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ABSTRACT 

Tile three annual 2¼% interest coupons of the Wlnterthur Insurance 
converUble bond (face value CHF 4 700) will only be prod out if during their 
corresponding observahon periods no major storm or had storm on one 
single day damages at least 6000 motor vehicles insured with Wmterthur 
Insurance. Data for events, where storm or haft damaged more than I 000 
insured vehicles, are avmlable for the last ten years. Using a constant- 
parameter model, the estm~ated dBcounted value o[" the lhree W I N C A T  

coupons together is CHF 263 29 A conservative evaluaUon, which accounts 
for the standard deviation of the estm~ate, gwes a coupon value of CHF 
238.25 However, fitting models which adnm a trend or a change-point, 
leads to substantmlly h,gher knock-out probabdHies of the coupons. The 
estmaated discounted values of the coupons can drop below the above 
conservatwe value, a conservat,ve evaluation as above leads to substantmlly 
lower values. Hence, already the model uncertainty Is higher than the 
standard devmtlons of" the used estimators Th~s shows the dominance of the 
model rBk ConsBtency, dBperslon, robustness and sensmwty of the models 
are analysed by a su~nulatlon study. 
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[ .  INTRODUCTION 

The Swiss insurance company Winterthur Insurance has launched a three- 
year subordinated 2¼% convertible bond with so-called WINCAT coupons, 
where CAT IS an abbreviation for catastrophe This bond with a face value 
of CHF 4700 may be converted into five Winterthur Insurance registered 
shares i at maturity (European-style option) between the 18th and 24th of 
February 2000 The annual interest coupon of 2~% will n o t  be paid out if on 
any one calendar day during the corresponding observation period for the 
coupon at least 6000 motor vehicles insured with Wmterthur In Switzerland 
are damaged by had or storm (wind speeds of at least 75 kin/h) If the 
number of insured motor vehicles changes by more than 10%, then the 
knock-out hmlt of 6000 clamls will be adjusted correspondingly. 

i Due to the merger of Wmterlhur Insurance ,Md Credit Sulsse Group on December 15Ih, 1997, the 
bond may be converted into 36 5 Credit Smsse Group ~eg~stered shares at malunty Due to the 
conversion right and the msmg market value of the Wmterthur Insurance registered shares (see [20]), 
the converuble bond offered a good investment oppottumty during fls hrst few mouths 
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Had Wlnterthur launched an |dentmal fixed-rate convertible bond, then, 
according to CrcSdlt Smsse First Boston's brochure [3], the coupon rate 
would have been around 0.76% lower (approxmlately 1.49%). In other 
words, the investor recewes all annual ymld premmm of 0.76% for bearing a 
portion of Wmterthur's damage-to-vehmles risk This convertible bond is 
intended as an instrument to dwersffy portfohos. The WlNCAT coupons are 
very suitable for this purpose, because storm and hall damages have only a 
very small correlation with traditional financml market risk The European- 
style conversion right, however, strongly ues the bond to the financml 
market. It ~s the retention of Wmterthur Insurance to test the Swiss capital 
market for such products, make investors acquainted with them, and obtain 
a partial reinsurance through the financml market by secum~zlng a portmn 
of ~ts damage-to-vehmles risk. 

Within the range of designs of  catastrophe bonds, the Wlnterthur 
Insurance convertible bond with WINCAT coupons " H a d "  belongs to the 
more conservative ones, namely the principal-protected catastrophe bonds. 
Besides the pure catastrophe bonds, where the coupons and the prmopal  are 
at rxsk, another more conservauve variant are the deferred catastrophe 
bonds, where no payment as such is at risk, but the payments may be 
deferred This gwes the issuer of such a bond an interest-free credit m case of 
a catastrophe 

Two grading prlnctples for specifying the condttmns of the W I N C A T  

coupons were smaphcity and absence of moral hazard. For the purpose of 
reinsurance, ~t would have been interesting for Wmterthur Insurance to 
include a knock-out hnm connected to the total number of clanns during an 
observatmn period. To reduce moral hazard, damage arising from a natural 
cause was chosen as the mggermg event, and the knock-out hm~t is trod to 
the number of clam~s and not to the capital necessary to pay full mdemmty 
to the insured If an event with at least 6000 clamls occurs, then Winterthur 
Insurance saves the corresponding 2¼% coupon interest payment on 399 5 
mdhon Swiss francs, which makes CHF 8988750 at the corresponding 
coupon date On the other hand, according to Wlnterthur Insurance, CHv 
3000 have to be prod out per clmm on the average for motor vehmles 
damaged by storm or hall Therefore, when an event with at least 6000 
clam~s occurs, Wmterthur Insurance can expect to save up to 50% by means 
of the WINCAT coupons - -  a profit from a knock-out event seems extremely 
unhkely A possible problem with the knock-out Ilnm can be borderhne 
cases of  events w~th about 6000 clamls when a few insured do not know the 
exact date of the d~lnlage (because they have been on hohday, for example) 
A way to moderate the seventy of such a problem would be a linear 
reduction of the coupon interest rate from 2¼% to 0% between 5000 and 
7000 claims. However, such a spec~ficatmn would make the product more 
complex and the statlstmal analysis lbr the coupon pNclng even more 
revolved 

This study was made possible by the wdhngness of Wlnterthur Insurance 
to collect and pubhsh the relevant available historical data on the web page 
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[19] as well as in Credit Sulsse First Boston's brochure [3] and thereby to set 
standards m product transparency, fairness of  pricing and investor 
education. This enables a scientific discussion of such products and their 
corresponding pricing methodologies, which in turn helps to enhance 
transparency and acceptance of such products To satisfy this aim and to 
build up the confidence of investors, the various sources of risk of such new 
products should be made exphc~t to avoid unpleasant surprises The present 
paper seeks to make a contribution in this direction with emphasis on 
education Since convertible bonds are well-estabhshed securities in the 
market, a lot of mformat~on concerning Wlnterthur Insurance is contained 
in the legally binding prospectus [18], which helps the investor to judge the 
default risk and the possible profits from the European-style conversion 
right. However, no Information (other than the exact legal specification) for 
estimating the knock-out probablhty of the WINCAT coupons is given in this 
legally binding prospectus; in particular, there is no historical data on the 
subject in the prospectus Apparently, Wmterthur Insurance and Credit 
Su~sse First Boston have been aware of this deficiency, hence their decision 
to pubhsh [3] and to make the historical data available on the web page [19]. 

