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ABSTRACT

The threc annual 2}% interest coupons of the Winterthur Insurance
convertible bond (face value CHF 4 700) will only be paid out if during their
corresponding observation periods no major storm or hail storm on one
single day damages at least 6000 motor vehicles insured with Winterthur
Insurance. Data for events, where storm or hail damaged more than [ 000
msured vehicles, are available for the last ten yecars. Using a constant-
parameter model, the estimated discounted value of the three WINCAT
coupons together 1s CHF 263 29 A conservative evaluation, which accounts
for the standard deviation of the estimate, gives a coupon value of CHF
238.25 However, fitting models which admit a trend or a change-pont,
leads to substantially higher knock-out probabilities of the coupons. The
estimated discounted valucs of the coupons can drop below the above
conservative value, a conservative evaluation as above leads to substantally
lower values. Hence, already the model uncertamnty 1s higher than the
standard deviations of the used estimators This shows the dominance of the
model nsk Consistency, dispersion, robustness and sensitivity of the models
are analysed by a simulation study.
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|. INTRODUCTION

The Swiss insurance company Winterthur Insurance has launched a three-
year subordinated 2%% convertible bond with so-called WINCAT coupons,
where CAT 1s an abbreviation for catastrophe This bond with a face value
of CHF 4700 may be converted into five Winterthur Insurance registered
shares ! at maturity (Europcan-style option) between the 18th and 24th of
February 2000 The annual interest coupon of 271% will 1101 be paid out 1f on
any one calendar day during the corresponding obscrvation period for the
coupon at least 6 000 motor vehicles insured with Winterthur in Switzerland
are damaged by hail or storm (wind speeds of at least 75 km/h) If the
number of insured motor vehicles changes by more than 10%, then the
knock-out linmt of 6 000 claims will be adjusted correspondingly.

' Due to the merger of Winterthur Insurance and Credit Suisse Group on December 15th, 1997, the
bond may be converted nto 36 5 Crédit Swisse Group registered shares at maturity Due to the
conversion right and the nsing market value of the Winterthur Insurance registered shares (see [20]).
the convertible bond offered a good investment oppottunity during its first few months
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Had Winterthur launched an identical fixed-rate convertible bond, then,
according to Crédit Swisse First Boston's brochure [3], the coupon rate
would have been around 0.76% lowcer (approximately 1.49%). In other
words, the mvestor recerves an annual yield premium of 0.76% for bearing a
portion of Winterthur’s damage-to-vehicles risk This convertible bond 1s
intended as an istrument to diversify portfolios. The WINCAT coupons are
very suitable for this purpose. because storm and hail damages have only a
very small correlation with traditional financial market risk The European-
style conversion right, however, strongly ties the bond to the financial
market. It 1s the mtention of Winterthur Insurance to test the Swiss capital
market for such products. make investors acquainted with them. and obtain
a partial remsurance through the financial market by securitizing a portion
of 1ts damage-to-vehicles nsk.

Within the range of designs of catastrophe bonds, the Winterthur
Insurance convertible bond with WINCAT coupons “Hail”" belongs to the
more conservative ones, namely the principal-protected catastrophe bonds.
Besides the pure catastrophe bonds, where the coupons and the principal are
at risk, another more conservative variint are the deferred catastrophe
bonds, where no payment as such is at nsk. but the payments may be
deferred This gives the 1ssuer of such a bond an interest-free credit in case of
a catastrophe

Two gwding principles for specifying the conditions of the WINCAT
coupons were simplicity and absence of moral hazard. For the purpose of
remnsurance, 1t would have been interesting for Winterthur Insurance to
include a knock-out mit connected to the total number of claims during an
observation period. To reduce moral hazard, damage arising from a natural
cause was chosen as the triggering event, and the knock-out limit 1s tied to
the number of claims and not to the capital necessary to pay full indemmty
to the insured If an event with at least 6000 claims occurs, then Winterthur
Insurance saves the corresponding 2‘—"% coupon Interest payment on 399 5
mtlion Swiss francs, which makes CHF 8988 750 at the corresponding
coupon date On the other hand, according to Winterthur Insurance, CHF
3000 have to be paid out per claim on the average for motor vehicles
damaged by storm or hail Therefore, when an event with at least 6000
claims occurs, Winterthur Insurance can expect to save up to 50% by means
of the WINCAT coupons — a profit from a knock-out event seems extremely
unhkely A possible problem with the knock-out hmit can be borderline
cases of events with about 6 000 claims when a few insured do not know the
exact date of the damage (because they have been on holiday, for example)
A way to moderate the severity of such a problem would be a hnear
reduction of the coupon interest rate from 2%% to 0% between 5000 and
7000 claims. However, such a specification would make the product more
complex and the statistical analysis for the coupon pricing even more
mvolved

This study was made posstble by the willingness of Winterthur Insurance
to collect and publish the relevant available historical data on the web page
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[19] as well as 1in Crédit Suisse First Boston’s brochure [3] and thereby to set
standards tn product transparency, fairness of pricing and 1nvestor
educauon. This enables a scientific discussion of such products and their
corresponding pricing methodologies, which 1n turn helps to enhance
transparency and acceptance of such products To satisfy this aim and to
build up the confidence of investors, the various sources of risk of such new
products should be made explicit to avoid unpleasant surprises The present
paper seeks to make a contribution 1n this direction with emphasis on
education Since convertible bonds are well-established securities 1n the
market. a lot of information concerning Winterthur Insurance s contained
in the legally binding prospectus [18], which helps the investor to judge the
default nsk and the possible profits from the European-style conversion
right. However, no information (other than the exact legal specification) for
estimating the knock-out probability of the WINCAT coupons 1s given in this
legally binding prospectus; in particular, there s no historical data on the
subject 1n the prospectus Apparently, Winterthur Insurance and Crédit
Suisse First Boston have been aware of this deficiency, hence their decision
to publish [3] and to make the historical data available on the web page [19].

This paper will focus on estimating the risk ansing from the WINCAT
coupons, with emphasis on the model risk which 1s not addressed in [3]. For
a discussion of the various disguises of model risk, we refer to [4]. Based on
the available historical data, we shall present and work out several models
and calculate the discounted value of the WINCAT coupons in every case for
an easy comparison of the various resulis For the pricing of the European-
style option for converting the bond into Winterthur Insurance registered
shares, we refer to [3]. We should mention here, that the current value of the
call option depends on the knock-out probabihity of the last coupon, because
the exercise price of the call option 1s either CHF 4 805.75 (face value of the
bond plus last coupon), if the last coupon 1s paid, or simply the face value of
CHE 4700, 1f the last coupon 1s knocked out

To estimate the risk of the WINCAT coupons, a 10-year history of damage
claims 1s provided in [3] and [19], see Tablc 1.1. During this period, a total of
17 cvents with more than 1000 damaged vehtcles were registered. Of these
events, 15 happened during the summer and two were winter storms. None
of these events occurred between 1987 and 1989. Only two of the events,
which happened on the 21st of July 1992 and the 5th of July 1993, caused at
least 6000 claims. Without any sophisticated modelling, this suggests a
knock-out probability of 20%, 1.e., the expectation of the annual coupon
payment would be 80% of the 2%% WINCAT coupon, which 1s an expected
annual yreld of 1.8% Of course. as mentioned in [3, p 1], this estimate has
little statistical significance.

In Section 2 of this note. we present and briefly discuss the available
historical data Section 3 contains a critical review of a simple binonual
model. In Section 4 we give a review of the constant-intensity model to
esiimate the discounted value of the WINCAT coupons. We discuss several
distributions which can be used to obtain an estimate for the probability that
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an event causing more than 1 000 adjusted claims actually leads to the knock-
oul of the coupon These distributions include the Bernoulh distribution, the
Pareto distribution (used 1n [3]) and finally, as suggested by extreme value
theory, the generalised Pareto distribution According to [I18] and
Winterthur's web page [19], the length of the observation period for the
first coupon 1s not an entire year as assumed n [3]; therefore we recalculate
the discounted valuc of the WINCAT coupons also for the cases already
considered 1in [3] In Section 5 we test the constant-parameter model with
respect Lo over-dispersion and time-inhomogeneity. Since the historical data
set 1s small, we can calculate the corresponding probabilities under the null
hypothesis exactly and do not nced to utihise asymptotic results for these tests.

TABLE | |

CLAINM NUMBERS OF PAST FVENTS C AUSING OVER 1000 ADJUSTED C LAIMS AS PROVIDED IN [3] AND [19]
DURING 1987 1989 SUCH LVENTS DID NOT OCCUR SINCE THE NUMBER OF MOTOR VEHICLES INSURED WITH
WINTERTHUR 1LNDS TO INCREASE FORMER ACTUAL CLAIM NUMBERS ARE SE1 INTO RELATION WITH THI. NUMBLR
Ot INSURID VI HICLES TO OBTAIN THE NUMBER OF ADJUSTED CLATMS

Number of Vehicles insured

Year Date Event . . Adjusted clainn

claims index
1987 1 248
1988 1 204
1989 1161

1990 27 Feb Storm 1646 1127 1855

30 Junc Hail 1395 1572

1991 23 June Hail 1333 1104 1472

6 July Hail 1114 1230

1992 21 July Haul 8798 t 098 9660

31 July Hail 1085 1191

20 Aug Hail 1253 1376

21 Aug Hail 1733 1903

1993 5 July Haul 6589 i 099 7241

1994 2 June Haul 43802 1 086 5215

24 Tune Hail 940 102t

18 July Hail 992 1077

6 Aug Haul 2460 2672

10 Aug Hail 2820 3063

1995 26 Jan Storm 1167 1 067 1245

2 July Hail 1290 1376

1996 20 June Hail 1262 1 000 262
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Only the most severe event within an observation period matters for
the possible knock-out of a WINCAT coupon. In Section 6 we therefore fit
a generalised extreme value distribution to the observed yearly maxima

In Section 7 we present and discuss various models with a ttme-dependent
parameter for the number of events with more than 1000 adjusted claims
We shall give several reasons why there might be a trend 1 the data. An
investor, who wants to take a possible trend into account, might use one of
these models to estimate the discounted value of the WINCAT coupons.
Alternatively, an investor, who prefers a constant-parameter model, can use
one of the trend models to create a stress scenarto for risk management.
These trend models will lead to substantially lower estimates for the values
of the WINCAT coupons In the subsequent section we apply a permutation
test to most of the trend models to test the null hypothesis, that there 1s no
trend, and we explain why a permutation test 1s not adequate for the
remaining model with a square-root linear trend.

In contrast to the continuous-trend models, there can also be a sudden
change n the expected event frequency Such a change-pomnt model 1s
presented 1n Section 9

The composite Poisson models discussed in Sections 4-9 make use of the
assumption that the event frequency is independent from the event severity,
namely the adjusted numbers of claims arising from these events The
corresponding trend and change-point models take only a varying event
frequency into account The peaks-over-threshold method from extreme
value theory, which we use in Section 10, provides a convenient way to
model a possible trend 1in the event frequency as well as in the event severity.
However, when choosing only one additional parameter for the time-
inhomogeneous extension of the peaks-over-threshold model, then those two
trends are coupled.

A short discussion of the various values of the WINCAT coupons 1s given
in Section 11; see Table 11 | for a comparison The substantially different
values indicate that the model uncertainty 1s the dommating nsk for the
evaluation of the discounted value of the WINCAT coupons

In Section 12 we use a scenarto technique to mvestigate the robustness
and sensitivity of the various models with respect to new data. This 1s done
by adding fictitious data for the year 1997 to Table 1 1, namely no event for
a favourable scenario or a repetition of the four events from 1992 for a stress
scenario. The corresponding changes of the estmated coupon values are
given 1 Table 12.1 for the models under consideration. '

In the last section we check the consistency of the models and investigate
the dispersion of the estimated discounted coupon values by a simulation
study. For every fitted model ~ under the assumption that it describes reality

! Actually, one hail storm in the arca Entlebuch/Sarnen with 1 825 claims was recorded on the 1 lth of
June 1997 Another hail storm hit the town of Lucerne on the 2lst of July 1998 and caused
3085 clums There were no other events with more than 1000 claims dunng the years 1997 and
1998 In this paper. however, we only use the information available at the ume the bond was 1ssued
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correctly — we generate 1000 new random data sets according to the
distribution specified by the fitted model These data sets replace the actual
observations recorded 1n Table 1.1, and we use the model to estimate the
discounted coupon values based on the random data set In this way we can
check whether the model can recover its own features from the simulated
data —n particular the mean and the median — and we can see how far the
simulated coupon values deviate from the mean. This can help to determine
conservative esumates of the coupon values for the models The mean, the
median, the standard deviation and the 15.9%-quantil for the various
models are histed 1n Table 12.1 Instructive are also the histograms in Figures
13 1 and 13.2. showing the distributions of the estimated coupon values for
some selected models

If the knock-out probability Pc.r, for the WINCAT coupons were
known exactly, then a very small risk premium for the investor would
suffice, because the investor has the frcedom to invest only a small fraction
of the capital in the Winterthur Insurance convertible bond thereby
diversifying the risk This small risk premium is the motivation for
insurance companies to securitize their catastrophe risk. However, the true
knock-out probability Pc,, is not known. Therefore, at various places in
this paper, we follow the procedure used in [3] and add an estimated
standard deviation &6(Pca,) to the esumated knock-out probability Pcar
to obtain a conservative upper estimate, thereby adding a risk premium
for the investor to account for the uncertainty of Pc,r We could elaborate
on this point by using the entire estimated distribution of Pg,r and tlt 1t
towards higher values (the paper [17] by G.G. Venter 1s interesting in this
context). Taking investor-dependent utility functions and the current
market price of risk into account, a more profound analysis might be
possible than the one sketched above However, since the estimated
knock-out probabilities and the corresponding standard deviations will
vary substantially with the models used, the model risk should also be
taken into account, because 1s seems to be the dominating one in the
present problem. There should be a coherent way to calculate an adequate
risk premium which accounts for the variation of the estimated knock-out
probability and the corresponding model risk. We leave 1t to future
research to develop a rigorous mathematical basis for this purpose and to
apply it to the present problem.

2. PRESENTATION AND DISCUSSION OF THE DATA

Whether a WINCAT coupon s paid on February 28th depends on the events
happening during the corresponding observation period. These observation
periods are specified on Winterthur’s web page [19], see Table 2 1 The first
observation period 1s shorter than a year so that there are always four
months left between the end of the observation period and the coupon
payment date This provides enough time to count the number of claims
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TABLE 21

OBSLRVATION PERIODS FOR 1T WINCAT COLPONS ACCORDING TO [18]
AND THE WIB PAGE {191 O WINTERTHU R INSURANC L

Coupon date Relevant observation period
February 28, 1998 February 28 1997 Octlober 31, 1997
February 28, 1999 November [, 1997  October 31, 1998

February 28, 2000

November [, 1998 October 31. 1999

and to determine whether the corresponding coupon 1s knocked out In the
10-year history of damage claims provided 1n [3] and [19], see Table 1.1, two
events are not within the period from February 28th to October 31st. This 1s
relevant for the first coupon, we shall therefore always reduce the knock-out
probabtlity for the first coupon 1n a determunistic way (see Table 3 2) using

Peay = 1= (1 = P )M (2.1)

where P¢,,; denotes here the knock-out probability 1f the observation period
were a full year. Formula (2.1) 1s motivated by the Poisson models used in
following scctions. It corresponds to reducing the Poisson parameter by the
factor 15/17, see the discussion in the introduction of Scction 4 and the one
of formula (4.9). By using (2.1), we neglect the fact that the number of events
not occurring in the pertod from February 28th to October 31st 1s random
as well This simplification, however. 1s suggested by the lack of data and
can be justified by the small influence of this 15/17-correction (CHr 2.21 for
Pcar = 20%, for example) when compared with the model uncertainty to
be discussed Furthermore, when analysing the adjusted claim numbers,
we assume that the two numbers arising from the winter storms come from
the same underlying distribution as the numbers arising from the hail
storms  Again, this simphfying assumption 1s suggested by the small
historical data set.

