields the renewal equation 

with 

L 
. 

f (u;  x, y)e -n" = f ( u  - z; x, y)e-g("-Z)g(z) dz + z(u) 

z (u )=f (O;x ,y )e  -R" - ~.>yAe-R"i"+x G(z) dz . 
a y+x 

By the key renewal theorem, see for instance Feller (1971), 

o~ A_/~+x G(z)dz)  e-RUdu L (f(O;x,y)-~u>v " c Jy+x 

which also yields (9). 

We now are ready to invert the Laplace transform (3). 

= l i m f ( u ; x , y )  e -Ru = 0 ,  
. "-'~ (X3 
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Theorem 3 Assume c < A#. Then 

- ( f ( u ; x , Y ) - c _ a M } ( _ R  ) (l  - ~Q(u) )  ~(z+x)e-R~dz - 

) - l ,>, ,  ( l  - C Q ( u  - z ) ) ~ ( x  + z ) e - ~ d ~  . 
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(10) 

Proof  Fix x and y. Let g ( u ) = f ( u ; x , y ) e  -Ru and ~ ( s ) =  fog(u)e -SUdu = 
f ( R  + s ; x , y ) .  Then we find from (3) 

~(s) = A f ~  G(z + x)e-Rz(1 -- e-SZ)dz 

cs - A ( M y ( - R )  - M v ( - s  - R))  

using that cR = A(l - My(-R)). Note  that  

f0  ° (l - CQ(u))e-"du = 
c AM~,(-R) 

c s -  A ( M y ( - R )  - M v ( - s -  R) )  " 

Thus ~(s) can be expressed as 

~-(s) - c - A~t~/Yy(-R ) (l - CQ(u))e- '"au G(z + x)e -m(1  - e-SZ)dz. 

Similar to the p r oo f  of  Theorem 1, (10) follows by inverting ~(s). []  

Next  we find the asymptot ic  behaviour  o f f ( u ;  x ,y ) .  We first show that  
the Cram~r condit ion is fulfilled under  the measure Q and that the 
adjustment  coefficient is R. The momen t  generating function of  the claims is 

EQ[erV ] = f ~  e~Ze-RZdG(z) _ M v ( r  - R) 

M z ( - R )  M y ( - R )  

The equat ion determining the adjustment  coefficient is A(My(r-R)- 
- M y ( - R ) )  - cr = 0. By the definition of  R we find r = R is a solution. I f  
# < cx~ then 

c - AM~,( -R)  e_RU " 
C Q ( u )  ~ .Xu - c 

If  U = ~ then CQ(u)e R" ~ 0 as u ~ (xz. In particular,  ~bQ(u)e R" is bounded  
uniformly in u. 

The following result gives the asymptot ic  behaviour  as u ~ oo. 
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Theorem 4 Assume c < A#. I f  # < e~ then 

A (l - e - m ) G ( x + z ) d z .  (11) ,]ira f(u; x,y) = AF ,-__ c 

If  # = ~ then l i m f ( u ; x , y )  = 1. 

Proof. Assume u > y. We consider the limits of  the factors given in (10) 
separately. We start with two factors f~-f"=f~ and consider 
eR" f f  G(z + x)e-""dz. This can be written as3~ ~_ G(~ + z°~ x)e -m dz which 
converges to zero. Consider next ~pQ(u)eR"[~ O(x + z)e-RZdz. This factor 
converges to (c - ,kM'r(-R))/()~ u - e) f , ~ ( x  + z)e-RZdz, interpreted as 
zero if # = cxz. Let now/~ < cxz and consider f,," ~bQ(U - z)eR("-")G(x + z)dz. 
Because /z < cx~ we can interchange limit a n y  integration, and obtain the 
limit ( c -  AM~r(-R))/(Ap. - c)£,~ O(x + z)dz. Putting these limits together 
proves (11). 

Let now t~ = ~ -  Consider firstf(u;x,O) - f ( u ; x , y ) .  Then it remains to 
consider the limit of  

~ e ( u  - z) e R('-~I O(x  + z ) &  . 

But here limit and integration can be interchanged, yielding that 
lim f(u; x,y)  = lim f(u; x, O) provided the latter limit exists. Thus we can 

assume y = O. Consider now 1 - f ( u ;  x, O) = f ( u ;  O, O) - f ( u ;  x, 0). Then it 
remains to show that 

lin& %bQ(u- z)eR("-Z>(G(z)-G(x + z ) ) d z : O .  

Because 

/0 /0 1 /0 (O(z)  - ~ ( x  + z))  dz = dG(v) dz < x da(v )  = x 
7. 

we can interchange limit and integration, yielding the result. [] 

The above result shows that in the case # -- cx~ ruin will be caused very likely 
by a very large claim. 

Remarks. 
i) Assume c > A #  and that  ~(u) N C e  R" for some R > 0  and C > 0 .  