This paper will focus on estnnatlng the risk arising frorn the WINCAT 
coupons, with emphasis on the model risk which IS not addressed in [3]. For 
a discussion of the wlrious disguises of model risk, we refer to [4]. Based on 
the available historical data, we shall present and work out several models 
and calculate the discounted value of the WtNCAT coupons In every case for 
an easy comparison of the various results For the pricing of the European- 
style option for converting the bond into Wtnterthur Insurance registered 
shares, we rel~r to [3]. We should mention here, that the current value of  the 
call option depends on the knock-out probab~hty of  the last coupon, because 
the exercise price of the call option is either Cut- 4 805.75 (face value of the 
bond plus last coupon), if the last coupon is paid, or simply the face wtlue of  
CH~ 4700, if the last coupon is knocked out 

To estimate the risk of  the WINCAT coupons, a 10-year history of damage 
claims is provided m [3] and [19], see Table 1.1. During this period, a total of  
17 events with more than 1 000 damaged vehicles were registered. Of these 
events, 15 happened during the summer and two were winter storms. None 
of these events occurred between 1987 and 1989. Only two of the events, 
which happened on the 21st of July 1992 and the 5th of July 1993, caused at 
least 6000 claims. Without any sophisticated Inodelhng, this suggests a 
knock-out probability of 20%, ~.e., the expectation of the annual coupon 
payment would be 80% of the Io 2aYo WINCAT coupon, which is an expected 
a n n u a l y l e l d o f l . 8 %  Ofcourse,  a smen t loned ln [3 ,  p I I ] , th lses t imatehas  
little statistical significance. 

In Section 2 of this note, we present and briefly discuss the available 
historical data Section 3 contains a critical review of a simple binomial 
model. In Section 4 we give a rewew of the constant-intensity model to 
estimate the discounted value of the WINCAT coupons. We discuss several 
&strlbutlons which can be used to obtain an estimate for the probablhty that 
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an event causing more  than 1 000 adJusted clmms actually leads to the knock-  
out  of  the coupon  These distributions Include the Bernoulh distribution, the 
Pareto distr ibution (used in [3]) and finally, as suggested by extreme value 
theory,  the generahsed Pareto distribution According to [18] and 
Wmter thur ' s  web page [19], the length of  the observat ion period for the 
first coupon  Is not an entire year as assumed in [3]; therefore we recalculate 
the d~scounted valuc of  the WINCAT coupons  also for the cases already 
considered tn [3] In Section 5 we test the constant -para lneter  model with 
respect to over-dispersion and t lme-mhomogenel ty .  Since the historical data 
set ~s small, we can calculate the corresponding probabilit ies under  the null 
hypothesis  exactly and do not need to utd~se asymptot ic  results for these tests. 

TABLE I I 

El .AIM NI.)MIIERS OI PAS F t'VENTS ( AtJ~IN(, OVER 1000 ADJUS] ED ( LAIMS AS PROVIDFI) IN [~,] AND [19 I 

DURING 1987 1%9 SU(I t  EVCN]S DID NO] OCCUR SINCE TIlE NUMI:tER OI MOTOR VE|IICLES INSURED WITH 

WIN-I ERTI IUR ] ENDS TO INCREASE I-ORMER A C T U A L  CLAIM ,NUMBERS ARE SEI IN] O RISLAq ION WI 111 I HI_ NL MBLR 

O1 INSURI'D VI II[('I.CS TO OBTAIN TIlE NUMBER OF ADJUSTED CLAIMS 

Nuntber oJ Vehicle~ in~ured 
)'ear Date Event ,4dju~ted elaint~ 

claim~ Jude r 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

27 Feb Storm 

30 June Hall 

23 June H,ul 

6 July Had 

21 July Had 

31 July Hatl 

20 Aug Had 

21 Aug Had 

5 July Hurl 

2 June Had 

24 lune H , u l  

18 luly Had 

6 Aug Had 

I0 Aug Had 

26 Jan Slorm 

2 July Had 

20 June Hall 

646 

395 

333 

114 

8 798 

I 085 

I 253 

1 733 

6589 

4 802 

940 

992 

2 460 

2820 

167 

290 

262 

248 

204 

161 

127 

104 

098 

099 

086 

067 

I 0 0 0  

855 

572 

472 

230 

9 660 

I 191 

I 376 

I 903 

7241 

5215 

I 021 

I 077 

2672 

3063 

I 245 

I 376 

I 262 
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Only the most  severe event w~thln an observa t ion  period mat te rs  for 
the possible knock-ou t  o f  a WINCAT coupon.  In Sectton 6 we therefore fit 
a generahsed ext reme value d~smbu tmn  to the observed yearly m a x i m a  

In Section 7 we present and discuss var tous models  w~th a t ime-dependent  
p a r a m e t e r  for the num ber  of  events w~th more  than 1 000 adjusted clatms 
We shall give several reasons why there might be a trend m the data.  An 
investor,  who wants  to take a posstble trend into account ,  might use one of  
these models  to est tmate the discounted value of  the W1NCAT coupons .  
Alternattvely,  an mvestor ,  who prefers a cons t an t -pa rame te r  model ,  can use 
one of  the trend models  to create a stress scenario for risk management .  
These trend models  w~ll lead to substant tal ly lower estmaates for the values 
o f  the WINCAT coupons  In the subsequent  sectton we apply  a pe rmuta t ion  
test to most  o f  the trend models  to test the null hypothesis ,  that  there ~s no 
trend, and we explain why a pe rmu ta t | on  test ~s not adequa te  for the 
remaining model  wtth a square - roo t  hnear  trend. 

In cont ras t  to the cont inuous- t rend  models ,  there can also be a sudden 
change m the expected event frequency Such a change-potn t  model  is 
presented m Sectton 9 

The  compos i t e  Pmsson models  &scussed m Sectmns 4-9  make  use of  the 
a s s u m p n o n  that  the event f requency is independent  f lom the event seventy,  
namely  the adjusted numbers  of  claims arising f lom these events The 
cor responding  trend and change-poin t  models  take only a va rymg  event 
f requency into account  The  peaks-over- threshold  method  f rom extreme 
value theory,  which we use in Section 10, provides a convement  way to 
model  a possible trend in the event f requency as well as in the event  seventy.  
However ,  when choosing only one ad&t lona l  pa rame te r  for the ttme- 
m h o m o g e n e o u s  extensmn of  the peaks-over - threshold  model ,  then those two 
trends are coupled.  

