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ABSTRACT 

Thas as a follow-up of a previous paper by the author, where claims reserving 
m non-hfe insurance as treated in the framework of a marked Polsson claims 
process A key result on decomposmon of the process as generahzed, and a 
number of related results are added. Their usefulness is demonstrated by 
examples and, in pamcular, the connection to the analogous discrete tame 
model is clarified. The problem of predmtmg the outstanding part of 
reported but not settled clmms is revisated and, by way of example, solved in 
a model where the partml payments are governed by a Dmchlet process The 
process of reported clmms is examined, and ats dual relationship to the 
process of occurred claims is pointed out. 
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I I N T R O D U C T I O N  

A. Review of previous results 

In a prevmus paper by the author (Norberg, 1993), henceforth referred to as 
(I), a continuous-time approach as taken to the problem of predicting the 
total haNhty of a non-hfe insurance company The model framework as a 
non-homogeneous marked Potsson process wath posation-dependent marks, 
the Poisson ttmes representing the occurrences of clmms and the 
corresponding marks representing the developments of the indwtdual claims. 
Since the present paper is self-contained, we shall review the results m (l) 
only briefly. 
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The total claim amount m respect of a fimte amount of risk exposure 
follows a compound Polsson dlstnbut~on Fixing a t~me of cons~derauon, 
the set of all claims decomposes into s (settled), rns (reported-not-settled), 
m r  0ncurred-not-reported), and c m  (covered-not-recurred, corresponding 
to the unearned premmm reserve). These four components can be viewed 
as arising from independent marked Polsson processes whose mtensmes 
and mark dlsmbutlons have an easy interpretation. By use of this 
decomposition result predictors are constructed for all components of the 
total outstanding l l abxl i ty ,  m respect of rns claims, m r  c l a i m s ,  and cm 
clmms. In (l) also a doubly stochasnc extension of the model was treated 
with continuous t~me credlblhty methods, but that topic shall not be 
pursued here. 

B. Objective and plan of the present study 

The present study is a follow-up of (1). In Section 2 the basra model is 
Investigated further. Prewous results are generahzed and some further 
d~smbunon theoretical results are added. In parhcular, the decomposition 
result ~s extended to qmte general countable decompositions. A pamal 
converse result on amalgamatmn of independent marked Polsson processes 
is estabhshed, generahzmg a well-known result on convolunon of 
independent compound Polsson risk processes 

Sectmn 3 provides examples of apphcatmns. In pamcular, the connectmn 
to the analogous d~screte tame model is estabhshed upon decomposing by 
year of occurrence and year of nonficatlon. This connection opens a way to 
well-reasoned paramemzat~on of the discrete time model. 

In Sectmn 4 the problem of predicting the outstanding part of reported 
but not settled claims is rews~ted Unbiased prediction ~s d~scussed m the 
general set-up, and carried out m a model where the allotment of pamal 
payments from notificaUon until ultimate settlement Is governed by a time- 
scaled Dmchlet process 

SecUon 5 mqmres into the process of claims reports, which ~s the current 
basis for predlctmn of not-reported (nr = m r  + cn i )  clmms. There is a 
duahty m the situation: taking the moments of notificauon of claims as times 
and the remaining characteristics as marks, leads also to a marked Poisson 
process. 

The style of the paper is informal in the sense that, as a rule, obvious 
conditions and assumptions are not spelled out. Thus, at the base of 
everything is some probability space (f~,.7, P), which is not brought to the 
surface, and it ~s tacitly understood that sets and mappings are measurable, 
that expected values and other quantities displayed exist, and so on. We will 
dispense with every form of mathematical ceremony that would add words 
w~thout adding ngour. 
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2 F U R T H E R  INVESTIGATIONS IN THE BASIC MODEL 

A. Notation and model assumptions 

We first recapitulate and s t reamhne a bit the notat ion and some basic 
defimtlons in (i) Formal ly ,  a claim Is a pair C = (T, Z), where T is the 
time o f  occurrence of  the claim and Z is the so-called mark describing its 
development  from the time of  occurrence until the time o f  final sett lement 
The mark is taken to be o f  the form Z =  (U, V, Y, {Y'(~/) ;0 < v' < V}) 
where U is the waiting time from occurrence until nohficatlon,  V is the 
waiting time from notification until final settlement, Y is the eventual total 
claim amount ,  and Y~(J) is the amoun t  paid within v' time units after  the 
nohficat ion,  hence Y = Y'(V).  Hencefor th  we write Y' = { Y'(v ' ) ,0  < J < V) 
in short. 

We shall primarily have this si tuation in mind, but  note that o ther  
descriptions of  the claim history are possible and that the mark might be a 
complex entity comprising any piece of  informat ion appear ing in the claim 
record. The space o f  all possible claim outcomes is C = T × Z,  where 
T = [0, cx~) IS the tmle axis (business commences  at time 0) and Z is the set of  
all possible developments  

The clarets process of  an insurance business ~s a random collection of  
points In the claim space, {(T,,Z,)},=i.  ,U, N <_ oo, the index t indicating 
chronological  order  so that 0 < T~ < T2 < ... It xs assumed that the tames T, 
are generated by an inhomogeneous  Polsson process with intensity w(t) at 
time t > 0 and that the marks are o f  the form Z, = Zr, ,  where {Zt}t>0 is a 
family of  random elements in Z that are mutual ly  independent  and 
independent  of  the Polsson process, and Zt ~ Pzl~. We then speak about  a 
marked Polsson process wtth intenstty {w(t)}r> 0 and positron-dependent 
marking by {Pzlt}t>0, and write 

((T,, , U  ~ ?o(w(t) ,  ?zl,; t > o) 

In t roduce the total rtsk exposure 

W = lV(t)dt. 