The number of claims arising from damage by storm or hail have to be
set into relation with the number of vehicles insured with Winterthur in
Switzerland The statistical basis 1s 773600 msured risks per year in 1996 or
744764 insured motor vehicles on April 1Ist, 1996. Note that many motor-
cycles arc only insured during the summer months. The above numbers
include the motor vehicles msured with Neuenburger Schwezerische
Allgememe Versicherungsgeselischaft, which merged with Winterthur
Insurance in 1997 The column Velucles msured mdex in Table || gives
the number of msured risks m 1996 divided by the number of msured risks
for the respective year. The column Adjusted claims 1n Table 1.1 contains the
ctaim numbers multiphed with the insured-vehicles index Only events with
more than 1000 adjusted clasms are shown in Table 1.1, because other
historical data 1s not provided by Winterthur Insurance
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If the statistical basis changes by more than 10%. based on the number of
insured motor vehicles on April Ist, then, according to [18, Condition 2(e)],
the knock-out hmit of 6 000 claims will be adjusted accordingly, rounded to
the ncarest multuiple of 100 claims. As the column Vehicles insured mndex of
Table 1.1 shows, the statistical basis tends to increasc, but 1t scems unlikely
that 1t reaches the adjustment trigger of 10% within three years without a
merger with another insurance company. Apparently, such a scenario shghtly
increases the risk of the investor On the other hand, there was a recent
change in the Swiss legislation concerning the mandatory motor vehicle
insurance, and new competitors are becoming active 1n the motor vehicles
insurance market. Thercfore, 1t 1s not clear whether a rising trend in the
statistical basis will persist. For the further analysis in this paper, we assume
that the stauistical basis stays constant. It should be kept 1n mind however,
that (depending on the model) the estimated coupon values in Table 1'1.1 can
change by up to CHF 10 1f the statistical basis changes by as much as £10%
alrcady in the first observation period

3. A CRITICAL REVIEW OF A BINOMIAL MODEL

To extract the relevant information from the historical data given in Table
1.1, we could use a simplc model consisting of ten Bernoulh random
variables X087, Xjoss, - » Xj996. where X, = | mcans that an event with at
least 6000 adjusted claims happcned in the observation period ending at
October 3lst of the year v. We set X, = 0 otherwise For the model we
assume that these ten random varabies arc ndependent and identically
distributed We are interested 1n estimating the probability p = P(X, = 1).
An unbiased estimator of p 1s the cmpirical mean '

| lo%
p=15 > X (31)
¥=1987

The data of Table 1.1 leads to p = 0.2, because there were two observation
periods out of ten where an cvent with at least 6000 adjusted claims
happened Using coupon knock-out probabilities of Py (1997) =
I—(1-0 2)'5/]7 ~0179 for the fitist observaton period and
Pear(1998) = P (1999) = 0 2 for the following two years, and using the
mterest rate structure of Table 3.1, the discounted value of the three WINCAT
coupons s calculated 1n Table 3 2

Of course, the estimator 1n (3.1) can only lead to onc of the eleven values
n the set {0.0, 0.1, 02, ... 0.9, 10} Hence, to be reahstic, we should not
favour any specific value withmn the interval [0.15, 0.25] A recalculation of
Table 3.2 with the knock-out probabilities 15% and 25% gives CHF 259 08
and CHF 229.78, respectively, for the discounted value of the three WINCAT
coupons.
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TABLE 3 1

ASSUMPTIONS REGARDING THE INTECRES1-RATE STRUCTURE TAKEN FROM (%) THE INTEREST RATES CORRLSPOND
TO THE ZERO-COUPON YIELD ON SWisS CONFEDERATION BONDS PLLS A SPREAD OF 35 BASIS POINTS

Coupon Interest rate Discount factor
1 1 87% 09816
2 233% 09550
3 2 57% 09267
TABLE 32
CALCULATION OF TIIE DISCOUNTLD VALUL OF THL THREE WINCAT COUPONS FOR THE ESTIMATE p = 02 THE
IHREE DISCOUNT FACTORS ARE TAKRI N FROM TABLE 3 1 THE PRODUCT O THE PRINCIPLE THE COUPON IN[EREST

RATE AND THE DISCOUNT | ACTOR 1S MULTIPLIED WITH THF PROBABILITY (1 — Fc,;) THAT THE CORRESPONDING
COUPON IS NOI KNOCKED OUT THE 15 17.CORRECTION ACCORDING TO (2 1} WAS APPLILD TO THE KNOCK QUT
PROBABILITY OF THL FIRST COLPON TO 1AKE CARE OI" ITS SHORTER OBSERVATION PERIOD GIVEN IN TABLE 2 1

Coupon Principle Interest Discount factor Pcar Value

| 4700 21% 09816 179% CHF 8525

2 4700 2% 09550 20% CHF 8079

3 4700 2%% 09267 20% CHF 7840
Discounted values of the three WINCAT coupons CHF 244 44

From a statistical point of view we should also consider the standard
deviation of the estimator 1n (3.1) This will give an impression of the quality
of the estimator Since the variance 1s given by

1996

205\ v l _P(I—P)
) = Var| 55 3 % | =P5E, (32)

we could follow statistical practice and use the estimated value p = 0 2 for p
to obtain an estimate for the variance o*(p) This would mean to use
p(1 —p)/10 as the estimator. In this binomial model, however, a short
calculation shows that

pA—-p)) _10-1 p(l—p)
]E[ 10 }_ 10 10

hence we would underestimate the variance in (32) by a factor 9/10
Therefore, we estimate the varniance of p by the unbiased estimator

2p) = 2D (3.3)
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to obtamn §(p) = /02 08/9 = 0 13 for the standard deviation of p For a
conservative estimate we may use Pcar = p + 6(p) = 0 33 as the knock-out
probability. A recalculation of Table 3 2 with this knock-out probability
leads lo CHF 205.24."

The empirical mean 1 (3 1) 1s a mimimal sufficient esumator for the
knockout probability p wm this model {10, Chapter 1, Problem 17], hence
we have done our best within this model. We cannot expect more from
this model, because 1t uses the data of Table 1.1 very mefficiently Already
in the first step, the data 1s reduced to ten yes/no decisions (10 bit of
information) By taking the mean in (3 1), this mformation 1s further
reduced by 1gnoring the order of the ten yes/no decisions, leading to one
out of eleven possible numbers. This 1s less then 4 bit of information
Having gone through this bottleneck, not much can be done with a
statistical examination afterwards

4 CoMPOSITE POISSON MODELS WITH CONSTANT PARAMETER

To extract more data from Table 1.1 than in the previous section, we shail
review scveral composite Poisson models The one in Subsection 4.2 was
used for the analysis 1n [3]. For every calendar day m an obscrvation
period there is a shght chance of a major storm or hail storm causing
more than 1000 adjusted claims The data of Table 1 | as well as common
knowledge suggest that this shght chance varies with the season' In
Switzerland, a storm is more likely to occur 1n late autumn or winter than
in any other season while hail storms usually occur in summer If the
dependence between the different days 1s sufficiently weak, then the
Poisson hmit theorem suggests that a Poisson random variable might be a
good approximation for the number of those events within an observation
period, which cause more than 1000 adjusted claims Note that Table 1.1
records hail storms for August 20th, 1992, and the following day. hence
the assumption of “sufficiently weak dependence™ has to be kept in mind
Such two-day events can arise arlifictally from a single storm due to the
dividing hne at mudmight, or they can anse due to weather conditions
favouring a hail storm on two consecutive days The use of a compound
Poisson model however, which allows us to model such two-day events
conveniently, does not seem to be approprate here, because a single
observation 1s not suffictent for a rchable estimate of the corresponding
parameter Concerning Poisson approximation, we refer to Barbour, Holst
and Janson [1]

' All numerical calculations for this paper were done with the software package Marhemarica Only
rounded numbers are given 1n the text. but for subsequent calculations machine precision of the
numbers 15 used Values in Swiss {rancs are given up to 1/100. although not all given digits are
necessarily significant
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The seasonal dependence mentioned above 1s also the reason why we
have chosen the exponent 15/17 in the correction formula (2 1). We think
that this exponent based on the available data 1s more appropniate than the
exponent 2/3 based on the length of the shorter first observation period given
in Table 2.1

The Poisson distribution with parameter A > 0 1s defined by

/\k

Poissony (k) = Fe”\ fork e Ny (4.1)
Let the random variable N, describe the number of days within the
observation period ending in year y € {1987, |, 1996} on which more than
1 000 adjusted claims arose from damage by storm or hail We assume that
these ten random variables are independent and that each of them has a
Poisson distribution with the same parameter A > 0 Since IE[N\] = A, the
emptrical mean

| 1996
const __

o =75 2 N (42)

»r=1987

1s an unbiased estimator for A, which 1s also sufficient [10, Section 1.9,
Example 16]. Table 1.1 contains m = 17 events within the n = 10
observation periods, hence

ony m 17
/\moot w10 17. (4.3)

Figure 4 1 contains an illustration of the counting data and this empirical
mean. Since Var(N,) = A, the variance of the estimator AS3e8 m (4.2) 1s M/n
with 7 = 10, hence the estimated standard deviation of Afo00 18

~ 0y con X500 m/in  Jm V17
o(Nigen) = T = [ — =Y = S~ 04l (4.4)

It remains to determine the probability that an event, which causes more
than 1000 adjusted claims, actually causes at least 6 000 adjusted claims and
therefore leads to the knock-out of the corresponding WINCAT coupon For
this purpose we shall consider a sequence {X},.y of independent,
identically distributed random variables, where X; describes the severity of
the k' event We always assume that the sequence { Xi }, o 1s independent of
Nigg7, ., Niggs. The random variables Xj, .., Xy, are used to describe
the severity of the events in 1987, the vanables Xu o1, s Xnjp+neg thoOse
in 1988 and so on In the following subscctions we consider three different
distributions for the random vanables {X} }, ..
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»

A Number of events with more
than 1000 adjusted claims

Year

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

>

FiGURE 4 1 Observed number of events in the ten observation periods November ist to October 3ist
causing more than 1000 adjusted claims The empirical mean of Ajgly =1 7 events per observation period
15 also shown The dashed lines indicate the estimated standard deviation 0 41 of the esttmator Ay given

by (4 4) The estmated standard deviation for_the distribution of the observations is

(M) = VT2 130

4.1. Bernoulli distribution for the knock-out events

In this subsection we introduce a simple model to describe events with more
than 1000 adjusted claims, which actually cause at least 6000 adjusted
claims, meaning that they lcad to a knock-out of the WINCAT coupon For
this purpose we introduce Bernoull random vanables X, .., X,, for the
m = 17 events, where X; = 1 means that event number k € {1, .., m}
caused at least 6000 adjusted claims. We set X =0 otherwise We assume
that X7, |, X, are independent and identically distributed. Proceeding as in
Section 3, we can cstimate the probability pepog = P(Xix = 1) by the unbiased

empirical mean
mn

1
» - X 4.
Povo = — ; % (4.5)

The data of Table |1 leads to pgoop = 2/m=2/17 = 0 118. An analysis
similar to (3 2) and (3 3) gtves the estimate

6@oooo)=\/' ~ ’}6"00(]—’}60"0):\/2/'7'('_2/]7)z0.081 (4 6)

71— | m 16

for the standard dewviation of pgooo.
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If N1s a random variable with the Poisson distribution given by (4 1)
describing the number of events, and if independently of everything else we
perform a Bernoulli experiment with success probability pgooo € [0, 1] for
each of the N events, then an clementary exercise shows that the resulting
number of successful events has a Poisson distribution with parameter
Peocor. Therefore, under the above assumptions, the number of events per
observation period lcading to at least 6000 adjusted claims has a Poisson
distribution An estimate for the corresponding Poisson parameter 1s

2 m 2
/\Lnn.\l — 7 /\C"Ihl _—— = = 0 2. 4.7
6000 = P6000 Ajooo =0 T T (47)

The probability that no such event happens, is given by exp(—Aga), see
(4.1) with £ = 0 Hence. the estimated knock-out probability 1s

Poar = 1 —exp(=ASt) = 1 — exp(—0.2) ~ 0.181 . (48)

A recalculation of Table 3.2 with this value of P, leads to a discounted
value of CHF 249.93 for the three WINCAT coupons

To estimate the knock-out probability of the first WINCAT coupon, we
have to replace X5o%! = 17/10 from (4 3) by A3s = 15/10, because only 15
events are recorded in Table 1| for the period from February 28th to
October 31st. This leads via (4.7) and (4 &) to

Poar =1 —exp(—peooo Ajggo )

2 1 15 49
:l—cxp(—]—7 %):l—cxp(—ﬁ 02) 2 0.162, (49)

which 1s exactly the same result as the one obtained by applying the
correction formula (2 1) to the result of (4 8).

The variance of the estimator Ay 1s not eastly computable from the
variances of pgogp and Afgyy. because these two estimators are dependent
(knowing A% restricts the set of possible values for pgo0) According to our
model assumptions however, we have observations from » = 10 independent
Poisson random variables available, which describe the number of events in
each of the ten observation peritods leading to at least 6 000 adjusted claims
Simular to (4.2) and (4.4), we therefore sce that the estimator (4.7) for Aoy’ 1s
unbiased and that

G(Aoo0 ) = JASe /n=1/02/10 ~ 0.141
For a conservative estimate of the knock-out probability we might use
Poa =1 —exp(=AZ0 — {300 ) = 1 — exp(—0 341) ~ 0 289

A recalculation of Table 3.2 with this value of Pc,., leads to CHF 218 24 for
the discounted value of the thee WINCAT coupons
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There 15 a methodical problem with the approach in this subsection so
far. We are mainly interested in an unbiased estimator for the knock-out
probabiity Pcar. The unbiasedness of the estimator Aghyy for a model
specific parameter 1s not of primary concern To elaborate on this point, let
Neooon be the number of events with at least 6 000 adjusted claims within
n =10 observation periods According to our model assumptions, Neooo.
has a Poisson distribution with parameter npA, where X is the intensity for
the number of events per observation period with more than 1 000 adjusted
claims, and p = peooo 1S the “success” probability for the following Bernoulh
experiment indicating whether actually at least 6 000 adjusted claims arise
from the event. The estimator (4 8) corresponds to

Pear =1 — exp(—Neooo,s/1) (410)

with 1 = 10 Calculating the expectation gives

E[1 — exp(—Neooon/n)) = 1 = et/ (mpA) I;d) e~
p :

(4.11)

It

0 —1/m\k
1 — Z (’71”\2‘ ) e—n[u\

k=0
=1—cxp (—(1 — e /"npA),

which 1s different from | — exp(—pA), hence (4.10) 1s biased. Multiplying
Ngooo,, In (4.10) by the correction factor log ()" leads to the estimator

1 Neooo,
P =1 — (1 —~> 412)

with expectation 1 —cxp(—pA) as a calculation similar to (4.11) shows
Hence the estimator (4.12) 1s unbiased. Since # = 10 and Nggpo.10 = 2 by
Table I.1, we obtain

9\2
Poa=1—-{=}=019. 413
o =1 - (1) @13)
The corresponding recalculation of Table 3.2 gives CHF 247.37 for the
discounted value of the three WINCAT coupons

For the vanance of the estimator 1n (4.12) we obtain after a short
calculation similar to (4.11)

l 2N(\0(I)n
Var(Pcan) = E (1 — —) — e WA = WA (ePM _ ).
n
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Using the estimate Ay = 0.2 for pA from (4.7) and (9/1[))2 for e=* from
(4 13), we obtain

2
6(Ponr) = € PV erMn — | s 7P\ /pA/n ~ <19_0) V002~ 0.115. (4.14)

A rccalculation of Table 3.2 with the conservative knock-out probability
Pt + 0(Pear) = 0.305 gives CHF 213.73 for the discounted value of the
WINCAT coupons.

The estimated standard deviation in (4 14) 1s shghtly smaller than the
one n the simple binomial model calculated via (3 3) This indicates that
in our case the composite Poisson model of this subsection leads only to a
slight mmprovement. Indeed, the ecstumator (4 13) for the knock-out
probability uses only the information that two events within the ten years
caused at least 6000 adjusted claims Since the model of this subsection
allows these two events to happen in the same year, the estimated knock-
out probability tn (4.13) is 1% lower than the one in the binomial model.
If the two events with at least 6 000 adjusted cluims had actually happened
1 the same year and not in consecutive ones, the discrepancy 1n the
estimated knock-out probabilities would be 9%. because the estimate
the bimomial model of Section 3 would drop from 20% to 10%. In this
respect the composite Poisson model of this subsection 1s more robust
than the binomial one.