A short  &scuss~on o f  the var tous values of  the WINCAT coupons  IS gtven 
m Section 11; see Table  11 1 for a compar i son  The subs tan t la l lyd t f fe ren t  
values indicate that the model  uncer ta |n ty  is the domina t ing  risk for the 
evaluat ion of  the discounted value of  the WINCAT coupons  

In Secnon 12 we use a scenario techmque  to investigate the robustness  
and sensmvi ty  of  the var ious models  with respect to new data.  This ts done  
by adding ficttt |ous data  for the year  1997 to Table  1 1, namely  no event for 
a favourab le  scenar |o  or a r epe tmon  of  the four events f rom 1992 tbr a stress 
scenarm.  The  cor responding  changes of  the esmna ted  coupon  values are 
given m Table  12.1 for the models  under  considerat ion,  i 

In the last section we check the cons |s tency of  the models  and mvest tgate  
the dlsperston of  the estmaated dtscounted coupon  values by a s~mulatmn 
study. For  every fitted model  - under  the assumpt ion  that  it descrtbes reahty 

Amua l ly ,  one  h,ul stoEm m the a rea  E n t l e b u c h / S a r n e n  with I 825 el:urns was  r eco rded  on  the I Itll o f  
J u n e  1997 A n o t h e r  had  s t o r m  hit tile town  of  Luce rne  on the 21st o f  Ju ly  1998 a n d  caused  
3085  el,urns The re  were no  o t h e r  events  with more  than  I 000 claim' ,  d u r i n g  the year,, 1997 ,rod 
1998 In this paper ,  however ,  we only  use the m f o r m a t m n  ava i lab le  al the tm~e the b o n d  was  ~ssued 
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correct ly - we generate 1000 new random data sets according to the 
distr ibution specified by the fitted model These data sets replace the actual 
observat ions recorded m Table I.I ,  and we use the model to estimate the 
discounted coupon values based on the random data set In th~s way we can 
check whether the model can recover its own features from the simulated 
data  - m pa m c u la r  the mean and the median - and we can see how far the 
simulated coupon  values dewate from the mean. This can help to determine 
conservative esumates  of  the coupon values for the models The mean, the 
medmn, the s tandard devmuon  and the 15.9%-quantll  for the various 
models are hsted n3 Table 12.1 Instructive are also the h~stograms m F~gures 
13 I and 13.2. showing the d~stnbuuons of  the esumated coupon  values for 
some selected models 

If the knock-out  probabil i ty PEAT, for the WINCAT coupons  were 
known exactly, then a very small risk premium for the investor would 
suffice, because the investor has the freedom to invest only a small fraction 
of  the capital In the Wmter thur  Insurance convemble  bond thereby 
diversifying the risk This small risk p remmm is the mot ivat ion for 
insurance compames  to securmze their ca tas t rophe risk. However ,  the true 
knock-out  p r o b a N h t y  PcM is not known. Therefore ,  at various places in 
this paper, we follow the procedure  used m [3] and add an esnmated 
s tandard deviation O(Pc^.) to the esumated knock-out  probabi l i ty  PeAr 
to obtain a conservative upper  estimate, thereby adding a risk p remmm 
for the investor to account  for the uncertainty o f  PCAT We could e laborate  
on thts point  by using the entire estimated d~stnbut~on of  PeAT and tilt ~t 
towards higher values (the paper  [17] by G.G.  Venter is interesting m this 
context).  Taking investor-dependent  utility functions and the current  
market  price of  risk into account,  a more  p rofound  analys~s might be 
possible than the one sketched above However ,  since the estimated 
knock-out  probabflmes and the corresponding s tandard dewat lons  will 
vary substantmlly w~th the models used, the model risk should also be 
taken into account,  because ~s seems to be the dominat ing  one m the 
present problem. There  should be a coherent  way to calculate an adequate  
risk premium which accounts  for the vana tmn  of  the est imated knock-out  
probabil i ty and the corresponding model risk. We leave ~t to future 
research to develop a rigorous mathematical  basis for this purpose and to 
apply it to the present problem. 

2. PRESENTATION AND DISCUSSION OF THE DATA 

Whether  a WINCAT coupon ~S paid on February  28th depends on the events 
happening during the corresponding observat ion period. These observat ion 
periods are specified on Wmter thur ' s  web page [19], see Table  2 1 The first 
observat ion  period is shorter  than a year so that there are always four 
months  left between the end o f  the observat ion period and the coupon  
payment  date This provides enough time to count  the number  of  claims 
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TABLE 2 I 

O B S L R V A  r ION Pl RIOI)S I OR I Ill W l  N( 'A F C O U P O N S  A( ( ORDI  NG TO [Ig] 

A N D  "Ill[ WI B PA(d  [l')l OI W I N T F R ' I I I [  R ] N S I I R A N (  [ 

Coupon date Reh,~'ant observation period 

February 28, 1998 February28 1997 Octobel 31, 1997 

February28.  1999 November I, 1997 O~tober 31, 1998 

Februa ly28.  2000 November I, 1998 October 31, 1999 

and to determine whether  the corresponding coupon xs knocked out In tile 
10-year hxstory or 'damage  clanns provided xn [3] and [19], see Table  I. 1, two 
events are not wxthin tile period from February  28th to October  31st. Thxs xs 
relewmt fox" the first coupon,  we shall therefore always reduce the knock-out  
p robabth ty  for the first coupon m a determmxstm way (see Table  3 2) using 

PeA, = I - (I - P(,A,) ]5/17, (2.1) 

where P('Ax denotes here the knock-out probabil i ty If the observatmn period 
were a full year. Formula (2.1) is mouvated by the Po~sson models used m 
following scctlons. It corresponds to reducing the Poxsson parameter by the 
factor 15/17, see the dxscusslon m the mtroductmn of Scctmn 4 and the one 
of formula (4.9). By using (2. I), we neglect the fact that the number of  events 
not occurring in the permd from February 28th to October 31st ~s random 
as well This smlphficat]on, however, is suggested by the lack of data and 
can be jushfied by the small xnfluence of this 15/17-correchon (CHF 2.21 for 
~'('~r = 20%, fox" example) when compared with the rnodcl uncertainty to 
be dxscussed Furthermore, when analysing the adjusted claxm numbers, 
we assunle that the two numbers  arising from the winter s torms come from 
the same underlying dxstnbtmon as the numbers  arising fi'om the haft 
s torms Again, this smlphfylng assumption Js suggested by the small 
historical data set. 