We assume th roughout  that W < oo, having in mind the habflities o f  an 
insurance company  in respect of  (the finite) business written up to the 
present. The case with W = oo and Jo w(t)dt < cx3 for all finite .s, is treated 
by just chaining together independent  models for disjoint txme intervals with 
finite exposure.  

In the following Po(W) denotes the Polsson distr ibution with para- 
meter  W, which has e lementary probabil i ty  function 

m n 
po(n; W) = - - w e  -W , (2 1) 

/ 7 '  
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n = 0, l, ..., and Po(W, P) denotes the corresponding compound Pmsson 
dlstribuuon of a vanate X = y~]U=i Y~, where N ~ Po(W) and independent 
of the Y,, whmh are independent selectmns from the distribution P We 
adopt the standard notation Pf-~ for the probability d~stribuUon reduced by 
a mapping f,  that is, Pf - I{B} = P{w;f(w) E B} = P{f - I (B)} .  

B. Alternative construction of the process 

We set out by reminding of a basic result in (I). 

Theorem 1 (Norberg, 1993). The marked Potsson process {(T,, Z,)},=l, ,N can 
be constructed m two steps, first generating 

N ~ Po(W) 

and, second, selecting a random sample of N pairs from the dtstrtbutwn P~z on 
C given by 

w(t)dt 
PTz(dt, d z ) -  ~ Pzlt(dz), 

(t, z) E C, and ordermg them by the chronology of the occurrences 

For ease of reference we restate the proof, which just amounts to 
respecting the joint probablhty dlstnbutmn of the claims, recast as 

P{N = n, (T,, Z,) E (dt,, dz,), t = 1 , . ,  n} (2.2) 

= e- fo" w(t)a, --'i2i w(t,)dt,Pzl,, (dz,) (2.3) 
/=1 

W n  w i1 

- ~v e- n !HPvz (d t , , d z , ) ,  (2.4) 
t=l 

and recalling (2.1). 
We easily obtain a useful generalization of a result in (1). 

Corollary 1 to Theorem 1. Let f be a real-valued Junction defined on C and 
define the random variable 

N 

Xf = Z f ( T , , Z , ) ,  (2 5) 
t =  I 

Then Xf ,~ Po( W, P-czf -I), and the first three central moments of Xf are 

m )=fw(t)/f(t,z)kPz,,(dz)dt, k = 1,2,3. (2.6) 
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Proof" The distribution result follows from the fact that the sum on the right 
of (2.5) does not depend on the chronological order of the claims ( f  is 
independent of i) and therefore is &smbuted as the sum of N replicates of  
f (T ,  Z) that are mutually independent and independent of N. Then (2.6) ~s 
JUSt a standard result about the compound Poisson law. [] 

The probability distribution of Xf m (2.5) may be computed by standard 
methods for numerical evaluation of  total claims distributions. 

Note the hneanty property 

Xfl -4- .... q- X A : X f ,+  +A (2.7) 

Corollary 2 to Theorem 1 Let f '  and f "  be real-valued functions on C and Xf, 
and Xf. the corresponding compound Potsson vartates defined m accordance 
wtth (2 5). Then 

Cov(Xf, ,Xf .)  = f w ( t ) / f ' ( t , z ) f " ( t , z ) P z l ,  Cdz)dt (2.8) 

Proof Write 

1 
Cov(X:,, x : , , )  = ~ (Wr(X:, + x : . )  - V a t ( X : ,  - X:,,)), 

and use the hnearlty property (2 7) together with (2 6) and the identity 

I 
+f, , )2 (f, _f,,)2) = f , f , , .  ~( f f '  [] 

C. A general decomposition result and some complements 

Let C g, g =  1,2, , h ( < o q . ) _ b e  a parhhon of the claim space, that 
I |h  

: g - -  C ~' OIf ~'. is, CJg=l ~ - C and C g' A g~ -~ Introduce = 

z~ = {z ~ z ,  (t, z) c cq ,  

the set of  developments that make a claim occurred at Ume t a g-claim 
(belonging to cg), and 

T g = {t E T ;Pz i , {Z f }  > 0}, 

the time period (or more general era) where such claims can occur The 
process of g-claims is denoted {(T~g,z~g)},<,<N~ , g =  1, . ,h, where the t, mes T; ¢ 
are listed in chronological order. The follo-wTng result generalizes Theorem 2 m 
(I), which considered only finite partitions 



10 RAGNAR NORBERG 

Theorem 2. The component g-claims processes are independent, and 

~ > 0) ,  

with 
, : ( t )  = w( t )Pz l ,{z f} ,  

e~,(dz)- P~l'(dz) 
PzIt{Zf} 1 z'~(z) 

(2 9) 

(2.10) 

Proof For  finite h the p roo f  of  Theorem 2 m (I) carries over  without  
modification.  We sketch it here since it will be needed in the sequel Look  
back at the p r oo f  o f  Theorem 1. First, state the event appearing in (2 2) m 
terms of  the componen t  processes to rewrite the probablhty  as 

P { Q { N g = n g , ( T g , z g )  E(d~,dfi ,) ,  l = 1, ,ng}}. 