4.2. Pareto distribution for the knock-out events

The bimomial model of Section 3 and the corresponding composite Poisson
model of Subsection 4.1 do not use the adjusted claim numbers recorded n
Table 1.1. For the benefit of a better estimate of pggop. let us incorporate
these numbers tnto the model. The step function 1n Figure 4.2 1s the
empirical distribution function of the adjusted claim numbers from Table 1.1.
A heavy-tailed distribution of common use 1s the Pareto distribution, its
distribution function 1s given by

1 - (a/.\‘)h forx > a,

(4 15)
0 for x < a,

Pareto, ,(x) = {

where ¢ and b are strictly positive parameters. The Pareto distribution 1s
used 1n [3] to model the number of adjusted claims per event given that more
than 1000 adjusted claims arisc from the event We choose the threshold
« = 1000, becausc only such cvents are contamed 1in Table [.1. At first glance
it might look as 1f we make a conceptual mistake by fitting the distribution of
an apparently integer-valued random variable by a distribution having a
density. However, the involved numbers from the last column of Table | 1
are sufficiently large for such an approximation and, in addition, they are
actually rounded numbers arising as the product of the number of claims
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and the vehicles nsured index. Therefore, the use of a continuous
distribution function should not cause an intellectual problem (see Section
6 and the end of Section 13 however)

To fit the empirical distribution with a Pareto distribution as in Figure
42, we need an estimator for the cxponent b. If a random variable X has a
Pareto distribution with parameters ¢ and b, then Y = log(X/a) sausfies

h
P(Y < p) =P(X < ae’) = | — (%) =l—et, >0

which means that Y has an cxponential distribution with expectation
E[Y] = 1/b Hence. if the independent random variables X;, . , X,,, with a
Pareto distribution given by (4 15) describe the adjusted number of claims
for the i events, then the random variables Yy, ., Y, with Y, = log(X)/a)
arc independent and exponentially distributed Their empirical mean
(1/m) 377, Ya 18 an unbiased estimator for 1/h This suggests to estimate
b by the reciprocal value

m _ 1
Y o log(Xe/a)

(4.16)

Another way to denve this estimator 1s to consider the lhikelihood function

mop a h
Ln(b) = T]— (-) . b>0, (4.17)

which 1s the product of the densities of the Parcto distribution (4 15)
evaluated at X, , X,,. By differentiating the logarithm of L,,, we find that
b given by (4.16) maximises L,,, hence (4 16) 1s also the maximum-hkelihood
estimator for A

Let us calculate the expectation of the estimatlor in (4 16). The sum

1=y Yi has a gamma distribution with parameters n and b, meaning that

n .y
Lob 1
Y < ) —_ m y 173 >
]P</\§_| L < )) /0 1ﬂ(m)(bl) e dt, y=>0

This fact is easily proved by an induction on m, because the convolution of
the exponential density and the gamma density of parameter m leads to the
gamma density of parameter m + 1:

3

! h b
/ , b)) | b m—1 ,—h Iy — { m_—bi >
/u ¢ F(m)( )T e mI(n1) (br)"e™, r20
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FiGuRL 4 2 The step function 1s the empirical distribution of the number of (adjusted) claims per event, given
that more than 1000 claims anse from the event Also shown 1s the fitted Pareto distribution (4 15) with
a = 1000 and b = b7, where b7 = 1 37 15 the maximum-likelhood estimate, corrected with the factor
(m — 1)/m for m = 17 10 ehminate the bias The estmated probability, that an event with at least 1000 claims
causes at most 6000 claims, 1s around 0914 Two additional Pareto distributions (dashed curves) illustrate
the estimated standard deviation of 5|3 The lowed dashed curve corresponds to b1z —&(bh17) = 102, the
upper one to by +a(by7) =173

and the gamma function satisfies T'(m+ 1) = mI(m) Calculating the
expectation of (4 16) for m > 2 shows that

m *m b S
Bl = — INk% '
[ pu lOg(Xk/f’)} ./o t F(n?)( (7 et
mb [* b > b m (4 18)
= { m-2 _—bht _
_"7—1/0 r(,,7_1)\bl) ¢ dt = ——b

This means that the estimator 1n (4.16) underestimates the tail of the
Pareto distribution To obtain an unbiased estimator for b, we therefore
have to use

. m—1
" k=1 log(Xi/a)
instead of (4.16). The data from the last column of Table 1.1 leads to

>

(4.19)

b1y ~ 137 (4 20)

The Pareto distribution with this value is shown in Figure 4 2
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A calculation similar to (4 18) leads to
b2
m—2

for all m > 3. Therefore, é(/;,,,) = B,,,/v/;1 — 215 an unbiased estimator for
the standard deviation; using the numerical value from (4 20) gives

6(b17) = 137/V15=035. (422)

Var(b,) = (421)

The Pareto distributions with /3|7 :!:&(/317) arc shown as dashed curves in
Figure 4 2

Using b,, for the parameter of the Pareto distribution (4.15), we obtain
the estimator

Peono = | — Pareto, g (6000) = 6 (423)

for the probability that an event, which causcs more than 1000 adjusted
claims, actually causes at least 6000 adjusted claims. The numerical value
b7 =~ 137 from (4 20) leads to

Peooo ~ 67" = 0.0857 . 424
!

Considering the two Parcto distributions corresponding to 13|7 — &(i)|7) =
102 and b7+ d(by7) = 173 (see Figure 42), we obtain via (4.23) the
asymmetric interval

[67'7, 67'92] =~ [0045, 0 162] (4.25)

around the estimate pgogp = 00857 as an indication of the standard
deviation. This 1s an improvement compared to the nterval [0 037, 0.199]
anising from the Bernoullr distribution via (4 6)

Following the approach in [3], we recalculate the esumate (4 7) for the
Poisson parameter Aoos' describing the number of knock-out cvents per
observation period using Ajggy = 1.7 from (4 3) and pegoo = 0 0857 from
(424) We obtamn AR = pegoo - ASoes' =2 0.1457 As in (4.8), the estimated
knock-out probabulity 1s

Pour = 1~ oxp(=Xgou) = | — exp(~Paoo Niofy) ~ 01356 (426)

A recalculation of Table 3 2 with this value of Pc,r leads to a discounted
value of CHF 263.29 for the three WINCAT coupons

To get a rough estimate of the standard deviation of the knock-out
probabihty in (4.26). consider 1t as a function of the two parameters b7
and A = Ajpust

Pea (517, ;\) =1—exp (_6—’;|7 ;\)
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Using the approximating plane in (b, A) and thereby neglecting all higher

order terms 1n the Taylor expansion, we get

ap('AT
b

8PCAI
OA

Poui (b7, A) = Pep (b, A) + (b,A)(b17 ~b) + (B, (A=)

Since b;7 and X are unbiased, we obtain for the variance

A IPcas 2 - OPca, 2 -
Var<PcAT(bn‘A>)z( e (/w) Vaf(b17)+< v (b,A)) Var(3)

0 P Cat oP Cat
ab O\

The two estimators b, and A= oop are certainly not independent,
because the observed number m of events determunes AfQs via (4 3) and
the variance of b, via (4 21) However, b7 and A are mdependent and
therefore uncorrelated, meaning that E[(b;; —b)( A —A)] Evaluatng
the partial derivatives of the knock-out probability Pc,, at the
estimated pomnt (b7, A) instead of (4, A), and using the estimated standard
deviations from (4.22) and (4.4) instead of (Var(h7))"/? and (Var( 3))"?, we
obtain the approximation

2 2
6(Pcar(b17,0)) = \/ (C)P C”(Bn,x)) 52(517)+(0P Cat (5,7,x)) §2(N)
=~ 0.086. (4.27)

(h.A) (b,\E[(bj7—b)(A=N)].

From (4 26) and (4.27) we obtain PC\T(I)H, )+U(PCA,(h17, ) = 0221
as a conservative estimate of the knock-out probabiity A recalculation of
Table 3.2 leads to a discounted value of CHF 238.25 for the three WINCAT
coupons. Due to these calculations, 1n {3} the rounded knock-out probability
ol 0.25 is considered lo be a conservative estimate, leading 1o a discounted
value of CHF 229.78 ' This value 1s supposed to include a risk premium for
the investor because the standard deviation of the knock-out probabihty 15
added and the result rounded 1 a conscrvative way.

Before turning our attention to a generahsed Pareto distribution for
the knock-out events. let us conclude this subsection with some supple-
mentary considerations concerning the biasedness of the estimators for
peooo and Pc,, First note that A0 from (4 2) and by; from (4.19) are
unbiased estimators for the two modcl parameters A and b, but this docs

" 1n[3] a discounted vaiue of CHF 227 09 15 actually derived, because the 15/17-cotrection for the first
observation perod 1s not taken 1n{o account
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not mmply that pegoo and Pcar, given by (4 23) and (4 26), respectively, are
unbiased The arguments lcading to the unbiased estimator (4.12) 1n the
case of the Bernoullt distribution for the knock-out probability 1n
Subsection 4.1 suggest that the estimator

D Nigo n 6_5'7 Niooo
PCM=1—(1—”°°°°) " =1—(1— ) " (4 28)

n H

is a small improvement, because this would be an unbiased estimator for
Pcar if by7 were non-random Here the random variable Nyog0, denotes the
number of events with more than 1000 adjusted claims within the »
observation periods. Recall that Njgo, has a Poisson distribution with
parameter nA Substituting our estimate b7 &~ 137 from (4.20) and
Nioon = 17 for the n = 10 observation pertods into (428) leads to
Poar = 01361, which gives a discounted value of CHi- 263 13 for the three
WINCAT coupons. This 1s a decrease of only CHF 0 16 compared to the value
arising from (4 26). A

If we consider Niggo.10 = 17 as non-random and replace b7 ~ 1.37 from
(4.20) by by7 — &(b17) = 1.02 1n the estimator (4 28) to find a conservative
estimate, we get P, =~ 0242, which via Table 3 2 leads to CHF 232 14 for
the discounted value of the three WINCAT coupons. Nole that this knock-
out probability i1s about 0.02 larger than the one obtained from (4.27) and
1s already very close to the conservatively rounded valuc of 025 from [3].

An examination of the above model reveals that the conditional
distribution of the estimator b, given m = N, 15 only specified n
the case Ny, > 2 Furthermore, (4.21) shows that b, does not have a
variance unless m = Ngoo, = 3 Hence, the above approach of fitting the
empirical distribution of the adjusted claim numbers by a Pareto distribution
1s applicable only n the case of appropriate data sets. Such an a prion
exclusion of certain data sets already mtroduces a bias which suggests that
unbiasedness for estimators like (4.26) or (4 28) 1s a problematical notion.
Maybe a notion of conditional unbiasedness would be more appropriate
This means 1n our case that onc would like to have estimators for Pe, . such
that the conditional expectation given peaooNoon = 1. for example, 1s the
right one

4.3. Generalised Pareto distribution for the knock-out events

In Subsection 4.2, we did not give a theoretical argument n favour of the
Pareto distmbution 1n addition to the desire to pick a heavy-tailed
distribution. Let us use an 1dea from extreme value theory to overcome
this deficiency. It will turn out that we should use a generalised version of the
Pareto distnibution defined 1n (4.15).
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Let X), , Xx denote the adjusted number of claims arising from &
events We shall assume that X|. ..., X} are independent and distributed
according to a heavy-tailed distribution function We are only interested
in those numbers which exceed a certain threshold @, which 1s 1000 1n our
case. This means we are interested 1n the excess distribution function

Fo(x)=P(X) —a < x| X) > a), x€R.

Extreme value theory essentially says the following in our case [6, Section
3 4] If the ongmal distribution function of X, . , X 1s heavy-tailed, then
the excess distnbution functions {F,},»0 can be better and better
approximated (with respect to the supremum norm) by generalised Pareto
distributions of the form
_ o \-1/€ )
Ger (V) = I — (1 +&x/7,) for v > 0,
& 0 for v <0,
as the threshold « tends to infinity Here £ 1s a strictly positive ' shape
parameter and the scale parameter 7, > 0 varies with the threshold «. This
suggests that we should try to fit the empirical distribution function of the

observations exceeding the threshold « by a distribution function of the
form

Gugr(¥) = { (e forx2a. (4 29)
0 forx <a

Note that in the heavy-tailed case £ > 0, the (shifted) generalised Pareto

distribution (4.29) with 7 = «¢€ reduces to the Pareto distribution (4 15)

with b = 1/€. Hence, G,¢. gives us the freedom of the additional scale

parameter 7.

Before fitting a generahsed Pareto distribution function to the observa-
tions, an exploratory data analysis should be done, see [6, Chapter 6], to
check the assumption of a heavy-tailed distribution and to determine a
suitable threshold However, since there are only m = 17 observations
available 1n Table 1.1, there seems to be no point in choosing a higher
threshold than ¢ = 1000 in our case, because the historical data set 1s quite
small already. The assumption of a heavy tail is (at least partially) supported
by Figure 4.4.

The log-hkelthood function for the m = 17 observations origiating from
a generalised Pareto distribution 1s

l ni o 00
I(E,T)z—mlog'r—<1+E>Zlog<l+£w—), £>0,7>0. (4.30)
k=1

" The cases £ =0 and £ < 0 are discussed in Section 13, see (13 1) and (13 2)
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FIGURE 43 The empirical distribution of the number of adjusted clanms per event (sold step function) and
the fitted generalised Pareto distribution (sohd curve) with threshold ¢ — 1000, estimated exponent
1/€ =1 38 and estmated scale parameter ¥ = 660 7 The cstumated probability that an event with at

least 1000 clarms causes at most 6000 claims, 1s approximately 0 924, and [0 813, 0 978] 1s un approximate

68%-confidence interval for this probability The two dashed curves are generalised Pateto distributions
chosen such that they dicate the standard deviation of the estimated probability for at most 6000 clasms

Inserting the data from the last column of Table | I, we can calculate the
maximum-hkelihood estimator (¢, 7) numerically, 1.e., we can search for the
point (&, 7) which maximises / As starting values for the numenical iteration
procedure, we can choose ¢ = 1/b,, and 7 = a/b,,, where b,, 1s the estimator
(4 19) for the Pareto distribution, or we can use a probability-weighted
moment approach (see [6. Section 6.3 2 and page 358]) Lo obtain a prion
estimates for € and 7. We find

£~07243 and =660 7, (431)
hence

Poono = 1 = G g0 ¢ -(6000) = 1 — 0.92425 = 0.07575 (4.32)

The corresponding fit of the empirical distribution with a generalised Pareto
one 1sshownin Figures 4 3and 4.4. A calculation asn (4.28) gives the estimate

ﬁ(OOO Niom 1o
PcM=l—( ——10> ~ 0121,

which leads via a recalculation of Table 3.2 to a discounted value of
CHF 267 48.
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FicUrt 44 This 1s Figure 4 3 on log-log scale 1o magnily the important part Instead of the distisbution
functions, the corresponding tail probabilities are shown Paicto distribution lunctions defined by (4 15)
would give straight lines i this log-log plot The esumated generahised-Pareto fit x = 1 — Gy (1) 15 close
to a straight line because a€/7 = 1 096 1~ quute close 1o one The estimates ) = 0022 e = 00757 and
Peow = U 187 are shown This figure supports the model assumpuon, that the adjusted claim numbers follow
a heavy-tailed distnbution

For comparison with the earher results on the standard deviation of pegoo
in the case of the Bernoulh distribution for the knock-out events in (4 6) and
for the corresponding case of the Pareto distribution in (4 25), we would like
to give again an estimate for the standard deviation of pgoon This does not
seem to be possible by analytical means, however Therefore, we prefer to
construct an mterval [feo0, o] around the estmated value peooo = 0 0757
from (4 32), which can serve as the region for accepting the null hypothesis
P = peooo at a 68%-confidence level when usig the log-hikelihood ratio
statistic. We choose the 68% level, because this 1s the probability that a
normally distributed random variable with mean ; and varance o > 0
takes 1ts value in the interval [js — o, ;1 + o] As log-likelthood ratio statistic,
also called deviance, we use

D(&, ) =2(¢,7) = 21(E,T), £€>0,7>0. (4 33)
We want to determine the smallest mterval [Pz, Pdogo] Such that
{(€.7) € (0,007 | D(&,T) < X1}

) (4 34)
c {(67) € (0,000 | 1 = Grann.-(6000) € [pon0-Pioo] }
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where x3 45, &~ 230 denotes the 32%-quantile of the chi-squared distribu-
tion with two degrees of freedom. In other words: We are looking for the
smallest probability pgy, and the largest probability pgqq. Which can arise
from generalised Pareto distributions with parameters (&, 7) close to (&, ”)
the sense_ that the deviance D(,7) does not exceed the 32%-quantile ,\/70},
of the y3-distribution. This choice for the upper bound of the deviance

D(&,7) 1s based on the asymptotic normality of the maximum-hkelihood
estimators, see for example [10, Section 8.8] According to [12, Appendix A,
the approximation of the distribution of the deviance by the chi-squared
distribution 1s often quite accurate for small numbers of observations, even
when the normal approximation for the paramecter estimates 1s unsatisfac-
tory. When compared to methods using the second derivatives of the log-
likelihood function at the estimated point (€, 7), the log-hkehhood ratio
statistic has the advantage of being able to give asymmetnc confidence
mtervals and thereby being less prejudiced. This 1s useful 1in our case, because
we don’t want to obtain negative estimatcs for pg;,, for example It should
be kept in mind that (4.34) 1s 1n general a strict inclusion, hence [13(:()00’/3;000]
can correspond to a higher confidence level than 68%. This 1s problematical
for larger numbers of parameters, because the confidence intervals get too
large Bootstrap methods arc an alternative in this case