The number  of  claims arising fi'om damage by storm or haft have to be 
set into relatmn wxth the number  of  vehmles insured wxth Wmter thur  m 
Switzerland The stat~sucal basis ~s 773 600 insured risks per year m 1996 or 
744764 insured motor  vehmles on April Ist, 1996. Note  that many motor-  
cycles arc only insured during tile summer months.  The above numbers  
include the lnotor  vehmles insured w~th Neuenburger  Schwe~zensche 
Allgememe Versmherungsgesellschaft,  whmh merged with Wmter thur  
Insurance m 1997 The column Vehicles rosined mdev m Table I 1 gives 
the number  of  insured risks m 1996 divided by the number  o f  insured risks 
for the respective year. The column Adlu,sted claims m Table I. 1 corltaxns the 
clam3 numbers  mult iphed with the insured-vehxcles index Only events wxth 
more than 1000 adjusted clamls are shown m Table 1.1, because other  
historical data is not provxded by Wmter thur  Insurance 
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If the statistmal basis changes by more than 10%, based on the number  of  
insured moto r  vehmles on April 1st, then, according to [18, Condi t ion  2(e)], 
the knock-out  hm~t of  6000 claims will be adjusted accordingly,  rounded to 
the nearest mulnple of  100 clanns. As the column Vehtcles insured mde.v of  
Table  I. I shows, the stausucal  basis tends to increase, but ~t seems unhkely 
that ~t reaches the adlustment  trigger of  10% within three years without  a 
merger with another  ,nsurance company.  Apparent ly ,  such a scenario slightly 
increases the risk of  the investor On the other  hand, there was a recent 
change m the Swiss legislation concerning the manda to ry  motor  vehmle 
insurance, and new compet i tors  are becoming acuve m the moto r  vehicles 
insurance market.  Therefore ,  It ~s not clear whether  a rising trend m the 
staUstlcal basis will persist. For  the further  analys~s m this paper, we assume 
that the stausucal basis stays constant .  It should be kept in mind however,  
that (depending on the model) the esumated coupon values m Table  I I. 1 can 
change by up to CHF 10 if the stanstmal basis changcs by as much as 4-10% 
already m the first observatmn period 

3. A CRITICAl_ REVIEW OF A BINOMIAL MODEL 

To extract  the relevant m f o r m a n o n  from the historical data given in Table 
1.1, we could use a snnple model consisting of  ten Bernoulh random 
variables Xm87, XL9ss, • , X1996, where Xj = 1 means that an event with at 
least 6000 adjusted clamas happened in the observat ion period ending at 
October  31st o f  the year y. We set X,. = 0 otherwise For  the model we 
assume that these ten random valmbles are independent  and ldentmally 
distributed We are interested m esumatmg the probabil i ty p = P(X,, = I). 
An unbmsed est imator  of  p is the empmcal  mean 

1 1996 

= ~ Xv (31)  
' =  

The data  of  Table  1.1 leads to ,8 = 0.2, because there were two observatmn 
periods out  of  ten where an event with at least 6000 adjusted clamls 
happened Using coupon  knock-out  probablhUes of  Pc.A~(1997) = 
I - (I - 0 2) 15/17 ~ 0 179 for the filst observat ion period and 
PEAT(1998) = PEAT(1999) = 0 2 for the following two years, and using the 
interest rate structure of  Table  3. I, the discounted value of  the three W I N C A T  

coupons  Is calculated in Table 3 2 
Of  course, the estmaator m (3.1) can only lead to one of  the eleven values 

~n the set {0.0, 0.1, 0 2 . . . .  0.9, I 0} Hence, to be reahstm, we should not 
favour  any specific vahle within the interval [0.15, 0.25] A recalculauon of  
Table  3.2 with the knock-out  probabflmes 15% and 25% gwes CHF 259 08 
and CHF 229.78, respecUvely, for the discounted value of  the three WINCAT 
c o u p o n s .  
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TABLE 3 I 

ASSUMPTIONS REGARDING TIlE IN']'ERESI-RA rE STRUCTURE TAKEN I~ROM [1] T H E  INTEREST RATES CORRESPOND 

TO Tt lE ZERO-COUPON YIE[.D ON SWISS CON~ EI)ERATION BONDS PLLS A SPREAD OI- 35 BASIS POIN FS 

Coupon Interevt rate Discount factor 

1 I 87% 0 9816 

2 2 33% 0 9550 

3 2 57% 0 9267 

TABLE 3 2 

CALCLLA1 ION OI- TIlE DIS( GUNTLD VALUL OE f i lL r t lREE WINCA F COUPONS FOR I HE ESTIMATE p = 0 2 T H E  

[ I IREE  DISCOUN F EA(  IORS ARI  FAKI  N I ROM T A B L E  I I T I l E  PRODU( 'F  OI I I IE PRINCIPLE THE COUPON IN IEREST 

RATE A N D  T I lE  DISCO[ N l  I X( I~)R IS M U L ' [ I P L I E D  WITH FHI- PROBAHILITY (1 - -  P l A t )  THA, T T I l E  CORRESPONDING 

( O U P O N  IS NO I K N O ( K E I )  DU Y T H E  15 I?-CORRECTION A C C O R D I N G  r o  f2 I) WAS APPI . ILD "IO THE KNOCK OU r 

PROB,~BIL I IY  OI ~ I HI. [- IRSI ( O U P O N  r o  l A K E  CARE OE ITS SHORTER OBSERVATION PERIOD GIVEN IN T A B L E  2 I 

Coupon Principle Interest Discount factor Pc^r Value 

1 4700 2~% 09816 179% CHF 85 25 

2 4 700 2~% 0 9550 20% CHF 80 79 

3 4700 2¼% 0 9267 20% CHF 78 40 

Discounted values of  the three W[NCAT coupons CHF 244 44 

From a statistical point  of  view we should also consider the standard 
deviation of  the est imator in (3.1) This will give an impression of  the quality 
of  the est imator Since the variance is given by 

/ l 1996 '~ 

cr2(,b) = / 1 0  ,_1~987 Xv ) P( I I~  P) Var - -  - , (3 2) 

we could follow statistical pracnce and use the estimated value b = 0 2 for p 
to obtain an estimate for the variance o2(/?) This would mean to use 
f i ( 1 - / 5 ) / 1 0  as the estimator.  In this bmomlal  model,  however,  a short 
calculatmn shows that 

E /5) _ 1 0 - 1  p ( i - p )  
10 1 0  ' 

hence we would underest imate the variance in (3 2) by a factor 9/10 
Therefore,  we esnmate  the variance of~b by the unbiased est imator 

10 ,b(1-~b) (3.3) 
6 2 C b ) -  9 l0 
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to obtain 605) = ~ 0  2 0 8 /9  ~ 0 13 for the s tandard deviation of~b For  a 
conservatwe estimate we may use Pc,,v =/5 + 6-(/.5) ~ 0 33 as the knock-out  
probablhty .  A recalculation of  Table  3 2 with this knock-out  probablh ty  
leads to CHF 205.24. 