Second, use the fact that }--~g Pzlt{ZXt} = I for each t to rewrite (2.3) m terms 
o f  (2.9) and (2.10) as 

h(- n ) H e-Jo ,:(,)d, iC(q)dq/~l t~(dzg)  ' 
g=l t=l 

Finally, recast each factor in this product  m the same way as in (2 4) tO arrive at 

where 

('( w~)': IIk,:, ': ,f,)) e-W~':' H e~(d~,J 
I=l 

W g = w~'(t)dt, 

with wg(t) defined by (2.9), and 

(2 11) 

(2.12) 

PXTz(dt , dz) - wx(t)dt W--------Z-Pgzlt(dz), z E Zxt (2.13) 

The  result now follows from Theorem 1 and the product  form of  (2 11). 
For  t7 = oc, consider any fimte set o f  categories gl, ..,gq, and lump all the 

remaining categories into one category go, say. The result for the finite case 
apphes to these q + 1 categories, and it follows that the q componen t  
processes are independent  marked Polsson processes as specified m (2 9) - 
(2.10). Since the probabil i ty  measure is determined by the fimte-dimenslonal 
distributions,  the result follows. []  
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The result says that g-claims occur  w~th an intensity which is the claim 
intensity times the probabil i ty  that the claim belongs to the category g, and 
that the development  of  the clmm ~s governed by the condmona l  d l s m b u t m n  
of  the mark,  given that it Is a g-claim Accordingly,  the quant i ty  Wg in (2 12) 
may be termed the total exposure in respect o f  claims of  category g or just  
the g-exposure. Observe that P~-z in (2 13) is the condit ional  distribution of  
(T. Z), given that It is a g-claim 

PgTz(dt, az) - Prz(dt ,  m )  Icy(t, z). 
w,'/w 

Theorem 2 may be seen as a general result on so-called thinning of  
Poisson processes, which m its simplest form amounts  to throwing out a 
certain p r o p o m o n  of  the occurrences by some corn-tossing mechanism 
independent  o f  the process itself See e.g Kar r  (1991). 

The following result is a &rect  consequence o f  Theorem 2 (and previous 
results): 

Corollary 1 to Theorem 2. Let C g, g = I, 2 , . ,  be a par tmon q f  C and, for  each 
g = I, 2, . let f g  be a real-valued Junction on C g Then the correvpon&ng 
compound  Polsson vat iales 

N~ 

r=l  

g = 1, 2 . . . .  are mutually independent 

The following reformulat ion presents an interest o f  its own 

Corollary 2 to Theorem 2. Let fg ,  g = 1 2, be a sequence o f  real-valued 
Juncttons o,, C vatls£vmgf*e (t, z)fg" (t, z) = b for g' :~ g" Then the correspond- 
mg compound Polason varlates Xf, ,  g = 1,2, ..., are mutual O, independent 

Remark  By Corol lary  2 to Theorem I, we knew beforehand that the Xf,, are 
uncorrelated.  

Proof  Define C g = {(t, z); fg ( t ,  z) ¢ 0}, g = 1,2, , and note that these sets 
together  with C o = {(t ,z);  f g ( t , z )  = 0, g = 1,2, . } form a part i t ion o f  C. 
The result follows upon rewriting each XU, as 

N x 

= zf) 
i= l  

and invoking Theorem 2 and Corol lary  1 to Theorem !. []  

Before proceeding,  we present a small auxiliary lemma whose p r o o f  is 
obvious.  



12 RAGNAR NORBERG 

Lemma. S u p p o s e { ( T , Z ; ) } , = .  N "~ P°(w(t ) ,Pz . I , ;  t > 0), a marked Poisson 
process on T x Z *  Let ~ be a function defined on Z* and with values in 
Z ,  and denote the transformed marks by Z, = ( (Z~) .  Then 

{( T t , z ' ) ) ,= l ,  , N  ,-.a P o ( w ( l ) , P z l t ; l  > 0 ) ,  

a marked  Potsson process on T x Z,  wtth 

Pzt, = Pz.l,~ -I (2 14) 

A standard result, known as the amalgamat ion theorem for compound 
Polsson claims processes, goes as follows: Let xg ,  g = 1, ..,h (< oo), be 
independent compound  Potsson processes, that is, each X g is of  the form 
xg( t )  = ~ffT_"l t) Yjg, where N g is a homogeneous Polsson process with claim 
intensity wg, and the individual claims amounts  Yf are independent 
selecuons from a claim size distribution px and, moreover, independent of  
N g Then the nrocess X = 5 -'h , x g  is a comoound  Poisson process with 

z...ag= I r ' h 
clama intensity w = ~-'~-I wg and claim size distribution P = w -~ ~--~g-i wgPg. 
This generahzes to the following, which appears as a partial conve?se of  the 
decomposit ion Theorem 2, but really is ~mplied by ~t" 