Note that the mterval [z, Pyee] 1 (4.34) docs not depend on the

parametrisation arising from (§,7) — Gipope- in (4.29). We can use this
observation to change to an advantageous paramctrisation which reduces
the amount of numerical calculations nccessary to determine the above
acceptance interval Since the equation p = 1 — Gggo¢,-(6000) can be solved
for T yielding

5000&
T(&.p) = o1
we can usc p itself as a parameter by changing the parametrisation from (4 29)
to (€,p) — Groooe r(cp) Rewniting the inclusion (4.34) with this parametrisation

ylelds {(§ /7) ( ) (0 l) I D(f, (5 ]))) \2()17} C 0 OO) [/)(Tooovf’(v(]()o]
Numerical calculdllons lcad to /)6000’/)2_000 ~[0022.0 187] the correspond-

ing exponents £~ = 0355772 and C+~l396 are the only ones with a
devnance less or equal to the quanule X7037 The shifted generalised-Pareto
distribution functions

X Grgee + (Y) with 77 = 7(€ pg,) ~ 6203
and

¥ Giggggn p (A) Wit 7 = 7(E%, pling) ~ 740 6
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are shown in Figures 4.3 and 4.4. if we consider the number Nyggo 10 =17
as non-random and use pgy,, = 0.187 mstead of peogo, a calculation as m
(4.28) leads to the conservative estimate Pc,, =~ 0.274 A recalculation of
Table 3.2 gives a discounted value of CHF 222.75 for the three WINCAT
coupons

5. TESTING THE CONSTANT-PARAMETER POISSON MODEL

5.1. Testing for over-dispersion

In Section 4 the number of events with at least 1000 adjusted claims per
observation period 1s modelled by ten independent random variables N, for
the years y e {1987, ..., 1996}, each one having the same Poisson
distribution (4.1) with parameter A > 0. Since the expectation and the
vanance of the Poisson distribution are equal to the parameter A, the
empirical mean A5 of Nigg7, ..., Niggg was used in (4 2) as an unbiased
estimator for the expectation and the variance However, if we don’t want to
rely on the assumption of a Poisson distmbution when investigating the
variance (but keep the assumption that Nygg7, .., N9 are independent and
identically distributed), then we should estimate the variance 0% = Var(N,)
by the unbiased estimator

S 1% ) | 1996
=5 > (N, — ) with iy =15 >N,
y=1987 y=1987

The data of Table 1.1 leads to 6% = 2.9, which yelds the standard deviation

6(fin) = \/6%/10 = V29/10 = 0.54 (5.1)

for the empirical mean jiy of Nygg7, .., Njge¢ Note that afv =29 1s quite a
bit larger than X308 = 1.7 from (4 3). This observation raises the question
whether the data of Table 1.1 exhibits over-dispersion, meaning 1n our case
that the variance of Nygg7, ., Njgge is actually larger than the mean. Such an
over-dispersion can arise, for example, from a Poisson parameter A which 1s
itself a random vanable. In the present case, global weather conditions could
have determined different values for A in the ten observation periods. See,
e.g.. [12] for a discussion of over-dispersion

To investigate this question of over-dispersion, let us consider the
possibility that a large variance as above, namely 6% > 2.9, happened by
chance This means that we want to calculate the conditional probability
P(6% >29 | jixy = 1.7) under the null hypothesis that Niggs, , Niggg are
independent and distributed according to (4.1) with an unknown Poisson
parameter A > 0 The small number of observations and their small values
make 1t feasible to calculate the above conditional probability exactly
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Under the null hypothesis, the sum Njgg7 +... + Nig996 has a Poisson
distribution with parameter 10\ and we obtain

]P’(N,, = n, forevery y € {1987, | 1996} | jiy = 1.7)

1996 /\,,‘ o (10/\)17 1o ]7| 1996 1 (5 2)
={ 1) /e =1 1] o
y=1987""" »=1987 "

for every tuple (ni987, , n1996) € N(',O with r1y987 + . 4 n199¢ = 17. Note that
the conditional probability mn (5.2) does not depend on the unknown
parameter A > 0 For every tuple 1n (5.2), there are

10!
17, (#{y € {1987, , 1996} with n, = 1})!

different rearrangements of the tuple; all of these lead to the same
probability in (5.2) A small program, ' which considers all possible tuples
for (5.2) satisfying n,. <n, for all y € {1987, ..., 1995}, finds 267 such
tuples and yields ' '

P(6% > 29 jiv =17) = 00889 (53)

While this one-sided test does not show a significant deviation from the
Poisson distribution on the 5%-level. 1t 1s certainly more conservalive (o use
the standard deviation G(ay) = 0 54 from (5.1) wnstead of G(Agh') = 0.41
from (4.4) to take the possibility of over-dispersion into account. Combining
this result with the fitted Pareto distnbution for the knock-out events (see
Subscction 4.2), the analoguc of (4 27) for the approximation of the standard
deviation of thc knock-out probability gives &{(Pc, (b7, A)) ~ 00893.
Togecther with (4 26) we obtain Pc,, (b, A)+8(Pca (b, A))=0 225 as a con-
servative estimate of the knock-out probability A recalculation of Table 3.2
leads to a conservative discounted value of CHr 237.15 for the three WINCAT
coupons. This 1s only CHF 1 10 below the conservative value CHF 238.25
derived from (4 27).

It 1s possible to test the assumption of a Poisson distribution further by
choosing an explicit alternative hke a negative binomial distribution and
considering the corresponding Neyman—Pearson test. In addition. we could
choose a preferred measure of discrepancy for distributions and apply model
selection criteria to come to a decision about the underlying distribution. In
this paper, however, we want to pursue a different route, namely a possible
deterministic time-inhomogeneity of the distribution of the numbers
Nigg7, . , Nigog of events per observation period Concerning model
selection 1n the case of independent and identically distributed random

' The Marhematica command NumberCfPartitions[17) from the standaid add-on package
DiscreteMath ‘Combinatorica shows that there are 297 parutions of 17 altogether, hence the
running time of the program will be acceptable Unnceessary loops in the program can be avoided
by using the condition (1996 — y)i,1 2 17— (mr +  +1,) for y € {1987, 1995}
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variables, we therefore refer the reader to [11]. in particular to [11, Example
4.4 3], where the Poisson and the negative binomuial distribution are the
alternatives.

5.2. Testing for time-inhomogeneity

When looking at Figure 4 1 which shows the number of events in the ten
observation periods causing more than 1000 claims, we can ask whether
there 1s something spectal about the order of the ten observations; in
particular. whether the assumption of an identical distribution for the
random variables Njgg7, N|99(, 1S jUS[lﬁed

Starting from (0, 0, 0, . 2,2, 2,4, 5), namely the ten observations in
increasing order, we need 38 successive transpositions of adjacent entries of
the tuple to rearrange 1t tn decreasing order To rearrange the observed tuple
(0,0.0.2, 2, 4,1, 5,2, 1) into decreasing order, we need 28 successive
transpositions of adjacent entries

(0.0,0,2,2,4,1,5,2,1) — (2,2,4,1,5,2,1,0,0,0)

—(2,2,4.5,2,1,1,0,0,0) 2 transpositions
—(4,5,2.2,2,1,1,0,0,0) 4 transposttions
— )

5.4,2,2,2,1.1.0,0,0

21 transpositions

1 transposition

Since the number of 28 transpositions is well above the half of 38, we can use
this observation for a permutation test to find out whether the data shows a
tendency to be arranged 1n increasing order

Under the assumption that the ten observations are given by ten
exchangeable, Ny-valued random variables Njog7, ., Njgge €very permuta-
tion of the ten observations has the same probability If Njgg7, . .. Njgye are
independent and 1dentically distributed, then exchangeabihity follows For
every one of the

10!

31302

different permutations of the ten obscrvations, we can count the required
number of successive transpositions of adjacent entries to obtain the
decreusing order given by the tuple (5,4.2,2,2, 1, 1,0, 0, 0). This number is
always between zero and 38. Figure 5.1 shows the resulting distribution
function of this number

Under the null hypothesis where all permutations of the ten observations
have the same probability, only for 2953 permutations out of 50400, about
5 86% of them, 28 or more transposttions of adjacent entries are needed to
reach the decreasingly ordered tuple (If there were a substantially higher
number of permutations than 50400, then a suitable number of random
permutations would have to be gencrated 1n order to get an estimate for this
percentage.)

= 50 400 (55)
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FiGurE 51 Distribution function of the number of successive transposinons of adjacent entries necessary
to order a4 random permutation of the ten observations nto decreasing order For the observed data,
28 transposiuons are necessary At least 28 transpositions are necessary for about 5 86% of all permutations

Note that for the permutation test of this subsection we do not assume
that the distribution of Niyeg7, ..., Ngee lies in a certain class; in particular,
the test 1s parameter-free Furthermore, the test does not depend on the
actual numbers but merely on their relative order or ranks; an observation
like (0, 0,0, 3, 3,4, 1,7, 3, 1) would give the same test result. For such a
distribution-free test and just ten observations, 5.86% 1s a remarkable result.
However, as we can see from (5 4), 1t 1s mainly caused by the position of the
three zero observations.

6. FITTING A GENERALISED EXTREME VALUE DISTRIBUTION

For a knock-out of a WINCAT coupon, only the most severe event within
the corresponding observation period matters. We can use extreme value
theory to model this event directly. The theoretical background for this
approach 1s the Fisher—Tippett theorem (see for example [6, Theorem
3.2.3]), which 1dentifies all possible hmit distributions for properly scaled
maxmma M(n) = max{X), ..., Xy} of independent, identically distributed
random vanables X, .., X, as n — oo. If the distributions of the properly
scaled maxima do converge, then the hmiting distribution is either a
Fréchet, a Weibull or a Gumbel distribution In the following we use the
Jenkinson—-von Mises representation of these extreme value distributions,
see [6, Definition 3.4.1]. Let € R denote the location parameter, 7> 0
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FiGurl 6 1 The censered empirical distiibution function of the number of adjusted claims of the most severe

event per year (solid step function) and the fitted generalised extreme value distribution (solid curve) with

estimated exponent 1/€ = 1 316, scale parameter 7 = 1008 and location parameter ji & 1168 The estimated

probabihty, that no knock-oul event occurs within one yedr, 15 approximately 0 876 The two dashed curves.

derived from 1000 bootstrap samples, indicate 68 %-confidence intervals for the fitted generalised extreme
value distnbution

the scale parameter and £ € R the shape parameter. In the case £ > 0, which
corresponds to the Fréchet distribution, we define the distribution function

H[I,E,T by

exp(—(1 +&(x — p)/1)™'),  af 14+ €&x—p)/7 >0,

Hz Kd ,\') -
e 0, otherwise

In the case £ < 0, which corresponds to the Weibull distribution, we define
similarly

_ exp(=(1 +&x —)/r)™), i1+ &(x—p)/7>0,
H;t.f ‘r(\) = ,
1, otherwise.

With the above representation, the Gumbel distribution
H,o0:(x) = exp(— exp(—(x — u)/7)), x €R,

for the case £ = 01s actually the imit of H, ¢, as { — 0
When fitting the generalised extreme value distribution H, ¢, with
1, € R and 7 > 0 to the observed maxima given in Table 1 1, we have to



VALUE OF THE WINCAT COUPONS AND MODEL RISK 131

cope censored data. The most severe events of the years 1987-1989 are not
given because they caused less than 1000 adjusted claims (assuming that
there were damages caused by storm or hail at all). Next, when we want to
use the maximum-likelihood method to estimate the parameters u, £ and T,
we encounter another problem' The density of H, ¢, 1s unbounded for
E<—land x ~jun—1/&.

Both problems can be solved by discretizing the distnbution H ¢ .. The
censored data for the years 1987—1989 corresponds to three observations in
the interval (0, 1000] The most severe events in the years 1990-1996 are
adjusted clatm numbers which correspond to intervals of the form (n, n + 1]
with an integer n > 1000 (at least approximately, ignoring that the vehicles
insured index in Table 1.1 1s not always cxactly one). This suggests the
hkelihood function

1996

3

L{p,&,m) = (H,,‘E‘T(IOOO) - Hu,f,r(o)) x H (HI’aE‘T(M,\’ +1) - H/:,ET(M_I'))
¥=1990

with 41, € R and 7 > 0, where M\ g9, .. , M99 denote the yearly maxima

from Table 1 1. The numerical iteration procedure applied to the log-
Iikelthood function leads to the maximum-likelihood estimates ji = 1168,
£~ 0.760 and 7= 1008; the corresponding fit 1s shown in Figure 6 1.
These values lead to an cstimated knock-out probability of only
Pear =1 — H4:(6000) = 12.4%, because the fitted distribution 1s well
above the empirical onc at 6000 in Figure 6.1 A recalculation of Table
32 gives a discounted value of CHF 266.62 for the three WINCAT coupons.
For further background on parameter estimation for the generalised
extreme value distribution, see [6, Section 6.3] and the references given
there.

It would be unreasonable to insist on estimates for p, £ and 7 giving a
generahsed extreme value distribution with support n [0,00), because
Hé:+(0) =~ 68 1078 s already a very good approximation of zero, the true
distribution 1s almost certainly not in the fanuly {H/,‘fﬂ— |1, e R, 7> 0},
and a good fit at this end of the distribution, where the data 1s censored
anyway, 1s nol our primary concern.

To estimate the 68.3%-confidence mtervals in Figure 6.1, we use the
bootstrap method; see e g. [5] for an introduction. We take 1000 bootstrap
samples  (M{og;, , Migy), where for each component the values
M990, . ., M99 have probability 1/10 of being chosen, and with probability
3/10 we take a censored observation For each bootstrap sample we calculate
the corresponding maximum-hkelihood estimate (/i*, €=, 7*). This gives 1 000
bootstrap values for Hg- ¢ 3 (x), we take the 159th and the 841st largest
values as boundanes for a 68 3 %-confidence interval for H;¢:(x). The
estimated 68.3 %-confidence interval for the above knock-out probability 1s
[0 046, 0 198], the conservative estimate Pc,, = 0.198 leads to a discounted
value of CHF 245 17 for the three WINCAT coupons.
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The model of this section has a drawback 1n our case: While we explicitly
use the absence of recorded events 1n 1987-1989, we are partially discarding
10 of the 17 adjusted claim numbers given in Table | 1, we only implicitly
use that they do not exceed the corresponding maxima

7. COMPOSITE POISSON MODELS WITH A TIME-DEPENDENT PARAMETER

The constant-parameter composite Poisson models of Section 4 are static
ones They give equal weight to every recorded event and. by construction,
do not allow to discover a trend in the data. Every redistribution of the
17 events 1n Table 1.1 to the ten observation periods would lead to the same
result for the coupon values (if we disregard the 15/17-correction 1n
Table 3.2). However. the tests for over-dispersion and time-inhomogeneity
from Subsections 5 | and 5.2 suggest — although not significantly on the 5%-
level but very close — to consider the possibility of a time-dependent
distribution Such a deterministic time-dependence can account for the
tendency of over-dispersion consitdered in Subsection 5.1, it doesn’t need to
be a randomly varying Poisson parameter as mentioned in Subsection 5.1. In
particular, an investor might want to take a possible trend into account
when estimating the discounted value of the WINCAT coupons. Even when a
constant-parameter model 1s preferred for pricing the WINCAT coupons, a
model capable to accommodate a possible trend can be useful for risk
management, because model risk can be an important risk factor. In Section
8, we shall test for the existence of a trend within most of these models we are
considering below There are several reasons why there might be a trend, for
cxample:

o The varnability of the weather could change, due to human influence
(increased CO;-part 1n the atmosphere) or solar activity (1 1-year cycle of
sun spots), for example.

e Winterthur nught increase its market share 1n other regions hke the
French or Itahan speaking parts of Switzerland; this can happen n
particular when Winterthur merges with another insurance company
(ke merging with Neuenburger Schweizerische Allgemeine Versiche-
rungsgeselischaft 1in 1997, for example). Due to the Swiss Alps, the
local climate is in general quite different in different regions of
Switzerland, so a change in Winterthur’'s engagement 1n a particular
region can considerably increase or decrease the company’s exposure to
storm or hail damages

e Severe damage caused by hail 1s a local event. If the density of motor
vehicles msured with Winterthur increases (due to more cars per
inhabitant, more inhabitants per area or a greater market share of
Winterthur Insurance within an area), then more insured motor vehicles
are likely to be damaged 1n every single event

e The relation of the number of cars to the number of motor-cycles within
Winterthur's insurance portfolio of motor vehicles might change.
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o The habits of the insured might change They nught buy a second or
third car for the family without butlding or renting an additional
garage to protect the car in case of bad weather. Or the insured are
better off financially and they can afford the deductible, hence they
take chances and don’t drive the car to a secure place in case of a
storm/hail forecast.

e Motor vehicles might get more or less susceptible of hail damage, because
the material changes (different kinds of steel, alumimum, different coats
of lacquer, for example) or the thickness of the automobile body sheet
changes (a thicker sheet can give more protection in case of an accident, a
thinner sheet reduces weight and thereby fuel consumption)

In any case — whatever the particular reason — it 1s a reasonable i1dea to
consider a model which 1s flexible enough to take a possible trend n the data
into account as long as such a possible trend can not be ruled out by
additional information concerning all the points mentioned above (and the
ones we have not thought of).