The empmcal  mean m (3 I) Is a mmmlal sufficient es tnnator  for the 
knockout  probabdi ty  p m tln.~ mode l  [10, Chapter  1, Problem 17], hence 
we have done our  best within this model. We cannot  expect more from 
this model,  because ~t uses the data of  Table  1.1 very inefficiently Already 
m the first step, the data is reduced to ten yes/no decisions (10 bit of  
reformat ion)  By taking the mean in (3 1), this informat ion IS further  
reduced by ignoring the order  o f  the ten yes/no decisions, leading to one 
out  o f  eleven possible numbers.  This Is less then 4 bit of  reformat ion 
Having gone through this bott leneck,  not much can be done with a 
statistical exam~natmn afterwards 

4 C O M P O S I T E  P O I S S O N  M O D E L S  W I T H  C O N S T A N T  P A R A M E T E R  

To extract  more data  fi'om Table  I.I than m the previous sechon,  we shall 
rewew several composi te  Polsson models The one in Subsection 4.2 was 
used for the analysis m [3]. For  every calendar  day in an observauon  
period there is a shght chance of  a m a j o r  storm or had storm cat|stag 
more than 1 000 adjusted clauns The data of  Table  1 1 as well as c o m m o n  
knowledge suggest that th~s shght chance vanes with the season' In 
Switzerland, a storm is more  hkely to occur  m late au tumn or winter than 
in any other  season whde had storms usually occur  m summer  If the 
dependence between the different days is sufficiently weak, then the 
Poisson hnm theorem suggests that a Poisson random variable might be a 
good approx ,mat lon  for the number  of  those events within an observat ion 
period, which cause more than I 000 adjusted clamls Note  that Table 1.1 
records had storms for August 20th, 1992, and the following day, hence 
the assumption of  "sufficiently weak dependence"  has to be kept m mind 
Such two-day events can arise amficmlly from a single s torm due to the 
dividing hne at mldmght ,  or they can arise due to weather  condit ions 
favouring a hall storm on two consecutive days The use of  a compound  
Po~sson model however, whmh allows us to model such two-day events 
convemently,  does not seem to be appropr ia te  here, because a single 
observahon  is not sufficient for a rehable estimate of  the corresponding 
parameter  Concerning Polsson approxunat ion ,  we refer to Barbour ,  Hoist 
and Janson [1] 

i All numermal  ca lcula t ions  for this paper  were done  with the sof twale  package  Mathematl¢a Only 
rounded numbers  are gwen in the lent, but for Mibseque]lt ca lcu lahons  machine  precision of  the 
numbers  is used Values m Swxss francs ,ue given up to 1/100. a l though  not all given digits me  
necessari ly s lgnl l icant  
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The seasonal dependence nlentloned above is also the reason why we 
have chosen the exponent  15/17 m the COl'rectlon formula (2 1). We think 
that this exponent  based on the available data IS more approprmte  than the 
exponent  2/3 based on the length o f  the shorter  first observat ion period given 
in Table  2.1 

The Polsson distribution with parameter  A > 0 is defined by 

A k 
= e -'\ for k E N0 (4.1) Polsson,\(k) ~5 

Let the r andom variable N~ describe the number  of  days within the 
observat ion period ending m y e a r y  E {1987, , 1996} on which more than 
1 000 adjusted claims arose from damage by storm or hall We assume that 
these ten random variables are independent  and that each o f  them has a 
Polsson distribution with the same parameter  A _> 0 Since E[Ny] = A, the 
empirical mean 

/~con',t ] 1996 
,000 = ~  ~ Ny (42)  

y=1987 

~s an unbiased est imator  for A, which is also sufficient [10, Sechon 1.9, 
Example  16]. Table  1.1 contains m = 17 events within the n = l0 
observat ion periods, hence 

m 17 
A~o ,~ t  _ -- 1 7 (4.3) 

1000 /7 1 0 ' 

Figure 4 1 contains an illustration o f  the count ing data and this empirical 
mean. Since Var(Nv). = A, the variance o f  the est imator  -'1000x~°"~t in (4.2) is A/n 
with n = 10, hence the estimated s tandard deviation o f  Ai000 ~s 

^ [ +, ( . O l l b l , ~  - -  - -  at,,~t000 ) = "x/~1000 _ - ~ -  ~ 0 41 . (4.4) 
V I1 Y I1 17 

It remains to determine the probabil i ty that an event, which causes more 
than I 000 adjusted clazms, actually causes at least 6 000 adjusted claims and 
therefore leads to the knock-out  o f  the corresponding WINCAT coupon For  
this purpose we shall consider a sequence {Xk}k~N of  independent ,  
identically dzstrlbuted random variables, where X~ describes the severity of  
the k th event We always assume that the sequence {Xk}~cp~ is independent  of  
N I9 87 ,  • , N1996. The random varmbles Xi, . . ,  X,v++~+ are used to describe 
the severity of  the events in 1987, the variables Xu.++++l, ., X~.+,,v+N.+,,~ those 
m 1988 and so on In the following subsections we consider three different 
distributions for the random variables {X~ }keN. 
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N u m b e r  of events with  more  
t h a n  1000 a d j u s t e d  c l a ims  

5 

4 • 

3 

2 1 . 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 7  

1 2 9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Y e a r  

1987 1488 I ; 8 9  19'90 19'91 19'92 19'93 19'94 19'95 19'96 • 

FIGURE 4 I Observed nunlber of events in the ten obscrvanon periods Novembcr Ist to Oclober 31st 
i (lll~l cau,,ing more th,tn I 000 adjusted clanns Thc empirical me,in of Alamo = I 7 events per observ,mon peNod 

is also shown The d,lshed hnes indicate the cstim,ltcd shmdard dcvt,tlton 0 41 of the esltmator A'i'~'~) t given 
by (4 4) The e~tnnated sl,lndatd dcvlation fol the dlstribunon of the observallons is 