Theorem 3. Suppose {(T,g, zg)},_, U, "~ P°('**(t),Pgzlt; t > 0), g = 1, ...,h, 
are a f imte  number o f  mutually-independent marked  Potsson processes on 
T ×  Z.  Then the amalgamated process {(T,,Z,)},=I, N, obtained by 
assembhng the claims oJ the mdlvtdual processes, ts also a marked Potsson 
p,'ocess o ,  7- × z ,  and {(T,, ~ Po(w( t ) ,  ez l , ,  t > 0), w , h  

h 

w(t) = Z ,~g(t), (2 15) 
g=l 

1 ~ ~,~(t)Pgzl,(dz). Pzlt(dz) = w(t) g=l (2 16) 

Remark" The claimed result is precisely what one would expect The 
property of  " independent  part i t ions" carries over from the mdwidual  
processes to the amalgamated one and suggests the Potsson property of  the 
occurrences of  the latter. Furthermore,  (2.15) says that the total probabihty 
of  a claim occurrence in a small time interval is the sum of  the corresponding 
probabdlt~es for the indxvidual processes, and (2.16) states that a claim 
occurred at tmae t is from the g-th mdw~dual process with probabihty 
~g( t ) /w( t ) ,  m which case the mark is generated by the mark distribution of  
that process [] 
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Proof" Anticipating the result, start from a marked Pmsson process 

{(T,, ZT)},=l ' .N "~ Po(w(t), P*z.lt;t > 0) (2.17) 

on C* = 7- x Z*, where Z* = {l, ,h} x Z a n d  

P*z'l'(g'dz) - w(t) Pgzl'(dz)" (2 18) 

The generic mark of this process is Z * =  (G,Z) ,  the original mark 
augmented with an index for "type of claim". It is seen from (2.18) that a 
claim occurred at time t is of  type G = g with probablhty wg(t)/w(t) and, 
given this, the Z-part of  the mark is generated from Pzlt  

Now, on the one hand, applying Theorem 2 to the 8ecomposltmn of C* 
by claim type, C *g = {(t',g',z'), g' = g}, g = l,.. . ,h, we readtly find that the 
component processes have the distribution properties of the mdwidual 
processes as specified in the assumptions of the present theorem, and so we 
can as well let the latter be constructed as the component processes in the 
present model (2.17) - (2 18). 

On the other hand, ~t is reahzed that m the present model the 
alnalgamated process is obtained from {(T,,Z~)},=i ' N upon leaving the 
type G unobserved or, m the terms of the lemma above, considering the 
process with marks transformed by ¢(g, z) = z Under this simple mapping 
the probability dlsmbutlon m (2 14) is j u s t  the marginal dlstrlbutmn of Z in 
the dlstrlbutmn of (G, Z) given by (2.18), which is precisely the one defined 
m (2.16). Thus, the lemma completes the proof. [] 

We round off this paragraph w~th an alternative proof  of  Corollary 2 to 
Theorem 1. It makes use of the decomposition theorem and, moreover, 
serves to demonstrate a useful technique: 

Second Proof o f  Corollao~ 2 to Theorem 1 Suppose the results holds for 
indicator functions f '  and f " .  Then, by the blhnearlty of the covarlance 
operator, ~t also holds for linear combmatmns of  mdmator functmns. Since 
every (measurable) non-negatwe function is the monotone limit of  hnear 
combinations of snnple functions, the result extends to non-negative 
functions f '  and j "  by the monotone convergence theorem. Finally, since 
any functmn is the difference of ~ts posture and negative parts, the result 
extends to general functmns 

Thus, it suffices to prove the result f o r f '  = I c, and f "  = lc,, where C' and 
C" are subsets ofC. Smeef '  and f "  are binary, the f u n c t l o n s f ' f " . f ' ( l  - J " ) ,  
and f " ( l - f ' )  satisfy the "orthogonahty" condition in Corollary 2 to 
Theorem 2, hence the corresponding compound Po~sson varlates are 
independent. By the hnearity property (2 7) Xf, = Xf,j,, + Xf,(l_f,,) and 
Xf,, = Xf, f,, + Xf,,(l_f,). These things together imply that 

Cov(Xf, ,Xf, ,)  = Var(Xj,f , , )= / w ( t ) f  ( f ' ( t ,z) f"( t ,z))2Pzlr(dz)dt ,  
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where we have made use of  (2.6). Now,  s lnce f ' f "  is binary, It equals its 
square, and we arrive at (2.8). [] 

Results hke Corol lary  2 to Theorem 1 are valid for more general marked 
pointed processes, see e g Kar r  (1991) The present proofs  are worth 
report ing since they are simple thanks to the fact that "everything is 
independent  of  everything else" m the Poxsson scenario. 

3 APPLICATIONS 

A. Notation 

In the following we will frequently use no tauon  per ta lmng to the situation 
where (U, V. Y) belonging to a clmm occurred m time t has a joint  density 
Puvyl,(u, v,y) with respect to Lebesgue measure In a self-explaining way we 
denote  marginal densmes by e.g. PYIt(Y) and condmona l  densmes by e.g. 
PUIO (u) If  PzIt is independent  of  t, we speak about  trine-independent marks 
and drop  t from the subscript 

B. Decomposition by claim amount; franchise and reinsurance 

F x x 0 - - - m 0 < m l  < . . . a n d ,  f o r e a c h g  = 1,2 . . . . .  let 

c ~ = { (n  z);m~_, < y _< m~,} 

be the set of  claims with amoun t  in the interval (mg_l,mg]. The 
corresponding componen t  processes are independent,  with lntensmes and 
mark distributions given by 

fD 
~ l g  

wg(t) = w(t) PYit(y)dy, 

PzI, (c/z) 
P~l,(dz) = f,,,~i~ pvl,(y)dy 1(,,,~ ,,",dO')' 

In particular,  for a fixed m, let the two sets CS= {(t,z),y <_ m} and 
C e = {(t, z),y > m} decompose  the business into "smal l"  and " la rge"  claims 
We may interpret  m as the deductxble part  by minimum franchise or first risk 
in the context  of  direct insurance or as the retentton level m the context  of  
excess of  loss reinsurance. 