When modelling low-frequency event risks, the scarcity of the available
statistical data 1s a typical problem. If one wants to follow a kind of
Bayesian approach, 1t 1s desirable to take additional information into
account when selecting a model (see [13, Section 6] for such a case study
of the correlation of wind storm losses of the Swedish msurance group
Lansforsakringar with wind speed data provided by the Swedish Meteor-
ological and Hydrological Institute). For a fair and transparent pricing of
financial products, such information should either be public or should be
published together with the introduction of the financial product. For the
pricing of the WINCAT coupons, such additional information besides the
historical data of Table 1.1 15 contamed in the study [21] of Winterthur
Insurance This study, as well as the publicly available report [14], for
example, provide information on the vanability of the weather; they also
describe the development of hail storms, the different frequency of hail
storms 1n the various parts of Switzerland, and the properties of hailstones
(size, shape, speed) that cause damage to motor vehicles. The study [21]
also points out that damages to agriculture and motor vehicles are mainly
caused by different types of hail storms: damage to motor vehicles requires
a large momentum of the hailstones (large product of mass and speed),
while damage to agriculture can already be caused by small but numerous
hailstones. This indicates that the extensive statistical data collected from
insured damages to agriculture since 1881 (s of limited use when cstimating
a possible trend 1n the frequency or severity of damages to motor vehicles
caused by hail Also in the report [14], the severity of hail storms is
measured by the number of communities reporting damages to agriculture

In the following subsections we shall use, for every year
v e {1987, .., 1996}, a random variable N, describing the number of
calendar days within the observation period ending in year y, during which
more than 1000 adjusted claims are caused by storm or hail. We assume that
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these random variables are independent and that every N, has a Poisson
distribution given by (4.1), but with a parameter A(y) depending on the year
y € {1987, ..., 1996}. For the purpose of nicer graphics, we shall treat y as a
continuous variable within the figures. We shall discuss five different choices
for the dependence y — A(y).

7.1. Linear trend of the parameter

To start with the apparently simplest dependence, we assume that the
Poisson parameter for the number of events with more than 1000 adjusted
claims depends linearly on the year y, namely

Aap(¥) = a+ B(y — 1987), (7.1)

where we subtract 1987 to get reasonable numbers for . When using (7.1),
we have to make sure that A, 5(v) > 0 for all years under consideration. This
will certainly be the case when o, > 0. The corresponding hkelihood

function arising from the ten observations Njog7, ..., Nigyg 1S
1996
L(e,B) = [] Poissony, o (N,) (72)
y=1987

with the Poisson distribution given by (4 1) and the parameter A, ;(y) as in
(7 1) When trying to calculate the maximum-likeihood estimators for o and
[ numerically, 1t turns out that for the given data there 1s no simultaneous
solution of

d 12,

—L =0 and —L =0 7.3

= Lo, 0) 55 L ) (13)
satisfying o > 0. As a pragmatic approach, let us set & = 0. This means we
constder the special case where the Poisson parameter Ag(y) depends on F1n
the form Ag(y) = B(y — 1987) In this case the equation gﬁlog L(0,3) =0 for
the maximum-hikehhood estimator 3 can be solved explicitly, leading to

- 21'9?916988 Ny I R 17
8= E = N, =-—=0378 74
Z_‘liggﬂx v — 1987) 45 y:zl;ZS To4s 74

The corresponding straight line 1s shown tn Figure 7 1. Extrapolation to the
years 1997-1999 gives the estimated values for A (y) contained in Figure 7 1
and Table 7.1. Using these extrapolated Poisson parameters and the
conditional probability pgoog & 0.0757 from (4.32), which was estimated by a
generahised Pareto distribution, the knock-out probabshities can be
calculated as 1n (4.26) by the formula

Pexe(¥) = 1 — exp(—=peooo - A3(v)) (75)
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FIGLrRE 71 Observed number of events causing more than 1 000 udjusted claims A Iinear fit of the intensity
Ay(y) = (v — 1987), using the maximume-likelthood method leads to 3= 17/45 = 0 378 The increasing
dashed lines indicate this esumated standard deviation of A (v} This model has a problem with the years up
1o 1987 and 1t cettainly underestimates the standard deviation 1n the first years

for y € {1997, 1998, 1999}. The results are given n the fourth column of
Table 7 1 Applying the 15/17-correction of (2 1) to Pgar(1997) and inserting
the resulting coupon-dependent knock-out probabihties into Table 3.2, a
recalculation of this table leads to the discounted values of the three WINCAT
coupons. These values are given in the last column of Table 7 I. The sum of
these discounted values of the three WINCAT coupons is CHF 223 88

To estimate the standard deviation of the Poisson parameter A;(v), note
that Var(N,) = Ag(v) = B(y — 1987) for every one of the independent
random variables Nygg7, . , Nygg tn this model. By (7.4),

| SY% A %" s
Var(f) = — Var(N,) = —— (y —1987) = —
452 y=1988 452 y=1988 45

Using (7.4), this leads to &(A\y(v)) =6(B)(y — 1987) with &(3) =
V17/45 =~ 0 0916.

This model with a linear trend in the Poisson parameter y — A\3(v) has a
severe problem with the year 1987, because the estimate Ag(1987) =0 1s
certainly wrong. The estimated standard deviations for the years 1987-1989,
as shown n Figure 7.1, are quite unreahstic, too Model predictions for the
years before 1987 are impossible, because negative values for Ay(y) are



136 UWE SCHMOCK

unacceptable. In the following subsections we shall discuss models which do
not have these deficiencies.

TABLE 71

CALCULATION OF THE DISCOUNTED VALUE OF 1HE THREL WINCAT COUPONS IN THE CASE OF A LINEAR
PEPENDINCT Aj(y) = SB(y — 1987) OF THL POISSON PARAMETER THE POISSON PARAMEIERS A {y) ARE THI
EATRAPOLATED VALUES FROM FIGURE 71 THE CONDITIONAL PROBABILITY Py FOR A KNOCK-OUT LVENT GIVEN
THAT AN EVENT OCCURS 1S TAKEN FROM (4 12) THE FORTH COLUMN CONTAINS Pryr (i) = 1 — exp(—peam A (1))
THE DISCOUNTED COUPON VAI UES ARE THFN CALCULATED ACCORDING TO TABLE ? 2 TAKING INTO ACCOUNT THE
15 17-CORRECTION FROM (2 1) FOR THE SHORTLR IFIRST OBSERVATION PERIOD

Year v 2,00 P Pca () Coupon value
1997 378 00757 24 9% CHr 80 64
1998 416 00757 27% CHF 7372
1999 453 00757 29% CHF 69 52
Discounted value of the three WINCAT coupons CHr 223 88

7.2. Log-linear trend of the parameter

To avoid the problem of negative Poisson parameters, let us consider the
prime example of a modcl where this cannot occur, namely a generalised
linear model with the log-linear dependence

/\0./3(.})) = exp(a+ ,B(y — 1991 5))’ a,ﬁ,y eR (76)

We subtract 1991 5 from y in order to get approximately orthogonal
parameters, meaning that the maximum-likelihood estimators for a and g
have only a small correlation (for the notion of orthogonal parameters, see
e g.[2, p. 182-185]) This parametrisation 1s also useful in Section 8, because
it introduces a symmetry which reduces the computational effort for the
permutation test. The log-likelihood function for this model ansing from
(7 2) with A, 5(p) as 1n (7.6) is given by

1996
(B =Y (N_‘,(a+ﬁ(y—|991 5)) — o +Bl=199! 5)—logN).'> (77)

y=1987
The maximum-hkelithood estimates for « and 3, calculated numerically, are

&~0406 and fB~0.176 . (7.8)

The corresponding curve v — A, 5(v) 15 shown in Figure 7.2. It approx-
imates quite well within the time span 1987-1996. The extrapolated values
of the Poisson parameter ), ;(y) for the years 1997-1999 can be read off
from Figure 7.2. A recalculation of Table 7.1 with these numbers leads to
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FIGURE 72 Log-linear dependence A, ;(1) = exp(a + By — 1991 5)) of the Poisson parameter The
maximum-lkelthood method leads (o ¢ = 0406 and # = 0 176, the result 1s shown as a solid curve together
with the extrapolation The dashed piecewise hinear curves indicate for every year v the estmated standard
deviation of A, ,{») as derived from the log-likelihood ratio statstic: The uncertainty of the extrapolated

values 1s very large for the years 19971999

the knock-out probabihities 25.9% (without 15/17-correction), 30% and
34.7% for the three WINCAT coupons and a discounted value of CHr 214 37.
For calculating the maximum-bkelthood cstimates (7.8), we needed
appropriate starting values for the numerical iteration procedure. We took
ag = log A{fhy = log 17/10 = 0 53 with A{gds from (4.2) This value for « 1s
the correct choice 1n the constant-parameter case = 0. For § we used the
followmg heursstic: The approximating tangent of y — Ay, () at the middle
1991.5 of the interval [1987,1996] 1s /\l;‘“g‘ () = e + Beo(y — 1991 5)
wnth e = 17/10 The optimal 3 for the least- -squares fit of this tangent to

the data Nyeg7, -, N]996 has to satisfy

1996
Z (NJ _ /\f::l;;CllL(,‘)) =0.
v—l987
This linear equation 1n 3 18 solved by

1996
oo M 2 19L) 94 16
e 3 Mgy (v — 1991.5)* 561

Bo =

To obtain an estimate for the standard deviation of the estimated Poisson
parameter A; ;5(v) for every year ye€ {1987, , 1999}, we use the log-
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likelthood ratio statistic, which we already applied in Subsection 4.3.
Simularly to (4.33), we define the log-likelihood ratio statistic or deviance by
D(a, ) = 2/(&, ) — 2(a,B) for a,B € R. Corresponding to (4.34), for
every year y € {1987, ., 1999}, we want to determine the smallest 68%-

confidence iterval [A7, Af] C (0,00) such that

{(0, ) € R | D(e, 8) < x93} € {(. B) €R? | Mo y(P) € [N AL]} (79)

Solving equation (7.6) for a yields o5(8, ) =log A — B(¥ — 1991.5) With
this reparametrisation, the inclusion (7.9) reduces to

{(B,2) € Rx (0,00) | D(e5(8, 1), B) < xbom} CRx [A7,AH]

The numerical results are shown mn Figure 7.2 as dashed piecewise hinear
Curves.

The results 1n Figure 7.2 for the years 1987 up to 1996 look quite
satisfactory, although the 68%-confidence intervais arc larger than the
estimated standard deviation &(Ajgae) in the constant-parameter model, see
Figure 4.1. (However, since the inclusion (7.9)1s strict in general, we may have
slightly overestimated the size of the confidence intervals here.) In Figure 7 2,
the upper 68%-confidence bounds Ay, Afyes and Afyee for the future
observation periods show a large uncertainty of the estimates. Of course,
the small size of the historical data set 1s partially responsible for this
uncertainty. The main contribution, however, comes from the log-linear
model 1tself, because it blows up the unavoidable uncertainty of the
maximum-likehhhood estimators & and 3 in an exponential way. This log-
linear model s already a very pessimistic one with respect to the future
development of the event frequency. Due to the exponential amphfication of
the estimator uncertainty, the log-linear model 1s certainly not the favourite
one for calculating a conservative estimate for the value of the WiINCAT
coupons.

7.3. Square-root linear trend of the parameter

To avoid the possibly negative Poisson parameters of the linear model from
Subsection 71 and the very pessimistic perspective of the future event
frequency in the log-linear model from Subsection 7.2, we want to consider
the usual root-linear model

Aas(3) = (a+ B(r— 1991 5)%, «a,8,yeR

Along the lines of the previous subsection, we obtain Figure 7.3 A
recalculation of Table 7.1 leads to the knock-out probabilities 27.8%
(without 15/17-correction), 31 4% and 35% for the WINCAT coupons and a
discounted value of CHF 210.86 A
Incidentally, note that the maximum-likelthood estimators & and 3 are
not uniquely defined in this square-root linear model: If (&, 3) maximises the
likelthood function, then so does (—&, —3) The starting values for o and 8
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determine which of these solutions 1s found by the numerical iteration
procedure.

In this square-root linear model, the esimated Poisson parameter drops
to zero between 1983 and 1984 and increases 1n the more distant past. This
model deficiency, however, 1s not of great importance for the extrapolation
into the future. A more important problem 1s, as in the log-linear model of
Subsection 7.2, the built-in pessimistic perspective of a future quadratic
growth of the event frequency. In the next subsection we shall present a
model which 1s better tailored for the extrapolation of the estimated Poisson
parameter in our case.

1t Number of events with more
101 than 1000 adjusted claims e

568
497
4 31

] iy

1987 1988 1989 1990 1991 1092 1993 1994 1995 1996 1997 1998 1999

e

FIGURE 7 3 Root-hnear dependence A, 4(¥) = (o + B(y — 1991 5))2 of the Poisson parameter The
maximum-hkelthood method leads to é == 1 23 and = 0 154 These esumates give the solid curve and the
extrapolated values The 68%-confidence bounds are indicated by the dashed piecewise hnear curves

7.4. Modified-linear trend of the parameter

To avoid the problems of negative Poisson parameters and too pessimistic
perspectives of the future event frequency, we want to consider the
dependence

Ao g(y) =log(l +exp(a+B(y —19915))), o,3,y€R. (7.10)

We shall call 1t modified Iinear, because y — A, g(y) 1s approximately linear
for o+ B —19915 >0 and the graph bends smoothly for
a+ By~ 1991.5) = 0 to avoid negative values The number one 1n (7.10)
anises from this restriction, another value, let us call 1t -y, would lead to the
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asymptotic value log ¥ when o + 8(y — 1991 5) « 0. Maximum-likelihood
estimators and 68 %-confidence intervals are calculated with the procedures
outlined 1n Subsections 7 1 and 7 2. The results are shown in Figure 7.4, the
maximum-lhkelihood estimates are & ~ 1.36 and 8 =~ 0.521 Figure 7.4 also
shows that the estimator uncertainty is amplified only 1n a linear way. A
recalculation of Table 7.1 with the extrapolated values of the Poisson
parameter from Figure 7 4 lead to the knock-out probabilities 27.4% (without
15/17-correction), 30.2% and 32 9% for the three WINCAT coupons and a
discounted value of CHF 214.44.

T Number of events with more
8 | than 1000 adjusted claims -

7|

527
475
424

— i »

1 J L 1 1 i, 1 i
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

FiGLRE 74 Observed number of events with more than 1000 adjusted claims together with a
modified-hnear fit of the Poisson parameter for such events using A, 3(y) — log(1 + exp(n + 3(y — 1991 5)))
The maximum-likeithood method leads to & = 1 36 and ¢ = 0 521 The dashed piecewise linear curves
indicate the esumated 68%-confidence interval for A, ,(3') as derived {rom the log-likehhood ratio statistic
The uncertainly of the estimates giows only linearly

7.5. Smooth transition of the parameter

The models from the previous subsections can be criticised in the sense that
an extrapolation far into the future gives unrcasonable results. Of course,
such a far-reaching extrapolation should not be done in the current case with
Just ten observations, and the models of the previous subsections were not
chosen for this purpose. If future observations would confirm an increasing
trend of the strength estimated 1n the previous subsections, then Winterthur
Insurance would have a strong incentive to introduce preventive measures.
Notice that the WINCAT coupons provide a reinsurance on the financial
market for only half the amount necessary for the adjustment of damages
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arising from just one event per observation period with at least 6000
adjusted claims. Hence, let us also consider a model for a smooth transition
between two hmiting intensities, where the speed and the direction of the
transition 1s measured by a parameter §. While zero is certainly a natural
lower imit for the intensities, there is some ambiguity for the upper bound.
A plausible ad hoc choice based on the data 1s the largest observation. To
avoid an exponentially fast convergence to the hmiting values, we do not
propose a scaled version of the normal or the logistic distribution function
but take a scaled version of the Cauchy distribution function instead

Aag(y) = 5<% + ;rarctan(a + By — 1991.5))> , of,yeR (7.11)

Maximum-likehhood estimators and 68%-confidence intervals are calcu-
lated with the procedures outhned in Subsections 7.1 and 7 2. The results are
shown 1n Figure 7.5, the values of the estimators are &~ —0466 and
B~ 0.442. A recalculation of Table 7.1 with the extrapolated values of the
Poisson parameter from Figure 7 5 lead to the knock-out probabilities
27.5% (without 15/17-correction), 28 2% and 28.7% for the three WINCAT
coupons and a discounted value of CHF 220.53

A Number of events with more
5 than 1000 adjusted claims-------=-=-ccuuu--- S R S

- Year
1. »

& ! 1

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

FIGURE 75 A smooth transition of the Poisson parameter according to (7 11) The possible runge of the
parameter 15 determined by the smallest and largest observed value, respecuively The maximum-likehihood
method leads 10 & & —0 466 and 3 =~ 0 442 The dashed piecewise linear curves indicate the estimated 68 %-
confidence ntervals for A ,(¥) as derived from the log-likelihood ratio statistic These intervals clearly show

the artifictal restriction of the range of the Poisson parameter
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The drawback of this model 1s illustrated by the 68%-confidence intervals
given 1n Figure 7.5. For the years 1990—1994, they are considerably larger
than the ones in Figure 74, and starting from 1991, one clearly sees the
mfluence of the artificial model assumption about the upper bound.