...... ' = ~ ~ I 30  (~'~<~o)~r- 

4.1.  Bernoull i  distribution for the knock-out  events  

In this subsection we introduce a simple model  to describe events with more  
than 1000 adjusted claims, which actually cause at least 6000 adjusted 
clmms, m e a m n g  that  they Icad to a knock-ou t  o f  the WINCAT coupon  For  
this purpose  we introduce Bernoulh i a n d o m  variables Xi, . . ,  X,,, for the 
m =  17 events,  where X k =  1 means  that  event n u m b e r  k E { l ,  . . ,  171} 
caused at least 6 000 adjusted claims. We set Xk = 0 otherwise We assume 
that  Xi, , X,,, are independent  and identically distr ibuted.  Proceeding as in 
Section 3, we can est imate the probabi l i ty  P60o0 = I?(Xk = I) by the unbiased 
empirical  mean 

h6o00 = _1 ~ xk (4.5) 
m 

111 k = l  

The da ta  of  Table  I 1 leads to P6ooo = 2/777 = 2/17 ~ 0 l lS .  An analysis 
similar to (3 2) and (3 3) gives the est imate 

, /  m 136ooo(I -136ooo) , / 2 / 1 7 . ( I  - 2//17) 
~'(J~6000) = u = .~ 0.081 (4 6) 

v m -  I m V 16 

for the s tandard  deviat ion ot"136000. 
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I f  N Is a r a n d o m  variable with the Po~sson d ls t r lbutmn gwen by (4 1) 
describing the n u m b e r  of  events, and if independent ly  o f  everything else we 
per fo rm a Bernoulli exper iment  with success p robab lh ty  P6000 E [0, 1] for 
each of  the N events, then an e lementary  exercise shows that  the resulting 
number  of  successful events has a Polsson distr ibution with pa rame te r  
P6000A. Therefore ,  under  the above  assumptmns ,  the nunaber of  events per 
obse rva tmn  period leading to at least 6000 adjusted c lmms has a Pmsson  
d ls t r lbutmn An estnnate  for the cor responding  Polsson p a r a m e t e r  ~s 

2 m 2 /~t om, t Xcon,d  
6000 = t ~ 6 0 0 0  - -  -- -- 0 2 (4.7) "'1o00 m n 10 

, conb t  The probabi l i ty  that  no such event happens,  is gwen by exp(-A60o0 ), see 
(4.1) with k = 0 Hence.  the esmnated  knock-ou t  probabi l i ty  ~s 

PCA r 1 . ," - c , , . ~ t x  = - expk--A6000 ) = 1 - e x p ( - 0 . 2 )  ~ 0.181 . (4 8) 

A recalcula tmn of  Table  3.2 with this value of  Pc^a leads to a discounted 
value of  CHV 249.93 for the three WINCAT coupons  

To  est imate the knock-ou t  p r o b a b f l w  o f  the first WINCA'r coupon ,  we 
>o,,,t 15/10, because only 15 have to replace ,.xc°"~'t~ooo = 17/10 f rom (4 3) by -'moo = 

events are recorded m Table  1 I for the period f rom February  28th to 
Oc tobe r  31st. This leads wa (4.7) and (4 8) to 

P e A ,  = 1 - -  e x p ( - - / O 6 0 o o  "'1000kt . . . .  l } (2)  ,5 ( 1 5 )  ,49, 
= I - e x p  ~ = l - e x p  0 2  ~ 0 . 1 6 2 ,  

which Is exactly the same result as the one obta ined by applying the 
correct ion formula  (2 I) to the result o f  (4 8). 

The varmnce of  the es t imator  x ...... t "60o0 ts not easily computab le  f rom the 
variances of  fi60o0 and xc,,,,.,t because these two es tunators  are dependent  

" ' 1 0 0 0  ' 
(OhM (knowing Ai00i ~ restricts the set o f  possible values for P6000) According to our  

model  a s s u m p t m n s  however,  we have obse rva tmns  f rom n = 10 independent  
Polsson r a n d o m  variables available,  which describe the number  of  events m 
each o f  the ten observa t ion  periods leading to at least 6 000 adjusted clamls 
Smallar to (4.2) and (4.4), we therefore see that tile es tnna tor  (4.7) for A C°'''t 6000 IS 

unbmsed  and that  

[ X  c°n~t  "1 . / ' ~ c o n ~ t  
, " 6 0 0 0 )  = V ~ 6 0 0 0 / 1 ' =  x / 0 2 / 1 0  ,.~ 0.141 

For  a conse rvauve  est imate of  the knock-ou t  p robab ih ty  we might  use 

P C A I  1 . / . c o n , , t  A ( X c o . l s t ~ ' ~  = - expl.-A6o00 - ~'v'6o0o/2 ~ I - e x p ( - 0  341) ~ 0 289 

A recalcula tmn of  Table  3.2 with this value of  PCAx leads to CHF 218 24 for 
the &scounted  value of  the thee WINCAT coupons  
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There  ~s a methodical  problem w~th the approach  m this subsection so 
far. We are mainly interested m an unbiased est imator  for the knock-out  
probabi l i ty  PCAr. The  unblasedness of  the est imator  xco,,~t for a model "'6000 
specific parameter  is not  of  pr imary  concern To  elaborate  on this point,  let 
N600o., be the number  of  events with at least 6 000 adjusted claims within 
n = 10 observat ion periods According to our  model assumptmns,  N6000,,, 
has a Po~sson distr ibution with parameter  np.a, where .a is the intensity for 
the number  of  events per observat ion period with more than I 000 adjusted 
claims, and p = P6000 is the "'success" probabi l i ty  for the following Bernoulh 
experiment  mdmatmg whether  actually at least 6000 adjusted claims arise 
from the event. The est imator  (4 8) corresponds  to 

PC~T = 1- -exp( -N6ooo, , , /n )  (4 10) 

with n = 10 Calculating the expectatmn gives 

oo 

El1 - exp(-N6ooo,,,/n)] = 1 - ~ e -k/'' (nP'a)ke-"P'~ 
k! 

k=0 

141,1 
k=0 

= I - e x p  ( - ( I - e - ' / " ) n p A ) ,  

which is different f rom 1 - e x p ( - p A ) ,  hence (4.10) is biased. Mult iplying 
N6000,,, m (4.10) by the correct ion factor  lo n r ,, ~n ~,7:i} leads to the est imator  

PCA, = 1--  l - - n  / (412)  

with expectat ion 1 - e x p ( - p A )  as a calculation similar to (4.11) shows 
Hence the est imator  (4.12) is unbiased. Since ;7 = 10 and N6000.10 = 2 by 
Table  I.I,  we obtain 

( 9 )  ~ 
P c A , =  1 -  ~ = 0 . 1 9 .  (4.13) 

The corresponding recalculatmn of  Table  3.2 gives CHF 247.37 for the 
discounted value of  the three WINCAT coupons  

For  the variance of  the estmaator m (4.12) we obtain after a short  
calculation similar to (4.1 1) 

Var(Pc^l)  = E 1 - - e -2pA = e-2pA(e .°U'' - 1). 