Pursuing the latter interpretat ion,  consider a reinsurance treaty under  
whxch the cedent and the reinsurer c o v e r j ' ( t ,  z) and ["'(t, z), respectwely, o f  
a clmm occurred at Ume t and w~th mark z. The covarlance between their 
total losses is gwen by (2.8), and their means and varmnces are gwen m 
Corol lary  1 to Theorem 1 
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For  Instance, for quota  share reinsurance we have f ' ( t , z ) =  ky and 
f"(t ,  z) = (1 - k ) y  so that,  with t ime-independent  marks,  the covarlance is 
simply 

Wk(l - k)E[ y2]. 

For  excess of  loss reinsurance we have f ' ( t , z )=min (y ,m)  and 
f"( t ,z)  = m a x ( y - m , 0 )  and, since the product  of  these functions Is 
I(m,oo)m(y - m), the covanance  is 

WmE[l(m,oo)(Y-m)] = Wm (I - Pr(y))dy. 
I 

The  results carry over  to business m respect of  hmlted periods of  exposure 
by just letting the integral with respect to t range over a suitable period of  
time. This aspect comes up next. 

C. Decompos i t ion  by year of  occurrence 

As accounts  are typically kept on an annual  bas,s, we shall now decompose  
by year, and take calendar  year j to mean the time interval ( j -  1,j ]. The  
" c o h o r t "  of  clmms occurred in y e a r j  ms 

o = { ( t , z ) ; a  - < t _ < a } .  

The total claim amount  in respect of  such claims Is a co m p o u n d  Polsson 
vartate with frequency parameter  

W j = w(t)dt 
• [ 

and claim size density 

1 f.J 
ply (y) = -W7 ./j_, w( t)p Vl, (y)dt. 

In particular,  in the homogeneous case with t ime-independent  marks and 
constant  Polsson intensity, w(t) = w, we have 

wJ = w, P 'r  = p v .  (3.1) 

Decomposi t ion  by cohor t  pertains to reinsurance on the basis o f  
underwrit ing year Under  a contract  specifying that the reinsurer covers 
f (v)  of  any claim of  size y occurr ing m year j ,  the reinsured part  o f  the total 
claim amoun t  is distr ibuted In accordance with (WJ ,pJyf-I) 
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D. Decomposition by year of notification 

Next, consider claims reported m year j, 

C J =  {(t,z), 0 < t < j , j - l - t < u < j - t }  

If claims are settled immediately upon notification, this decomposition 
pertains to reinsurance on the basis of accounting year. 

The total claim amount m respect of these clmms Is a compound Poisson 
variate with frequency parameter 

w J  = w(t) pvl,(u)clu dt 
I--t 

and clmm size density 

p~.(y) ---- - -~  w(t) PuYl,(u,y)du dt 
1-t 

Interchanging the order of the integratmns m the expressmn for W"J 
above, we find 

W J = p U ) ( U  w(t)dt du.  
1 - u  

Slmdarly we recast p~, as 

1 f0J [ J - "  = w(t)dt du. P~'(Y) - ~  PUYIt(u'Y) J;-I-,, 

Consider again the homogeneous case with time-independent marks and 
constant Pmsson intensity, w. Le t tmgj  increase, the expressions above tend 
to 

W J = w, pJy(y) = PY(Y). 

Comparing with (3.1) we conclude, loosely speaking, that for a statmnary 
insurance business the habfl~ty m respect of occurrence year is the same as 
the habdlty m respect of accounting year. This conclusion carries over to the 
reinsurance businesses that motwated the two types of decomposluon. 

E. Decomposition by year of occurrence and year of notification 

The set of claims occurred in year../and reported in year / + d is 

c g d = { ( t , z ) ; j - - I  < t < j , j + d - l - t < u < j + d - t }  
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The total claim anaount in respect of such claims is a compound Polsson 
variate with frequency parameter 

~ +d-t 
W # = w ( t ) / J  pul,(u)du dt 

I J j + d -  I - t  

and claim size density 

1 / /j+d-t 
F/~(Y) - 147J't dj-/ t w(t) puyl,(u,y)du dt. Jj+d- 1 -t 

Note that, even if Pzlt should be independent of t , p / /may  vary withj  for 
fixed d due to possible variations in the shape of the intensity w(t) from one 
year to another. This effect has been studied by Hesselager (1995). 