8 TESTING FOR A POSITIVE TREND IN THE POISSON PARAMETER

For the various models with a time-dependent Poisson parameter discussed
in Section 7, it 1s of interest to check whether the additional parameter £ for
modelling a trend 1s significantly different from zero For this purpose
we shall assume that there 1s no trend in the data, and try to determine the
probability that the estimated trend parameter 3 takes values which are at
least as large as the observed one

The model with a linear trend in the Poisson parameter given by (7 1) has
a serious deficiency with respect to the positivity of the Poisson parameter as
pointed out in Subsection 7.1. However, we can test whether the
observations Njgg7, ..., Nigos exhibit a linear dependence on the year of
the observation period. For this test, as for the one in Subsection 5.2, we
assume that Njgg7, , Njgg9¢ are exchangeable so that every permutation of
the ten observations has the same probability. We do not assume that
Nig7, ., Nigge are independent or that they have a Poisson distribution.
For every permutation m of the ten years 1987, .., 1996, which gives a
different sequence of observations, we calculate the value of

1996

Q(m) = D Nayy(v = 1991.5) . (81)
y=1987

This test statistic has a symmetric distribution under the above null
hypothesis and attains all 88 possible values of the form k+%, kezZ,
between —43.5 and 43.5. When the permutation 7 1s the 1dentity 1d, then
Nr1987), -y Nx(1996) are given by the observed values (0, 0,0, 2,2, 4,1, 5,2,
1) and we obtain ¢(d) =23.5. Working through all 50400 different
permutations from (5.5), 1t turns out that for 3726 of them, about 7 39%,
the value of o(7) 1s larger or equal to ¢(1d) = 23.5. (Due to symmetry, 1t
suffices to consider only one half of these permutations 1n our case. If there
were a substantially higher number of permutations, then a sustable number
of random permutations would have to be generated )

For the remaining tests of this section we assume that Nygg7, ..., Njggs are
independent and 1dentically distributed according to a Poisson distribution,
meaning that the trend models are correct with 8 =0. This no-trend
assumption implies in particular that every permutation 7 of Nigg7, ..., Nigge
has the same probability. The maximum-likehhood estimator 3, corre-
sponding to Ni(eg7), ... Nxio9s) via one of the trend models 1s then a
function of the random permutation 7, and we can determine the percentage
of all permutations which lead to a value of 3, larger or equal to the
observed value for G.
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The model with the log-linear trend (7 6) of the Potsson parameter 1s not
more sensitive to permutations than the test statistic (8.1): For a
permutation 7 of the years 1987-1996 we can define the log-likelthood
function /; similarly to (7 7) by

1996

(e, 8) = Y (Nay(o+ By = 1991.5)) = €™H0=1215) _ log N (1)
y=1987

for o,8€R. Using (8.1) and the associativity of summation to rewrite
I-(a, B), we see that

(e 2199;6987 (aN., — G HB=19915) oy NH),
which means that all the dependence of the log-likelihood function /; on the
permutation 7 1s contained in the test statistic ¢(7) and no new information
can be obtained by calculating the maximum-hkehhood estimator 8,
corresponding to /.

A similar permutation test for the model from Subsection 73 with a
square-root hinear trend of the Poisson parameter is meaningless. As
already noted in Subsection 7.3, 1if (&,B3) maximises the likelihood
function, then so does (—d&,—f) Hence we should only consider the
absolute value of the estimator B. Furthermore, a ldrge value such as
3| ~ 02486 for the md‘umum -likelihood estimator arises from an increas-
ing tuple like (O O 0 1, 1,2, 2,2,4, 5) and also from a_decreasing tuple
Like (5, 4, 2, 2, 2. , 0, 0 0) An even larger value of |3] = 0 4535 arises
from a *‘U- shaped” tuple ke (5, 2,1, 1,0, 0,0, 2, 2, 4) A corresponding
“N-shaped” tuple like (0, 1. 2, 2, 5, 4 2 I 0, 0) gives |ﬁ| ~ 0047 however.
Therefore, large values of |ﬁ| are not equivalent to a large ‘“‘rate of
change™ n the tuple. Nonetheless, for the curious reader: About 24 7%
of all permutations result in |3 > 0 154,

We can use the permutation test to challenge the no-trend hypothesis
within the modified-hinear trend model. For every permutation m of the
50400 ones, which lead to different sequences of the ten observations, we
determine the estimator [, which maximises the corresponding log-
likelthood function

1996
I(a,B) = Z log(Possony, vy (Nag)) (8.2)

r=1987

with A, 5()) given by (7.10). The corresponding distribution function for B,
viewed as a random variable depending on 7, 1s given 1 Figure 8 1. Note
that G is quite sensitive to the permutations, because — except close (o zero —
the distnbution function mn Figure 8.1 looks ““smooth™ compared to the one
in Figure 51 or the one with 88 jumps which would arise from the test
statistic (8.1) The probability under the no-trend assumption for 3 > 0.52 1s
about | 66%, which is quite significant
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FiGURE 8 1 Distribution function of the estimated trend parameter 4 in the modified-linear model under
the assumption that there 1s no trend, 1 ¢, all permutations of the ten observations have the same probability
Under this assumption the probability for 8 > 052 1s about | 66%

For the permutation test in the model with a smooth transition of the
Poisson parameter, we also determine, for every permutation 7, the estimator
Br, which maximises the log-likelthood function (8.2) with A, s(y) given by
(7.11). The corresponding distribution function looks similar to the one n
Figure 8.1 in the sense that 1t 1s “‘smooth” and therefore sensitive to the
permutations. There arc 1504 permutations of the 50400 different ones,
about 2.98% of them, which lead to a maximum-likelihood estimate
B> 0442 Again, the result 1s quite significant for the small data set.

Note that the vanious trend models “measure trend” by the parameter 3
in different ways, therefore 1t 1s no surprise that the test results depend on the
used model. More explicitly, every model defines a map 7 — [, on the set of
all permutations of the ten observations, and if G, <8, for two
permutations = and 7’ 1n one trend model, then the corresponding inequality
does not need to hold for the maximum-likelihood estimators in another
trend model

9. COMPOSITE POISSON MODEL WITH A CHANGE-POINT

The models 1n Section 7 allowed to take a continuously changing Poisson
parameter into account by choosing a non-vanishing trend parameter 3 By
extrapolating far enough into the future, these models — with the exception
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of the smooth-transition model of Subsection 7 5 — lead to extrapolated
values of the Poisson parameters which are larger than any value observed
so far. Since the Poisson parameter 1s cqual to the mean of the
corresponding Poisson distribution, such large values might not be desirable
or might be too pessimistic While 1t 1s desirable that more recent
observations have a greater influence than older observations for estimating
the value of the WINCAT coupons, new observations can have a considerable
impact on these estimated values when one of the models of Section 7 1s
chosen; see Section 12 for a more detailed discussion. If one is willing to
accept a discontinuously changing Poisson parameter, then a compromise
between the constant parameter models of Section 4 and the trend models of
Section 7 can be considered, namely a model with a change-point in the
Poisson parameter.

Let y. € {1988, .., 1996} be the year of the parameter change The
corresponding hkehhood function ansing from the ten observations
N19g7, -y Nigge 18

po—1 1996
Ly.) = H Poisson,,(, y(N,) X H Poissony,(,,)(N, ) , (9.1)
y=1987 r=y,
where
1 =) | 1996
Ao(e) = ————— N, and M()=——3S N,
0(re) yc——1987y=12987 y () = 7597 = v

are the (maximum-likelihood) Poisson parameter estimators arising from the
observations before and after the change-point For y. = 1987, which means
that there 1s no change-point in the observed data, we omut the first product
in (9.1) For the log-likelihood function /(y,) = log L{y.), we get

1988 —-1623 1994 —1694
1989 -1423 1995 -1799
1990 —1196 1996 —17 84
and /(1987) = —18.02, if there 1s no change-point. Clearly, the choice

ye = 1990 by far maximises the log-likelthood, leading to A¢(1990) = 0 and
A(1990) = 17/7 = 2 43, see Figure 9.1. Of course, the estimate Ag(1990) = 0
cannot be the true value and this might be considered a model deficiency.
However, only the Poisson parameter A (1990) for the observations after the
jump 1s of interest for the extrapolation and the estimate of the knock-out
probability P¢,, This also means that all observations before the change-
point are 1gnored for the extrapolation. Using peooo ~ 0 0757 from (4.32), we
obtain similarly to (4.7) and (4.8) that

PCAT =1- eXp(—-i)G()OO/\[(199O)) =~ 0.1680 .
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A Number of events with more
than 1000 adjusted claims
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Fiuure 91 A model with a change-point in the Poisson parameter A change from Ay =0 to
= 17/7 = 2 43 between 1989 and 1990 maxinuses the ikehihood The dashed lines indicate the estmated
standard deviations of the Potsson parameters disregarding the uncertainty arising from the estimate of the
location of the change-point

A recalculation of Table 3.2 gives a discounted value of CHF 253.80 for the
WINCAT coupons Using an analogue of (4.28) leads to Pgar =~ 0.1689 and
CHF 253.56.

For the standard deviation of A;(1990) indicated by the dashed lines n
Figure 9.1, we take an estimate similar to (4.4), namely

&(A1(1990)) = /A (1990Y/7 = V17/7 =~ 0.59.

A similar estimate for Ag(1990) does not lead to a meaningful result, becausc
Ao(1990) = 0. The log-likelihood ratio statistic does not seem to be suitable
here, because the application of asymptotic results to just three observations
1s questionable Looking for the largest Poisson parameter A such that the
likelithood for the joint occurrence of the three independent events Nygg7 = 0,
Niggg =0 and Nyggg =0 is 68%, we get exp(—35(X(1990))) = 0.68,
which gives 6{Ag(1990)) =~ 0.13. However, the smallest possible observation
for Ao(1990) besides zero 1s 1/3, hence we should take at least
d(Mo(1990)) = 1 /3. This is also the smallest value besides zero, which we
can get by the formula 1/ Ao(1990)/3 similarly to (4.4).

Note that the two estimates &(Ag(1990)) and &(\(1990)) do not
incorporate any uncertainty about the location of the change-point While
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asymptotic results for confidence regions of change-point estimates based on
likelihood ratio tests are available, see e.g. [9] and [22], it 15 problematical to
apply these to the present short sequence with a priori unknown Ag and A,
in particular since the log-hkelihood function gives such a clear-cut answer
for the location of the change-point here

10. PEAKS-OVER-THRESHOLD METHOD

The composite Poisson models discussed in Sections 4, 5 and 7-9 make an a
priort distinction between the event frequency and the event severity, which
1s the adjusted number of claims arising from these events. This distinction
allows to choose from a selection of constant-parameter and time-dependent
parameter models for the event frequency and, independently, to choose a
distribution for the event severity: the Bernoulli distnibution, the Pareto
distribution and the generalised Pareto distribution have been discussed in
Section 4.

So far we fitted several Poisson models with a time-dependent
parameter to the observed event frequencies It 1s an obvious idea to
consider also a time-dependent distribution for the event severity; most of
the arguments given at the beginning of Section 7 can be used to support
this 1dea. However, there 1s also the aim of parameter parsimony and the
danger of overfitting With the present small historical data set, this
danger probably becomes real when we try to estimate trend parameters
for the event frequency and the event severity separately. If we tear down
the wall between event frequency and severity, then there 1s a three-
parameter model available, which incorporates the for theoretical reasons
desirable generahsed Pareto distribution for the event severity and the
Poisson distribution for the event frequency The Poisson distribution is
also backed up by extreme value theory, because the poimnt process of
exccedances over thresholds, in an appropriate set-up, converges weakly
to a time-homogeneous Poisson point process as the threshold increases
and the time 1s rescaled accordingly to keep the expected number of
exceedances constant, see [6, Theorem 5.3.2]. By allowing a trend in one
of the three parameters, which requires a fourth parameter, we can model
a possible time-inhomogeneity 1in both distnbutions. Note that such a
joint model for event frequency and severity might better account for the
two events 1 1994 which just pierced the threshold of 1000 adjusted
claims.

The onginal continuous-time model 1s called peaks-over-threshold model
and we shall give a brief outline adapted to the present problem below. For a
more detailed discussion, see [6, Chapter 6.5] for example This peaks-over-
threshold model is also used in a case study of wind storm losses
encountered by a Swedish insurance group, see H. Rootzén and N. Tajvid
[13], their fifth section 1s devoted to trend detection.
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Consider a Poisson point process on the set {1987, ..., 1996} x R with an
intensity measure A, ¢, which is uniquely determined by

X =y /€

Aer({y} % (x.00)) = (1 yek T“) , xER, ye{1987,..,1996}; (101)
+

where 7 and £ are strictly positive model parameters and ;1 € R denotes a

location parameter If £(x — ;1) < —7, then the right-hand side of (10.1) has

to be interpreted as infimty. The value

Ape-({y} x (a,00)) = (1 +

15 the Poisson parameter for the number of events exceeding the threshold a
in the observation period ending in year y. All events for which the number
of adjusted claims exceeds the threshold of @ = 1000 are recorded in Table
1 1. Of course, the model parameters should be chosen such that the Poisson
parameter in (10.2) 1s finite, which is equivalent to £(a — p) > ~7. For x > a,
the ratio of the Poisson parameters from (10.1) and (10.2) 1s

A ({0} X (x,00))
Ay er({¥} x (a,00))

This ratio i1s the conditional probability for a Poisson point to lie in the
subset {y} x (x,00) given that it hes in {y} x (a,00). It 15 also the expected
number of points in {y} X (x, 00) divided by the expected number of points
in {¥} x (a,00). As the nght-hand side of (10.3) shows, the conditional
probabihity 1s the tail 1— Gue, (x) of a shifted generalised Pareto
distribution of the form (4 29).

The above calculation shows that the points-over-threshold model 1s
structurally stable with respect to an increase in the threshold «; according to
(10.2) and (10.3) we just get different Poisson and scale parameters. This
stability can be used to determine an approprnate threshold by exploratory
data analysis; due to our small historical data set, we do not attempt such an
analysis here. Note that we have chosen the set {1987, .., 1996} instead of a
ten-year interval because we want to refrain from modelling a seasonal
dependence of the storm and hail damages.

As an abbreviation for the Poisson parameter from (10.2), let ¥ (x; 1, €, 7)
denote the right-hand side of (10.1) for all £,7 > 0 and p, x € R satisfying
&(x —p) > —1, and let v(x, 1, & 1) = —(0/0x)V{(x, 1, &, 7). The function

. . S1-1/e
v(x; 46,€,7) 1 xX—a
a, Sx—o—>m——=—1|1+
[4,00) V&) T =

1s the (—8/0x)-derivative of (10.3) and therefore the density of the shifted
generalised Pareto distribution G, ¢ ., On [a,00), see (4.29).

a—p

)_'/5 (10.2)

T /4

N\ HE
=<l+£iT—a) with 7,=7+¢&a—pu). (10.3)
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To take a time-inhomogeneity into account, we first consider a linear
dependence of the location parameter given by

pap(y) =oa+B(y—19915), o, B,y €R. (10.4)

The location parameter has to satisfy &(a — pag(y)) > —7 for all years y
under consideration In this way we get a family of Poisson parameters and
shifted generalised Pareto distributions via (10.2) and (10.3), respectively
Mouvated by the simulation study in [13, Section 3], we use only the
maximum-hkelihood method for estimating the parameters and do neither
consider the method of moments nor probability weighted moments. The
maximmum-likelihood method is also more flexible with respect to model
extensions.
The likelihood function 1s given by

1996 N, ( .
. v Xl viHa ﬁ(v)~£a7—)
L{e,B,6,7)= Poissony(u, v {(Ny) L (10 5)
yﬂﬂ s 670 ,11 V(a,pi0,6(9),6,7)

with the Poisson distribution as in (4 1), where Njgg7, .. . Nig9¢ are the
numbers of observed events exceeding the threshold ¢« = 1000 1n the years
1987, . , 1996 and X}, ..., X, , are the numbers of adjusted claims of the
events 1 the year y given by Table 11 Using the abbreviation
c=— Z‘l-:1987 log N,!, we can write the log-likelihood function correspond-
ing to (10.5) as

1996

17
/(a‘[)’,f,’r):c‘— Z V(avﬂn.ﬁ(,\})agv’r)+ZlogV(Xl’,“u,ﬁ(yl)afvT)’ (106>

y=1987 1=1

where X, , X)7 are the numbers of adjusted claims of the 17 events
recorded 1n Table 1.1 and y;, , y;7 are the corresponding years these
events happened Incidentally, note that the log-likelthood function tn (10 6)
would be flexible enough to accommodate a changing threshold for
recording historical events; the constant ¢ = 1000 simply has to be replaced
by a function y — a, for this purpose.