! 16 uwe SCHMOCK 

( Ol lbt  Using the estmaate A6000 = 0.2 for pA from (4.7) and (9/10) 2 for e -px from 
(4 13), we obtain 

~(P(,~r)=e-Pa~/e"\ / '~-1 ~ e - P a ~ / ~ / f i l ~  ~ / O 0 2 ~ 0 . 1 1 5 .  (4.14) 

A rccalculanon o f  Table  3.2 with the conservative knock-out  probabil i ty 
Pc'AT + fi(P('~O ~ 0.305 gives CHF 213.73 for the discounted value of  the 
WINCAT coupons.  

The eshmated s tandard devlaUon m (4 14) ~s shghtly smaller than the 
one m the simple binomial model calculated via (3 3) This indicates that 
m our  case the composi te  Po~sson model o f  this subsecnon leads only to a 
slight mlprovement .  Indeed, the esnmator  (4 13) for the knock-out  
probabih ty  uses only the m f o r m a h o n  that two events within the ten years 
caused at least 6000 adjusted clmms Since the model of  this subsecnon 
allows these two events to happen in the same year, the esnmated knock- 
out  probabil i ty  m (4.13) is I% lower than the one m the binomial model. 
If the two events with at least 6000 adjusted claims had actually happened 
m the same year and not  m consecunve ones, the discrepancy m the 
estmlated knock-out  probabili t ies would be 9%, because the estimate m 
the bmomml model o f  Secnon 3 would drop  from 20% to 10%. In this 
respect the composi te  Polsson model of  this subsecuon is more robust  
than the binomial one. 

4.2. Pareto distribution for the knock-out events 

Tile bmomml model of  Section 3 and the cor rcspondmg composi te  Polsson 
model of  Subscction 4.1 do not use the adjusted clmm numbers  recorded m 
Table  1.1. For  the benefit of  a better estimate of  P6000, let us incorporate  
these numbers  into the model. The step function m Figure 4.2 is the 
empIrical d l s tnbuuon  funcuon of  the adjusted claim numbers  fi'om Table I.I. 
A heavy-tailed dls tnbuUon o f  c o m m o n  use is the Pareto distribution, its 
d~stnbut~on funcnon is given by 

Pareto, ,b(x) = { 1 - (a/x) h for x > a, (4 15) 
[ 0 for x < a, 

where a and b are strictly posmve parameters.  The Pareto distribution ~s 
used m [3] to model the numbcr  of  adjusted clamas per event given that more 
than 1 000 adjusted clamas arise from the event We choose the threshold 
a = 1000, becausc only such events are contained m Table  I. 1. At first glance 
it might look as ~fwe make a conceptual  mistake by fitting the d l s tnbuuon  of  
an apparent ly  mteger-wdued random varmble by a d~str~but~on having a 
density. However ,  the revolved numbers  f lom the last column of  Table  1 1 
are sufficiently largc for such an app roxmlanon  and, m addmon ,  they are 
actually rounded numbers  arising as the product  of  the number  of  clamas 
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and the vehicles insured index. Therefore, the use of  a continuous 
distribution funcnon should not cause an intellectual problem (see Secnon 
6 and the end of  Section 13 however) 

To fit the empirical dlstr lbunon with a Pareto d~stnbut~on as m Figure 
4 2, we need an estimator for the exponent b. If a random variable X has a 
Pareto distribution with palameters a and b, then Y _= l o g ( X / a )  sansfies 

= ( c r i b  IP( Y < y )  I? (X  < ae s )  = I - - -  - 1 - e -h'', v > O, 
_ _ \ t ie  ~2 - -  . - -  

which means that Y has an exponentml distribution with expectahon 
IE[Y] = 1/b Hence. if the independent random wlnables Xl, . , X.,, with a 
Pareto distribution given by (4 15) describe the adjusted number of  clamls 
for the m events, then tile random varmbles YI, ., Ym with Yk =--- l o g ( X k / a )  
are independent and exponentmlly d~stNbuted Their empirical mean 
( l /m)  ~-~'~'~1 Ya Is an unbmsed estmaator for I /b  This suggests to estimate 
b by the reciprocal value 

177 177 

- -  I l l  ~ ' - I  Yk ~ . - I  l o g ( X k / a )  (4.16) 

Another  way to derive this estmaator ~s to consider the hkehhood function 

'" b ( a ~ /' 
L , , ( b )  = ~~'[-]~-~ \ ~ - j  , b > 0, (4.17) 

which Is the product of  the densmes of  the Pareto dis tr ibuuon (4 15) 
evaluated at Xi, , Xm. By differentmtlng the logarithm of  L,,, we find that 
b given by (4.16) maxmllses L,,,, hence (4 16) is also tile maxmlum-hkehhood 
esnmator  for b 

Let us calculate the expectauon of  the estmlator m (4 16). The sum 
~--~'=l Y~ has a ganama distribution with parameters m and b, meaning that 

This fact is easdy proved by an inducnon on m, because the convolution of  
the exponentml densny and the gamma densny of  parameter m leads to the 
gamma density of" parameter m + ]: 

a/olbe t,(,-,), b (b.s) , ,_le_h,d.  ~ _ h r(,,,) ,.r(,.----) >- O, 
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N u m b e r  o f  a d j u s t e d  c l m m s  

2000  40'00 6000  80'00 10600 1 2 0 0 0 "  