F. Connect ion to the discrete time model 

In Norberg (1986) the author launched a model which is a discrete time 
rudiment of the present one. It was assumed that claims are settled 
immediately upon nonficanon (or rather m the same year). An issue xn that 
set-up was how to specify the distribution of the size of a claim that occurs m 
year j and is reported d years later Leaving the possible dependence on j 
aside, we need to specify claim size distributions P'~, for delay tmles d = I, 2, 
It appears that the discrete time set-up allows for no other approach than just 
specifying these d~stnbunon directly, possibly starting from some standard 
parametric clama size distribution and letting the parameters be some 
parametric functions of d 

The continuous time model creates another and, from an aesthetic 
viewpoint, more pleasing possibility. A parametric specification of the 
continuous tmae model, which may be supported by physical reasoning, will 
automatically reduce a parametrizanon of the discrete rime model We shall 
illustrate this by a smlple example, assuming now that w(t) is constant. 

Let Ga(a,/3) denote the gamma distribution with shape parameter c~ and 
inverse scale parameter/3, both posmve, which has density 

/ 3~' ~-I -~, 
ga(y; a, 13) = ~ ( ~ y  e I(0,oo)(Y). (3 2) 

Assume that the joint dlstnbunon of (U, Y) Is such that 

py(y)  = ga(y; c~,/3) 

and 

pub,(u) = ga(u, 1, #y) = fo, e-'°'"l(0,~)(u) 
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(an exponential distribution), implying that large claims tend to be reported 
more promptly than small claims We easily find that U has a scaled and 
shifted Pareto dlstrlbutnon with density 

#o43" 
pu(u) - (I-tU +/3) °+I l(°'°°)(u)' 

(It IS seen that E[U k] < oe for - i  < k < a.) 
Some easy calculations lead to the following expression for the 

distribution of  Y for a jd-claim as defined in the previous paragraph (by 
assumption it does not depend on j): 

p~ (y) = 2qSdfd (y) -- qba+~ 7d+ t (Y) -- qSd- 1 7 d -  I (Y) 
2~d - qSa+] - ~,t-n 

where 

7J(Y) = ga(y, c~ - 1, Izd +/3). 

Thus, we end up with a mixture of  gamma distributions, which 
mathematical ly tractable. 

is 

G. Inflation and discounting 

As a final example of  the apphcabihty of  the general theory, suppose the 
insurer currently invests (or borrows) at a fixed rate of  interest 6. Then, 
taking our stand at a given time r, nt may be relevant to consider the value of  
the claims payments  in [0, r] accumulated wnth compound interest, 

X a =  ~ f ( V , , Z , ) ,  
I 

where 

r - T - U  

f ( T , Z )  = l[0,~l(T + U) e x p { ( r -  T -  U-v')~5}dY'(v ') .  
J0 

Again we can conclude that X" ns a compound  Poisson vanate,  which m 
principle )s simple The claim size dnstnbuuon may m this case be a bit 
complicated, though,  but it could be simulated in any case. 

Inflation at rate 3 can be accommodated  m the model e.g. by letting 
PY'[tu,9' be the &strlbutlon of  Y'(C)= fL Q elexp{ (t+u+v")~}dY°(v"),O_<v' <v, 
where Y° us a process with some distni~uhon P")'°I,,,,' independent of  t. 
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A. Modelling the claim developments; general considerations 

We now turn to the issue of modelling the mark distribution PzIt. To avoid 
blurring the pmture, let us assume independence of t and denote by Pz the 
distribution of the generic mark Z = (Y, V, Y, Y'). (Various forms of time 
dependence due to trends In risk conditions and mflatmn can be obtained by 
trivial reparametnzation and scaling.) 

Presumably, it will be felt that (U, V, Y) are the primary characteristics of 
the claim (they tell us "'what kind of claim it is") and that the partial 
payments Y' are secondary, more or less explained by (U, V, Y) Then it IS 
natural to construct Pz in two steps, specifying first the marginal 
distribution of (U, V, Y) and, second, the conditional distribution of the 
process Yt, given (U. V, Y). 

One convenient choice of Purr ~s the trivarlate Iognormal distribution. It 
has 9 parameters (3 means and 6 variances or covariances) and may be 
viewed as a fit model based on moments up to second order. If experience 
and physical reasoning would dictate a more sophisticated model, one would 
typmally regard Y as the basic entity and specify first the marginal 
distributions Pr and, second, the conditional distribution PuvlY- The 
candidate models are countless and, hawng no particular applicatmn In 
mind, it does not make any sense to list some dozens of them here. 

We shall focus on naodelhng the condltmnal distribution of Y', given 
(U, V, Y). One possible way of building this model ~s to put 

Y'(v') = Q(~//V) Y, (4.1) 

where {Q(s), 0 < s < 1} is some stochastic &stributmn function on [0, 1], 
stochastically independent of (U. V, Y). This kind of model is suitable if the 
shape of the partml payments process is independent of other claim 
characteristics, roughly speaking. Again there are many can&dates; any 
stochastic process X that ~s non-decreasing, right-continuous, and such that 
0 = X( -co )  < X(co) < co, produces a stochastm distribution functmn Q on 
the real hne g defined by 

Q(s) = X(s)/X(co) (4.2) 

B. The Diriehlet process 

A convenient choice of X in (4 2) is the gamma process defined as follows. 
Let ~ be a scaled distribution function on R. (i.e. &(s)/&(co) IS a distribution 
function), and let X have independent increments such that 

x ( s )  - X ( r )  ~ ca( (s) - 
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for r _< s (confer (3.2)). That  X is well-defined this way follows from 
Kolmogorov ' s  consistency condmon and the convolutmn property of  the 
gamma dlstr ibutmn (to be described below). The inverse scale parameter/3 is 
mlmaterial in the construction of  Q by (4 2), of  course, and could be set to 1. 