If we take 8 =0, then we actually have a three-parameter model
consisting of the constant-parameter Poisson model for the event frequencies
and the generalised Pareto distribution for the event severity. This model
coincides with the one discussed 1 Subsection 4 3 The maximum-likelihood
method using (10.6) leads to the estimates fip = &p ~ 1427.5, & ~ 0.7243
and 7y = 970 3, which give via (102) and (10 3) the Poisson parameter
Ao o ({¥} % (1000, 00)) = 1 7 for every year y and the scale parameter
7,0 ~ 660.7, where the index zero refers to =0 These estimated values
coincide with the ones in (4 3) and (4.31), which 1s reassuring. On the other
hand, we can usc this fact to determine the maximum-likelthood estimates
arising from (10.6) with 8 = 0 1n an easier way The scale parameter 7,9 and
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the shape parameter éo for the generalised Pareto distribution can be
calculated as in Subsection 4.3, the Poisson parameter A{35' is given by (4.2)
Solving (10.2) and (10 3) leads to

fo = Tao(Aee)" and jio = a+ (70— 7u0) /o

In this way we can determine starting values for the numerical rteration
procedure in the time-inhomogeneous cases discussed below

Maximising the log-likelthood function (10.6) without the restriction
B =0, we obtain the estimates & = 13769, (~93.99, £ ~06534 and
7~ 1021 3. The positive value of § leads to an increasing value of
the location parameter, which leads to an increasing Poisson parameter
via (102) and to a decreasing scale parameter via (10.3) This means
that the event frequency increases, but the event severity decreases.
The expected number of events above the thresholds 1000 and 6000
for the years under consideration, calculated according to (10.2), are
given 1n the second and third column of Table 10.1. A recalculation of
Table 71 using the estimated paramelers from the last three lines of
Table 10.1 leads to a discounted value of CHF 264 00 for the three
WINCAT coupons.

Note that [ 1s so large that the restriction {(a—u ) > =7 s
violated for the years y > 2005, which shows again that extrapolanon has
to be done with great care. We should test whether the trend parameter 3
1s significantly different from zero Under the null hypothesis 8 = 0, every
redistribution of the 17 observations to the ten observation periods has
the same probability, the log-likelihood function in (10.6) would not
depend on this redistribution. In principle, we could use this observation
for a permutation test. In practice, 1t 1s numerically demanding to
determine the four maximum-likelihood estimators for several thousand
random redistributions (there are 10'7 redistributions in total, hence 1t 1s
impossible to use all of them). We therefore resort to asymptotic results
and use the log-likelithood ratio statistic. Assuming the model with 8 =10
and the above estimates cy, §0 and 7y to be the Correcl one, the deviance
20(&, B,€,7) — 21(Gy,0,€, %) has approximately a x2 2_distribution with
one degree of freedom [15, Section 5.2.3]. With the above maximum-
likelithood estimates &~ 13769, 3~ 93.99, £ = 0.6534 and 7= 1021.3, we
obtain 2/(&,5,&,7) — 2{(G&g,0,&,70) = 3.166, which corresponds to the
7.52%-quantil of the x3-distribution

Another possibility to allow for a trend in the model 1s to assume that the
location parameter ¢ and the strictly positive scale parameter 7 depend in
the same way log-linearly on the year, meaning that

/"u.l}(y) = exp(a + B(y — 1991 5))1

To,0v) = exp(y + Ay — 1991.5)), ~ @Ay ER (107)
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TABLE 101

RESUL 1S 'OR THE PEAKS-OVER-THRESHOLD MODLL WITII A LINEAR DEPENDENCE 14, 5(y) = o+ B(y — 1991 5) ok
THE LOCATION PARAMETER OR A LOG-LINEAR DEPENDENCE (10 7) OF THL SCALE AND THI" LOCATION PARAMETERS
FOR BOTH MODELS THL FITT i1 POISSON PARAMLTERS  Ajgon AND Ay FOR THE NUMBLR OF LVENTS WITH MORL
THAN 1000 AND 6000 CLAIMS RESPECTIVELY ART LISIED IN ADDIION 11 CONDITIONAI PROBABILITY
Poowr = A/ Augo THAT AN EVLNT CAUSES MORE THAN 6000 CLAIMS AND IHL FSTIMAIED KNOCK-OUT
PROBARILITY P ,, AR GIVIEN 1 OR THE YEARS 1987 1999

. Log-linear dependence of the scale
Linear dependence of the location parameter .
and location parameters

Year ;\mm ;\woo Penon Pcar ;\I(Nlb 5\600() Pevoo Pcu

1987 0957 0110 0115 10 4% 0616 0036 0058 35%
1988 1 049 o113 0107 10 6% 0756 0045 0059 4 4%
1989 1157 0115 0099 10 9% 0925 0056 0061 55%
1990 1285 0118 0092 11 1% 1128 0070 0062 6 8%
1991 1437 0120 0084 11 3% 1 369 0088 0 064 8 4%
1992 1623 0123 0076 11 6% 1 655 0110 0 066 10 4%
1993 1 851 0126 0 068 11 9% 1 990 0137 0069 12 8%
1994 2139 0129 0 060 12 1% 2 381 0171 0071 157%
1995 2 508 0132 0053 12 4% 2831 0213 0075 19 2%
1996 2995 0136 0045 127% 3 347 0265 0079 23 3%
1997 3663 0139 0038 13 0% 3930 0328 0084 28 0%
1998 4618 0143 0031 13 3% 4 583 0 406 0089 33 4%
1999 6 067 0147 0024 13 6% 5307 0 501 0094 39 4%

Such a model extension is appropriate when the event severity is measured 1n
currency units subject to a yearly inflation rate of ¢” — 1, for example. The
parameters have to satisfy £(a — pap(v)) > —7p4() for all years y under
consideration Defining the corresponding log-likelihood function similarly
to (10.6) by

1996 17
He,B,7,6)=c— Z V(“ Ha.8(),6: 78, (Y "*‘Zlc’g" Xiitto gy )afa”'ﬁn(}’l))’
v=1987 =1

(10.8)

and maximising it numerically, we obtain the esumates ¢=7 199, £~=0.1379,
426835 and £~ 05972 Smce Eexp(d) ~ 799 1 < 929.8 ~ exp(F), the
above 1nequality 5( — pap(y)) > —754(y) is sausfied for all y € R The
results are given in Table 10.1, the discounted value of the three WINCAT
coupons 1s CHF 204 34. With the values estimated above, the Poisson
parameters Ajgoo and Aggop for the frequency of events with more than 1000
or 6000 claims, respectively, increase with time This 1s illustrated by the
sixth and seventh column of Table 10.1. Note that the two extensions of the
peaks-over-threshold model come to opposite conclusions concerning the
trend of the event severity. The fourth column of Table 10.1 exhibits a
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decreasing trend of the probability pegop, that an cvent causes at least
6000 claims, while the eighth column shows an increasing trend of peogo
This partial cancellation or superposition of trends leads to a difference of
CHF 59 66 between the two estimated values of the three WINCAT coupons

To test the null hypotheses =0 in the model extension specified
by (10.7), we assume that this model with =0 and the above
estimates fig ~= 1427 5, {5 = 0.7243 and 7 ~ 970.3 1s the correct one (which
via (10.7) gives &; =logjig =~ 7264 and -y =log7y ~ 6.88 here) and
determine thc _value of the log-likelihood ratio statisnc. We get
20(&, B,4,€) — 21(&, 0,90, &) = 4.088, which corresponds to the 4 32%-
quantil of the x3-distribution.

Various other extensions of the peaks-over-threshold model for
incorporating a trend are possible. We could consider a time-dependent
shape parameter &, for example. Furthermore, instead of a hnear or log-
hnear dependency as in (10.4) or (107), we could consider a greater
selection of possible dependencies as we have done for the Poisson
parameter 1n Scctions 7 and 9. If the historical data set were bigger, also
other suitable selections of two or even all three parameters u, &, and 7
could be made time-dependent. We refrain from justifying, discussing,
fittng and testing such models herc, but we hope that the worked-out
cases 1n this section can serve as a guideline when the need for one of the
above-mentioned extenstons arises.

11. COMPARISON OF THE ESTIMATED VALUES

Table 11.1 contains the estimated discounted values of all three WINCAT
coupons for the models considered in the previous sections. We have added
several additional models, which arise by combining the Bernoullr or Pareto
distribution for the event severity with the various models for the event
frequency. The entries of the table are grouped according to the used model
for the event frequency. There 1s an additional partial order according to the
value of the coupons.

The following remarks should be kept in nind when comparing the
“conservative” value of CHF 229.78 obtained 1n [3] with the results of this
paper.

« No explicit risk premium 1s mncluded in the discounted values of the
WINCAT coupons given 1n Table 11.1.

e The extrapolated estimated Poisson parameters are in the region from
3.78 in Figure 7.1 up to 5.68 1n Figure 7.3. In the histonical data sct, two
observation periods with four and five events are recorded, hence the
extrapolated parameters are not unreasonable 1If one accepts the
possibility of a trend.

o Time homogeneity 1s possible with all the models considered 1n ths paper
by choosing etther § = 0 or no change-point It 1s the historical data set
that leads Lo the positive estimates for 3 or the clear-cut location of the
change-point, respectively.
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TABLE tI1

COMPARISON OF THE VALUE OF HE THREE DISCOUNTED WINCAT COUPONS ARISING FROM THE BINOMIAL MODLL
THE COMPOSITE POISSON MODELS THE GENERALISLI LN TREME VALLE MODEL AND THE WO EXTENSIONS OF THL
PEAKS-OVER THRESHOLD MODLL NO LXPLICIT RISK PRLMIUM IS INCLUDLD THE VARIOUS £51IMATED COUPON

VAL ULS CLEARLY ILLUSIRATE THE MODLL RISK

Nao. Coupon value Conresponding model
1 CHF 244 44 Binomial modet of Section 3
Constant-parameter Poisson model of Section 4 and
2 CHF 267 48 — generalised Pareto distribuerion of Subsection 4 3
3 Cur 263 29 ~ Pareto distribunon of Subsection 4 2
4 CHF 247 37 — Bernoull distribunion of Subsection 41
5 CHF 266 62 Generahsed cxtreme value distnbution of Section 6
Peaks-over-threshold model of Section 10 and
6 Cur 264 00 - fmear trend of the location parameter
7 CHr 204 34 — log-lmear trend of the scale and location parameter
Change-point model of Section 9 and
8 Cur 253 80 generalised Pareto distribution of Subsection 4 3
9 CHF 24799 - Pareto distribution of Subsection 4 2
10 CHr 22528 — Bernoulli distribution of Subsection 4 1
Generalised Pareto distrbution (4 29) and
time-dependent Potsson parameter with the
il Cnr 223 88 ~ limear trend of Subsection 7 1
12 CHF 220 53 smooth transition of Subsection 75
13 CHF 214 44 — modifted-lnear irend of Subsection 7 4
14 CHF 214 37 ~ log-lmear trend of Subsection 7 2
15 Cur 21086 — square-root limear trend of Subsection 7 3
Pareto distnibution (4 15) and a ume-dependent
Poisson parameter with the
16 Cur 21519 — lnear trend of Subsection 7 1
17 CHF 211 54 smooth transition of Subsection 7 5
18 CHF 204 96 modified-tmear irend of Subsection 7 4
19 CHF 20493 — {og-lmear trend of Subsection 7 2
20 CHr 201 12 — Square-root hinear trend of Subsection 7 3
Bernoulli distribution and a time-dependent
Poisson parameter with the
21 CHr 189 56 — lwear trend of Subsection 71
22 Cur 18511 — smooth transition of Subsection 7 5
23 Chr 177 36 — modified-lnear irend of Subsection 7 4
24 CHF 17744 ~ log-lmear trend of Subsection 7 2
25 CHF 17287 — square-root lmear trend of Subsectnion 7 3




154 UWE SCHMOCK

A higher event frequency magnifies the differences between the estimate
Poooo = 0.0857 from (4 24) obtained by the Pareto fit of the adjusted claim
numbers, the estimate pgoop = 0 0757 from (4.32) obtained by the general-
1ised-Pareto fit, and the estimate pgogo = 2/17 =~ 0 118 from the Bernoulh
distribution of Subsection 4.1. As Table 11.1 shows, these differences
between the empirical and the fitted distribution functions in Figures 4 2 and
4 3 give nse to quite different values of the WINCAT coupons The specific
form of a possible trend 1s of minor importance.

In the linear-trend model of Subsection 7.1, the slope 3 1s restricted by the
positivity requircment of the Poisson parameter Similarly, in the smooth-
transition model of Subsection 7.5, there 1s the imposed upper bound for the
Poisson parameter Both restrictions lead to higher estimated coupon values.

12 MODEL ROBUSTNESS AND SENSITIVITY ANALYSIS

When choosing a model, i particular for low frequency event risks, 1t 1s of
interest to know how sensitive the model reacts to changes of the data We¢
refrain from manipulating the available historical data of Table 1 1 for this
purpose Instead, we employ a scenaro technique by adding fictitious data
for 1997 to the historical data set of Table 1 | For a favourable scenario, we
assume the best possible case, namely that no event with more than 1000
claims 1s recorded 1n 1997. Such an event history happened three times
already during the recorded 10-year history For a stress scenario, we want
to add a bad event record for 1997 To remain realistic, we prefer to pick a
bad year from the available historical data set While the year 1994 15
certainly the worst case with respect to the event frequency, it would not lead
to a knock-out of the coupon and therefore counts as a favourable year for
the binomial model of Section 3 Hence we choose the data of the year 1992
as a common stress scenario for all models Iisted 1n Table 11 1.