Asmussen (1982) showed that, condit ioned on {T < oo}_the classical risk 
model converges weakly to a classical risk model X with intensity 

= AMy(R) and claim size distribution G ( u ) =  f~'emdG(z)/Mr(R): 
Thus one could think that (8) for the model (Xt) and (11) for the model X 
coincide. This is not the case. For  example, in the case of exponentially 
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distributed claim sizes we find - X ,  condit ioned on ~- < oo is exponen- 
tially distributed with mean #. But in the model k the claim sizes are 
exponentially distributed with mean c/A, i.e. -X~ is exponentially 
distributed with mean c/A. The reason is that  as u ~ cxz also ~- ~ exT. For  
weak convergence events near infinity do not necessarily converge. 

ii) The result can also be obtained by a change of  measure. However, the 
calculations become more complicated. As in Gerber (1973) it follows 
then that (e R(x'-")) is a martingale. Define the new measure Q via 

for all A e f t  and all t >_ 0. It is shown in Schmidli (1995), see also Rolski 
et al. (1999), that tinder the measure Q the process (X,) is a classical risk 
process with intensity AQ = AMy( -R)  and claim size distribution 
G@(x) = fo"e-eydG(y)/Mv(-R). Thus the new measure coincides with 
the measure Q used above. It follows then, see Schmidli (1995) or Rolski 
et al. (1999), that 

E -  [e- ~(Xr--,). ] f ( u ; x , y ) =  •[ ,'r < c~ , -Xr  > x, Xr_ > y 

where we use the subscript Q to denote the quantities under the measure Q. 
By straightforward calculations (9) is recovered from (4) and (10) is 
recovered from (6). • 

5. No  SAFETY LOADING 

This section is for completeness only. Indeed, if an insurance company fixes 
the premium based on the estimates for A and /z it is very unlikely that 
c = A#. Because as in the case of  negative safety loading ~b(u) = 1 one would 
expect similar results f o r f (u ;  x, y) as in the case c < A~. However, as u --* oo 
it is not any more the mean value # that determines whether the distribution 
of  (--ART, X,_) converges to a proper distribution or not. In the case c = A~ 
the above distribution will converge if and only if I~2 = E[ Y2] < oo. This is 
due to the distribution of  the descending ladder heights. In the case c < A# 
the expected value of  the ladder height is finite if and only if E[Y] < cx~, 
see (9). In the case c < A/z the ladder height distribution is 
Gl(u) = #-I  f0' (3(z)dz, see (12) below. This distribution has a finite mean 
if and only if/3,2 < (x3. 

The change of  measure method used in the case of  a negative safety 
loading does not work anymore.  The function c s -  A(l - M r ( - s ) )  has a 
minimum at s = 0 and therefore only one root s = 0. We therefore do not 
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have an interpretation of  ( c s - A ( 1 - M r ( - S ) ) )  -z in terms of  ruin 
probabilities. Indeed, the solution (14) below is not as explicit as (6) and 
(10) obtained above. 

We start by finding f (O;x,y) .  Note that f ( u ; x , y ) < 1  and therefore 
f ( s ; x , y )  _< s -l. This gives 

c f ( O ; x , y ) -  f;  G(z+x)e-SZaz 
0 ~ s f ( s ; x , y )  = C - -  s - l , , ~ ( ]  - -  M v ( - s ) )  < 1 . 

The numerator converges to zero as s ~ O, thus also the denominator has to 
converge to zero. This gives 

1 G(z)dz.  (12) f (O;x,y)  # x 

As a consequence (2) can be written as 

f (u ;x , y )  = f ( u - z ; x , y )  G(z)dz+ G ( z + x ) d z .  (13) 
v y  

This is a renewal equation. Denote by U(u) = ~ = 0  G~k(u) the correspond- 
ing renewal measure. Then from renewal theory, see for instance Feller 
(1971), we find 

Theorem 5 Let c = AlL. Then 

(£ £ ) 1 #(z)dzU(u)-D.>y U ( u - z )  G ( z + x ) d z  (14) f(u; x, y) = ~ +., 

Proof It follows immediately from renewal theory that 

f 0 " [  °~ 
~zf(u; x,y) = G(v + x) dvdU(z) 

- J ( u - z ) v y  

= U(u) ~(v + x)av - ~>~, ~(v + x) dv d g ( z ) .  

The result follows now by changing the order of integration. [] 
The behaviour o f f (u ; x , y )  for large u follows now readily from the key 

renewal theorem. 

Theorem 6 Let c = A#. I f  #2 < c~, i.e. the claim sizes have finite variance, then 

lira f(u; x, y) fi? ° zG(z + x) dz 
~ - ~  = f o  z~(z) dz (is) 

If/z2 = ~ then lira f(u; x,y) = 1. 
11---~00 
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Proof. (15) follows readily from the key renewal theorem. Assume now 
~2 = oo. Then the distribution function G1(u) has infinite mean. Let 
g(u) =f(u;x ,O)  - f ( u ;  x,y). Then it follows from (13) that g(u) fulfils 

1 g(u z) O(z) dz + O(z + x) dz . g(u) # ,,u 

The key renewal theorem yields then that g(u) tends to zero as u ~ o~ 
because 

io i "v" L'L" G(z + x) dz du = O(z + x) dz du < c,z. 
d l! 

We can therefore assume y = 0. Let now g ( u ) =  l - f ( u ; x , O ) =  
f(u; 0, 0) - f ( u ;  x, 0). Then (13) gives 

i(L,, l,,+. ) 
g(u) = -fi g(u - ~) O(z) dz + O(z) dz . 

J gg 

Again the key renewal theorem yields g(u) ~ 0 because 

-,- So O(z) dz du _< xG(z) dz = x# < oo. 
• ./0 Ju  

This proves the result. [] 
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