Now, let - o o  = so < Sl < ... < sk = cxD be a finite partition of  ~ ,  and 
abbreviate % = c~(s,)-  c~(S,_l), i = l , . . . ,k .  Starting from the independent 
gamma varlates X, = X ( s , ) - X ( s , _ l ) ~ G a ( c q , / 3 ) ,  t =  1,. . . ,k, one easily 
finds that the fracuons 

Q, = Q(s,) - Q(s,_l) = X(s , )  - X(s ,_t)  
' 

i = 1 . . . . .  k, are independent of  X(oo), that X(oo),- ,  Ga(o~(oo),/3) (of 
course), and that  (Q,, ..,Qk)"-" Dir(oq, ,c~k), the Dirichlet distribution 
with density 

k 
T-r al-I 

dir(ql ,  - ,qk;  O'l,.-.,O~k) -- H~=l I-'(~])./=lllqJ ' 

qa > 0 , , / =  1,. . . ,k, q l +  . + q k =  I. In particular (taking k = 2), 
O(s) ~ Be(c~(s), of(co) - on(s)), where Be(or,/3) is the beta d , s tnbuuon  with 
density 

F(oe +/3) q~'-' (1 - q)O-, 
be(q; a,  fl) -- F(a)F(/3) 

0 < q < 1. The stochastic process Q thus defined ~s called the DIrichlet 
process with parameter  a = {a(s), s E g } ,  and we write Q ,-~ Dir(a).  The 
Dmchle t  process plays an important  role m nonparametr ic  Bayesmn 
analysis, see Ferguson (1972). 

The moments  of  Q(s) are easdy calculated. In particular, 
E[Q(s)] = oe(s)/a(oc),  showing that the expected value of  Q is just a normed 
to a probability dlstrlbut,on, and Var[Q(s)]=E[Q(s)]( l -E[Q(s)]) / (oe(cxz)+l) ,  
showing that the total mass of  oe ~s a measure of  the precision of  the process 
Q; a large value of  oe(~) means httle randomness In Q 

The condmonal  Q-dls tnbutmn on an interval (a, b] is 

Q(s[(a, b]) - Q(s) - Q(a) X(s )  - X(a)  
Q(b) Q(a) - X (b )  - X(a)  ' a < s < b. 

Putting X ( s ) - X ( a )  and X ( b ) - X ( a )  m the roles of  X(v) and X(oo), 
respectwely, in the constructmn above, the whole story repeats itself We 
find that Q(s](a, b]) ,~ Dlr(c~(,,,h]), where o~(,,.h] ms the restrictmn of  c~ to (a, b], 
and that it is independent of  X ( b ) - X ( a )  and X(r) for r~(a,b] Thus, 
conditional Q-distributions on d~sjomt intervals are independent Dmchlet  
processes. 
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C. Predicting the outstanding part of Dirichlet type payments 

We adopt  the general model m Paragraph A above with partial payments  Y' 
of  the form (4.1), where Q ~  Dlr(a).  Of course, m this context c~ is 
concentrated on the unit interval [0, I], l e. 0 : O~(0--) < a ( l )  = O~(CX)). 

Let r denote the present t~me and consider a reported but not settled 
claim occurred at time t < r ,  notified with a delay U = u < r - t ,  hence 
V > v' = r - t - u, and for which we have observed the partial cumulative 
payments Yt(vj) a t  development times 0 < 'ol < .. < vk = v'. Denote all this 
reformation by 5 c'.  The natural predictor of  the outs tanding payments  on 
the claim Is 

E [ Y I T ] -  r ' (v ' ) .  (4.3) 

It Is unbmsed per definition. More generally, by the law of  iterated expectation, 
any predictor of  the form E[Y]Y'"] - Y'(~/), with 7 '  C 5 c',  Is unbiased. 

To obtain an expression for (4.3), let us derive the joint  distribution of  the 
random variables involved. The quantities 

U, V, Y, {Y'(vj); j = l, ,k} 

correspond one-to-one with 

where 

U, V, Y, {Qj; j = 1,. . . ,k}, Y'(v ' ) ,  (4 4) 

Y'(vj)  - Y ' (v j_ , )  Q ( v j / V )  - Q ( v / _ , / v )  
QJ = Y'(v') = Q ( v ' / v )  

(recall (4 1)), with the interpretation v0 = - ~ .  By use of  the results m the 
previous paragraph,  we find that the joint density of  the varmtes in (4 4) is 

p,,, ,,~ (t,, v ,y ,  ql, . . . ,  qk,Y') = p(u, v , y ) ×  

be y ,  o~ - a  )~, 

O < u, O < % O < f _~ y, qj > O, j = l , . . . , k  and ql + ... + qk = l, for 
0 < v~ < < vk = ~J Thus, we obtain the following expression for the 
first term m (4 3)' 

E[Y[.Y"] fy>¢ f,>,/YPv,, ,v , (u,v ,y ,  ql, . . ,qk ,y ' )dv  dy 

Numerical techniques are required to compute this fairly 
complex expression. It ~s the double integrals that represent the hard 
part of  the problem, and so it does not bring any great computat ional  
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relief to skip the information contained m the fractions Q/, J = 1, .  ,k. 
In fact, since the Qj are expected to reproduce their conditional means 
( c ~ ( v j / V )  - c~(Vj_l/V))/c~(,c//V), they may provide valuable reformation on 
V and, thereby, also on Y ~f the shape of c~ differs significantly from the 
uniform d~str~butlon 