For an easy comparison of the previous results with the coupon values
anising from these scenarios, we assume that an identical three-year bond 1s
issued in February 1998, that the observation period for the first coupon 1s
shorter for applying the 15/17-correction from (2 1), and that the interest-
rate structure for the coupons 1s again given by Table 3 1. Based on the
extended Il-year data set, we estimate the discounted value of the
corresponding three WINCAT coupons using all models discussed so far
The model-dependent changes of the value are given in the third and forth
column of Table 2.1

The robustness and sensitivity of the models should not be judged
exclusively on the numbers in Table 12 1, because the two scenarios do not
illustrate every possible behaviour of the models [n the change-point model
of Section 9, the change-point illustrated by Figure 9.1 remains between
1989 and 1990 in both scenarios Similarly, in the hnear-trend model of
Subsection 7 1, there 1s no solution of the hkelthood equations (7.3) in either
scenario, hence we use the pragmatic approach again and set « = 0 Three
trend models. namely the root-linear model of Subsection 7.3, the modified-
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linear model of Subsection 7.4, and the smooth-transition model of
Subsection 7 5 lead to a shghtly smaller cstimate for the trend parameter 3
even in the stress scenario. These are exactly those trend models of Section 7
that predicted a Poisson parameter larger than four for the year 1997 For
the favourable scenario, the biggest relative change shows up n the smooth-
transition model of Subsection 7.5; the trend parameter 3 drops from 0.442
to 0.114. Due to our choice of the stress scenario, the imposed upper bound
in the smooth-transition model remained at 5

TABLE 121

ASSUME THAT A SIMILAR BOND WITH THREL WINCAT COUPONS IS ISSULD ONL Y LAR LATLR AND ASSUML THAT THL
INTCREST RATE STRUCTURL 1S THE SAME 11 THI RE1S NO LVENT IN 1997 (1 AVOURABLE SCINARIO) THIN THI
MODFLS LISTFID IN TABLL 11 | GIVE FIGHLR VALULS FOR THE CORRLSPONDING THRLE WINCAT COUPONS TF THERL
ARL TOUR LVENTS IN 1997 (S TRISS SCENARIOY WITH ADJUSTED CLAIMS AS IN 1992 SkE TABLL 11 THEN LHE MODELS
LEAD TO LOWELR VALUES THE VALULC HANGLS SHOW TIE ROBUSTNESS SENSITIVITY O THE MODELS WITH RESPLC
10 NEW DATA THE LAST FOUR COLUMNS CHARACTERISE THE DISTRIBUTIONS OF THE COUPON VAL UT'S BASED
ON 1000 STMULATED DATA SEIS TORTVIRY FITTLD MODLL SEY SICIION 13

Model  Coupon Value change in Coupon value distribution (mn CHE) ariing
No. value scenarto with Srom simulated model data

in CiF no event 4 cevents Mean Medan Medan 15.9%-
quantil
| 244 44 533 -2135 244 74 244 44 3745 21507
2 26748 304 -8 90 27226 274 20 2251 249 68
3 26329 336 —783 258 46 260 43 2295 234 81
4 247 37 4 81 —1721 249 41 247 37 3369 223 60
5 266 62 320 —-1251 271 18 27396 2383 246 69
6 264 00 478 —-998 266 55 268 70 26 52 241 89
7 204 34 4324 =-2119 199 05 206 37 70 18 121 53
8 25380 566 ~9 R8 25995 262 69 3104 226 60
9 24799 627 —-829 240 95 243139 3132 208 54
10 22528 909 —-1907 23090 22528 46 00 194 34
11 223 88 736 —-1621 23517 23603 4737 18522
12 22053 28 89 —10 14 23208 23112 43 26 18578
13 214 44 24 41 —16 51 22532 230 68 54 55 165 14
14 214 37 3283 —2493 22321 233139 6227 154 02
15 210 86 28 59 —18 60 22355 22769 5613 159 11
16 21519 802 —1376 208 39 21039 41 98 162 12
17 211 54 31 6} —-726 207 96 209 10 3916 166 62
18 204 96 26 56 —-1371 195 08 198 98 4990 140 85
19 204 93 3579 —2248 196 78 20529 59585 13281
20 201 12 3107 —1576 189 15 193 58 5133 134 90
21 189 56 974 27172 196 58 189 56 60 75 150 18
22 18511 38 98 -19 84 195 82 19563 5554 13624
23 177 36 3219 —-2785 185 41 182 04 0520 11516
24 177 44 43 60 —3R805 187 14 189 51 73 88 106 55

25 172 87 37 51 —-3028 183 51 182 14 70 87 108 60
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The trend models of Section 7 combined with the generalised Pareto
distribution of Subsection 4.3 have four parameters, similarly as the two
extensions of the peaks-over-threshold model of Section 10 However, as
Table 12.1 for models no. 6 and 7 shows, an extension of the peaks-over-
threshold model may be more robust, because the increasing trend in the
event frequency 1s partially compensated by the decreasing trend in the event
severity (sce the left part of Table 10.1 for modcl no. 6), or the extension can
be more sensitive if both trends go 1n the same direction (see the right part of
Table 10 | for model no. 7).

13. MODEL CONSISTENCY AND DISPERSION ANALYSIS

For every fitted model histed in Table 11.1 — under the assumption that the
model describes reality correctly — we generate 1000 new random data sets
according to the distribution specified by the fitted model. These data sets
replace the actual observations recorded 1n Table 1.1, and we use the model
to estimate the discounted coupon values based on the random data set This
gives a hist of 1000 (not necessarily different) values for the coupons, for
some selected models the corresponding histograms are shown 1n Figures
13.1 and 13.2 Using these simulated distributions, we can calculate the mean
value of the estimated coupon values, the median, and the standard
deviation, these results are histed in Table 12.1. For models no 1, 4, 10, and
21. the exact distribution could have been used For some model variants,
the results are in Table 13 1 For comparison with conservative cstimates
calculated in previous sections, we also give the 159 %-quantiles of these
simulated distributions This 15.9 %-quantil corresponds to one standard
deviation in the case of a normal distribution. If the standard deviation or
the desired quantil cannot be derived by analytical means, these simulated
values can give an indication for a conservative estmate within the used
model, see the end of the introduction for a further discussion of this topic

TABLE 131

MLAN MLDIAN SIANDARD DLVIATION AND 159 0-QUANTIL IN CHE OF THL SIMLULATED DISTRIBLIHON | OR
VARIANTS OF THE MODLLS 8 10(VARIABLE LOCATION OF THL CHANGE POINT OF 1HE POISSON PARAMETER) AND FOR
THE VARIANTS OF MODELS 12 17 AND 22 (VARIABI F UPPER BOUND FOR THF SMOOTH TRANSITION OF THI POISSON

PARAMLILKR) COMPARL THL RESULIS WITH THE CORRLSPONDING ENTRILS IN TABLL 121

Model Coupon value Values from 1000 simulated data sets
variant no. mn Cir Mean Medan St dev. 15.9%-quantil
8 253 80 25691 25999 34 00 22336
9 247 99 23805 240 69 3167 206 93
10/ 22528 22977 22528 47 84 179 22
12/ 220 53 22620 229 06 49 56 17594
17 211 54 196 89 199 26 4522 147 65

22 18511 18585 186 34 58 50 126 56
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FiGure 13 1 Distribution of the estimated coupon values for models no 1,4 21, and 23 of Table 11 |
resulting from 1000 simulated data sets The mean, median, standard deviation and 15 9%-quantil are given
in Table 12 1 Note the different scales, the discreteness ot the two upper and the lower left distribution the
different sizes of the gaps. and the persisience of the peak at the highest posaible coupon value representing

the number of simulated data sets without ¢ knock-out event

We want to explain the modcl variants first. For the models no. 8-10,
the change-point of the Poisson parameter was kept between 1989 and
1990. Therefore, these modcls correspond to the constant-parameter
Poisson models no. 2-4 with a shorter historical data set of seven years
Table 13.1 contains the simulation results for the model variants 8—10’,
where the change-pomt 1s taken to be the earhest year such that the
likelihood function (9.1) corresponding to the simulated data set 1s
maximised. Since Ao(y) =0 for y € {1987, 1988, 1989}, the change-point
y. can only move to later years; it has done so for 133 of the 1000
simulated data sets.

To obtain the sitmulation results for the models with a smooth transition
of the Poisson parameter (models no. 12, 17, and 22), the mmposed upper
bound for the Poisson parameter was kept at 5 However, in Subsection 7 5,
we Look the largest observation as the upper bound. Doing the same for the
simulated data sets leads to the model variants 12/, 17/, and 22’
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FIGURE 132 Dustribution of the estimated coupon values for models no 3, 18, 2, and 13 of Table 111
resulung from 1000 simulated data sets Note the different scales and the peak at the highest possible coupon
vatue for the two models using a generabsed Pareto distisbution The mean, median, standard deviation and

15 9%-quantil of these distributions are given in Table 1211

Using the same model for generating the data and for fitting this simuiated
data creates a bias towards the model, hence the model should exhibit a good
performance. Let us comment on some peculiarities of the models.

The bimomial model no. | can lead to at most 11 different estiimated
values for the WINCAT coupons; seven of them are shown in the upper left
histogram of Figure 13 1 Since we used p = 02 from (3 1), the other four
values have a probability of S7,%, (') (1 — p)'"™* ~ 0 000864 Logether and
did not show up n the simulation.

For the constant-parameter Poisson model with a Bernoulli distribution
for the event sevenity (model no. 4), we generate the number Nggoo.10 Of
knock-out events during the ten years using a Poisson distribution with
paramcter 2, see Subsection 4 1 The simulated knock-out probability Pc,,
18 calculated from Nggog 10 using the unbiased estimator (4 12), the resulting
discrete distribution is the upper right histogram in Figure 13 1. Similarly for
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modcl no. 10 we generate Ngopg 7 from a Poisson distribution with parameter
2 and use (4.12) with n = 7. The resulting histogram has bigger gaps than the
upper right one in Figure 13 1 When the change-point can move (model no.
10"), then small bars appear between the large ones of the histogram,
representing about 13% of the simulated data sets with a later change-point.

The model with a linear trend As(v) = 3(y — 1987) of the Poisson
parameter and a Bernoull distribution for the event severity (model no 21)
also results in a discrete distribution, see the lower left histogram m Figure
131 Notice the large gap between the two highest values, 1t 1s about twice
as large as lhc (Zaps 1n the binomial model With & from (7 4), the number
Niooo. ]0—219% N, of events from 1987 until 1996 n the hinear-trend model
has a Poisson distribution with parameter 17. Remember that in this model
there can be no events during 1987. With pegeo = 2/17 {rom (4.5), the
number Nggo,10 knock-out events in the 10-year period has again a Poisson
distribution with parameter 2 Corresponding to (7 5), the knock-out
probability 1s calculated from Nggoo.10 by

PCM(.V) =] - exp(—N(,oo() 10()’ - 1987)/45)

for y € {1997, 1998, 1999}. If desired. an unbiased estimator for Pcyr(¥)
could be used, see the discussion 1in Subsection 4.1

For the discrete distributions of models no. 1, 4, 10, 10, and 21, the
median of the simulated distribution coincides with the estimated value of
the coupons; the other possible case of a substantial deviation did not occur
in our stmulation runs.

The other models with a time-dependent Poisson parameter and a
Bernoulh distribution for the event severity (models no 22-25 and 22) give a
histogram similar to the lower right onc 1n Figure 13 1 The peak in the
histogram at the highest possible value of the WINCAT coupons reflects the
fact that. depending on the estimated event frequency, about 10% of the
simulated data sets do not contain a knock-out event Table 12 1 shows that
the mean of these simulated distributions 1s about CHF 10 above the
esumated valucs of the WINCAT coupons This indicates a bias towards
higher coupon values. Moving the imposed upper bound of the smooth-
transition model according to the data seems to compensate this effect, see
the results for model no. 22’ in Table 13.1

All modecls using a Pareto distribution for the event severity (models no.
3,9,9.17, and 16-20) lead to a histogram similar to the two upper ones
in Figure 13.2. Depending on the estimated event frequency for the years
1997-1999 n the used models, the simulated distribution 1s more or less
concentrated. Since the Pareto distribution for the event severity reflects the
model assumption of a heavy-tailed distribution, none of the histograms
contains a peak at the highest possible value As Tables 12 1 and 13 1 show,
the mean of the stmulated distributions for these models 1s always below the
csumated value of the coupons With the exception of model no 19, the
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same observation applies to the median. This indicates a bias towards lower,
hence more conservative coupon values

The constant-parameter composite Poisson model with a Pareto
distribution for the event severity (model no. 3) that was used in [3],
exhibits one of the smallest standard deviations in this simulation study, only
the standard deviation of model no 2 1s shghtly smaller, but the difference 1s
within the variation arising from repeated simulation runs Note that model
no. 5, which uses a generalised extreme value distribution, exhibits a
standard deviation of similar small size as models no. 2 and 3. The histogram
for model no. 5 looks similar to the lower left one in Figure 13.2

The models no. 12, 17, and 22 use a smooth transition of the Poisson
parameter with a fixed upper bound at 5 This clearly restricts the possible
extrapolated values of the coupons and leads to the smallest standard
deviation of the simulated distributions within the corresponding model
groups 11-15, 16-20, and 21-25. If the upper bound 1s allowed to move to
the highest simulated event frequency (models no. 12/, 17, and 22’ in Table
13.1), then the simulated mean coupon values and the 15 9%-quantiles drop
considerably and the standard deviations increase.

When estimating the shape parameter ¢ and the scale parameter 7 of
the generalised Pareto distribution (4 29) for the models no 2, 8. 8, 12/, and
115, then in about 10% of all simulated data sets there is no patr (£, 7) of
strictly positive numbers maximising the log-likelihood function An
examination of the corresponding data sets reveals that this tends to happen
when the simulated data set 1s smaller than the average one and does not
contain events with a large number of claims. For this reason we constder
the full family of (shifted) generalised Pareto distributions, which are
defined, for all location parameters ¢ € R and scale parameters 7 > 0, by
(4 29) 1n the case £ > 0, by the shifted exponential distribution

I —exp(~(x —a)/7), ifx>a,
Guo-(x) = . 13.1
0r(x) {O, if x < a, (13.1)
in the case £ =0, and by
I—(1+&x—a)/7)" V¢ ifxela,a-T1/8),
Gaer(x) =40, if x < a, (13.2)

I, fx>a-71/8,

in the case £ < 0. The shifted exponential distribution G, ; 1s the pointwise
limit of G- as £ — 0. Note that the distributions G, ¢, with £ < 0 have a
bounded support. For £ < —1, the densities of G, ¢ are unbounded at the
left-hand side of ¢ — 7/&. Hence, maximum-likclihood estimators (7,&) arc
not well-defined within the full fanuly consisting of (4.29), (13.1), and (13 2),
becausc the hkehhood function s unbounded for every sequence
{(T, &)} ey M (0,00) x (=00, —1) such that @ —7,/€, approaches the
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largest observation from the rlght -hand side as n — oco. Therefore,
maximum-likelthood estimators ' are only meanmngful within the range
7> 0and £ > —1 However, in about 2% of all simulated data sets, there 1s
no maximum of the jog-hkehhood function 1n the range 7 > 0 and £ > —1
An example 1s the set of claim numbers 1021, 1256, 1420, 1450, 1493, 1839.
2251, 2326, 3109, 3167, 3403, 4857, 4865, and 4877, which showed up
one of the simulation runs. A similar problem for obtaining maximum-
likelihood cstimates for small sample s1zes in a simulation study 1s reported
in [8, Section 4.

A possible solution well adopled to the present casc is lo maximise a
grouped-data hkelihood function, this method 1s mvestigated in [7]. For this
method we have to remind ourselves that the spacing of adjusted claim
numbers 1 the last column of Table 11 1s given by the corresponding
vehicles insured index of that table, for simphcity we set this spacing to onc
in the following considerations. Every simulated value from the generahsed
Pareto distribution with parameters given by (4 31) then represcnts an
interval of length one If X, .., X, represent the simulated values, then we
use the grouped-data log-likelihood function

(&7) = Zlog agr(LXe] +1) = Gagr(1Xe])) - (133)

where € € R and 7 > 0 have to satisfy max{X;, , X,} <a—71/& n the
case £ < 0 This log-likelihood function avoids the singularity of the density
of G, for € < —1 Al simulation results of this section for the models
using a generahsed Pareto distribution rely on the grouped-data log-
likelihood function (13 3)

We conclude from these obscrvations, that in about 10% of all simulated
data scts the models using a generalised Pareto distribution do not reproducc
the original heavy-tailed behaviour because there 1s no such evidence in the
simulated data sets. The data sets with a negative maximum-likelihood
estimate for the shape parameter £ are mainly responsible for the high peaks
in the lower two histograms of Figure 13.2. If £ < 0, then the support of the
distribution is bounded above. If this bound 1s below 6000. then the
probability of events with more than 6000 claims 1s zero, making a knock-
out of the coupons mmpossible and thercby lcading to the highest possible
value for the coupons. As Tables 12 1 and 13.1 show, the mcan and the
median of the simulated distributions are well above the coupon value for all
the models using a generahsed Pareto distribution. This indicates a bias of
these models towards higher coupon values

When we use the grouped-data log-likelthood function (13.3) instead of
(4.30) for the original data sct of Table | 1, then the maximum-likelthood

! Remember that the data sets are generated fiom a generahised Pareto distribution with parameters
given by (4 31) According to [16, Section 7], the classical asymptotc theory of maximum-likelihood
estimalors 1s applicable, because & from (4 31) satishes £ > —1/2



162 UWE SCHMOCK

estimates are £ & 0 7229 and 7 ~ 662.] instead of £ ~ 0 7243 and 7 =~ 660 7
from (4 31). This leads to jeoop = 0 07573 nstead of peopo = 0.07575 from
(4.32) The change in the coupon value stays below CHF 0 02 Therefore, our
use of different hikelihood functions docs not explain the observed bias.

To perform the simulation study also for the two extensions of the peaks-
over-threshold model from Section 10, we extended the definition of the
Poisson point-process intensity (10.1) to the cases ¢ = 0 and & < 0 as we have
done for the generalised Pareto distribution (4.29) by adding (13 1) and
(13 2). We modified the log-likelthood functions (10 6) and (10.8) by using
grouped-data log-hkelihood functions sinlar to (13.3). We refrain from
spelling out all the details here. Note that in the case £ <0 and the
extensions specified by (10 4) and (10 7), the range of the possible number of
claims depends on the year. The histograms for these extensions look like the
lower left and the lower right ones in Figure 13 2, respectively The same log-
linear trend 1n the scale and location parameters leads to a more spread-out
distribution of the simulated coupon values.
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