Pursuing these considerations, we note that also the remaining tlme until 
settlement may be predicted on the basis of,T" The predictive distribution of 
V has density 

. . . .  (u, q , , . . ,  y ' )dy  

J'v>J [,;,>,/ Po,. ,~,~ (u, v~',Y, q l ,  . , qk, y ' ) d z / ' d y  

We round off this paragraph with a few words about the aptness of the 
Dinchlet process as a description of the partial payment process. The 
Dlrlchlet process is purely discrete and has mfimtely many jumps m every 
interval where the continuous part of oe has strictly positive mass, see 
Ferguson (1972) Admittedly, such path properties do not comply with the 
behawour of real hfe payment streams, which certainly also are purely 
discrete, but have isolated jumps. However, such myopic considerations may 
be subordinate to the important fact that the D~nchlet process is able to 
depict virtually any conceivable pattern of payments by suitable choice of c~. 

D. Mixed business; a brief sketch 

In some practical apphcat~ons of the theory the data analysis suggested that 
the claim size distribution P r  be bimodal and m some cases even 
mult~modal. A closer examination of claim records uncovered that claims 
were of different types, e g m accident insurance they could be permanent 
inJury (disablement), medical bills, or tooth damage. It also turned out m 
some cases that the claim type would be established at some tmle between 
notification and final settlement. Such situations can be dealt with by 
augmenting the mark w~th an index G for type as m the proof of Theorem 3 
and, possibly, also a waiting time V* from notification until the type comes 
to the case-handler's knowledge (V* _< V) 

Prediction of mr-and cm-clalms goes as before. Prediction of outstandmg 
payments on rns-cla~ms goes basically along the same lines as m the previous 
paragraph. After the type ~s known one uses the predictor above, only with 
type G = g  and V*=,o* included in the conditioning. Until the type is 
known one has to integrate out these varlates, summing over all g and 
integrating over v* > v' along with integrating over ~ > 't/. 

Finally, we note that observable covar~ates can be included in the analys~s 
by a suitable extension of the mark, confer Section 7 m (1). 
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A. The process of reported claims 

Just to keep notation simple, let us assume for the time being that the 
waiting time distribution Pulr is absolutely continuous with density Pvlt 

We now change the point of view and order the claims by time of 
notification. Thus, for the generic claim (T, U, V, Y, Y') we take the time of 
report 7" = T + U as the time and, accordingly, let the remainder of the 
claim characteristics, 2 = (T, V, Y, Y'), constitute the mark. This way we 
get a process 

{ ( L , L ) } , = , ,  ,N (5.~) 

on 7- x 2,  defined m an obvious manner. Very convemently, we have the 
following result, which is easy to interpret: 

Theorem 4. The process m (5.1) ts oj marked Potsson type, 

> o), 

with mtenstty 

~;(t) = .f0 w(s)pvt,(t - s)ds, (5 2) 

and tune-dependent mark dtstributton gtven by 

a;(7) _ 
~l~(a'.~) = -~-pr t~( t )dr  evvy ,  l,,7_,(dv, dy° dy'), 

w(1)pul,(i - t) 
'~Tt~(t) = J~ ,,;(s)pul,(~ - s)d~ 

where 

(5.3) 

(5.4) 

Proof The key to the proof is the representation Theorem 1. In the setting of 
that theorem, the "tilde" process is obtained by just representing the 
generic claim C = (T, U, V, Y, Y') equivalently as C = (T, T, V, Y, Y'), 
that Is, transforming (T, U) to (T, T ) =  ( T +  U, T). Under this transform 
the density of (T, U), which is 

w(1) 
W Pul ' (U) '  t > O, u > O, 
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gives rise to the following density of  (T, T) at (t, t), 0 < t < 7" 

w p u i , 0  - t )  = 

This estabhshes (5.3), since the conditional distribution of  the rest of  the 
mark is unaffected by the t ransformauon - j u s t  insert (t,u)= (t ,~-t)  in 
PvYY'l,,. Inspecting (5.3), noting that f o  f~'(~)d~ = W, and comparing with 
Theorem 1, we arrive at the conclusion. [] 

Another  route to (5.2) goes as follows. Starting from the original process, 
fixing t, and applying the decomposit ion theorem to the claims reported 
within time t, we know that they form a marked Polsson process with total 
exposure 

t "  
wr(~) = Jo w(t)evl ,  O - t)at 

Dlfferentmtlng with respect to t and using the fact that Pvl,(0) = 0, we find 
again that the intensity of  reports at any time ~ ~s gwen by (5.2) 

B. The chicken and the egg 

People w~th a statistical background might be Inchned to take the flow of  
observable events as basic and, accordingly, claim that one should start from 
the tilde process and let the T,, not the T,, take the role of  the times 
Paragraph A above tells us that, from a mathematical  point of  view, either 
way is fine, and that it is not important  to discuss which came first, 
occurrence or notification; we remain m the marked Po~sson scenario 
anyway The author 's  opinion ~s that, at the stage of  specifying the 
distributions, it is easier to let maagmatton start from the occurrences and 
build the model from there. 
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