FIGURL 4 2 The step funcuon Iq the empirical d ls t r tbuuon of  the number  of(adJusted)  claims per evem, gwen 
that more than I 000 claims arise from the event Also shown is the fiucd Pareto d l s tnbunon  (4 15) with 

a = 1000 and b = biT, where bit  ~ I 37 is the m u \ l m u m - h k e h h o o d  esnmate,  corrected with the factor 
(m - I ) /m  for m = 17 to ehmmate  the bias The esnmated probabil i ty,  that an event with at least I 000 clmmq 
causes at most 6000 clmms, is a round  0 914 Two a d d m o n a l  Pareto d l s tnbunonq  (dashed .curves) illustrate 

the esnmated  s tandard  devmnon o f  bt7 The lowed dashed curve corresponds to  hi7 - 6(hl7) ~ 1 02, the 
upper  one to hi7 + 6"(bl7) ,~ I 73 

and the gamma funcnon sattsfies F '(m+ 1)=  mE(m) Calculating the 
expectanon of (4 16) for m > 2 shows that 

m 1 b ,,,_, 
E .  ., l (Xk/.i = rFm)(bO_ 

_ __mb ~o ~ b )(bt),,,_2e_b,dt - m_ b 
m -  1 F ( m  -L  1 m -  1 

This means that the esnmator m (4 .16)  underestimates the taft of the 
Pareto distribunon To obtain an unbmsed estinaator for b, we therefore 
have to use 

(4 18) 

~ . ,  = m -  1 (4 .19)  
log(Xk/a) 

instead of (4.16). The data from the last column of Table 1.1 leads to 

bl7 ~ 1 37 (4 20) 

The Pareto dlstnbunon with this value is shown m Figure 4 2 
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A calculation smailar to (4 18) leads to 

b 2 
Var(~,,,,) - (4 21) 

177 - -  2 

for all m _> 3. Therelbre, 4(b,,,) = b , , / v ~  - 2 is an unbiased estunator  for 
the standard deviation; using the numerical value from (4 20) gives 

6(~',7) ~ 1 37/v'q-5 ~ 0 35.  (4 22) 

The Pareto d ls tnbtmons  w i t h  hi7 i O-(])17) arc shown as dashed curves m 
Figure 4 2 

Using bm for tile parameter of  tile Pareto distribution (4.15), we obtain 
tile estimator 

/36000 = I - Paretolooo,i,,(6000 ) = 6 -i'''' (4 23) 

for the probability that an event, which causes more than 1000 adjusted 
clamls, actually causes at least 6000 adjusted clamls. The numerical value 
,517 ~ 1 37 fiom (4 20) leads to 

fi6000 ,-~ 6 -I 37 ~ 0.0857. (4 24) 

Cons~derlng the two Pareto d ls tnbtmons  corresponding to b l 7 -  O(/~17) 
102 and b l T + 6 ( b 1 7 ) ~ 1 7 3  (see Figure 42),  we obtain vm (4.23) the 
asymmetric interval 

[6-' 73 6- '  021 ~ [0 045, 0 162] (4.25) 

around the estmlate fi6000 ~-00857 as an in&cation of  the standard 
dewauon.  This is an maprovement compared to the interval [0 037, 0.199] 
arising from the Bernoulh dlstrJbtmon wa (4 6) 

Following the approach m [3], we recalculate the estimate (4 7) for the 
Polsson parameter A '''"~t describing tile number  of  knock-out  events pet" 600o 
observation period using x~o.,~t = 1.7 from (4 3) and P6000 ~ 0 0857 from 1 '1000  

(4 94) We obtain x~o,~t =P6ooo' x~o,~t ~ 0.1457 As m (4.8), the estunated - " ' 6 0 0 0  " ' 1 0 0 0  
knock-out  probability is 

[ ~, COIlb[ PeAT = I - exp t --46000 ) = 1 - exp (-/50000 x~°"~t "looo / ~ 0.1356 (4 26) 

A recalculation of  Table 3 2 with this value of  PeAT leads to a discounted 
value of  CHF 263.29 for tile three WINCAT coupons 

To get a rough estmaate of  the s tandard dewat~on of  the knock-out  
prob~kbfllty m (4.26), consider it as a funcuon of  the two parameters b 1 7  

~ c o n b t  
and A =- -'~ooo 

Po,,(b,7,  ; ) =  1 - e x p  ( - 6  -/''7 A) 
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Using the approximating plane m (b,A) and thereby neglecting all higher 
order terms m the Taylor expansmn, we get 

OPcA I 
Peat (t5,7, A) ~. Pea, (b,A) +- -~- -~  , 

Since bl7 and .~ are unbiased, we obtain for the variance 

J -Vat(k) 

The two eshmators b,,, and .~ ~o,,~t = Ai000 are certainly not independent, 
because the observed number m of events determines x~o,,.~t via (4 3) and "'1000 
the variance of  /~,,, vta (421) However, ~)17 and  .~ are independent and 
therefore uncorrelated, meamng that E [ ( & 7 - b ) ( 5 , - A ) ]  Evaluating 
the partml derivahves of the knock-out probability PCA~ at the 
esnmated point (biT, -~) instead of (b, A), and using the esumated standard 
dev,atmns from (4.22)and (4.4)instead of (Var(bj7)) 1/2 and (Var( .~))U2 we 
obtain the approxunaUon 

OPCAT  A 2 / 0  CA',b a e2{a,7)+k- -t ,7, ,; {) 

0.086. (4.27) 

From (4 26) and (4.27) we obtain Pcar(bl7, A) + 6(PEA, (biT, .~)) "~ 0 221 
as a conservaUve esmnate of the knock-out probabdlty A recalculaUon of 
Table 3.2 leads to a discounted value of CHF 238.25 for the three WINCAT 
coupons. Due to these calculauons, m [3] the rounded knock-out probability 
of  0.25 is considered to be a conservatwe estmmte, leading to a dlscountcd 
valuc of CH~ 229.78 I This value is supposed to include a risk premium for 
the investor because the standard dewatmn of the knock-out probability Js 
added and the result roundcd m a conscrvattve way. 

Before turning our attention to a generahsed Pareto d~stributmn for 
the knock-out events, let us conclude this subsecuon w~th some supple- 
mentary cons~deraUons concerning the bmsedness of the eshmators for 
P6000 and PcA~ First note that xco,,,t from (4 2) and bit from (4.19) are "'1 o00 
unbmsed esmnators for the two model parameters ,k and b, but this does 

In [3] a d iscounted  value of  CHF 227 09 ts ac tual ly  derived,  because the 15/17-cm recuon for the lirst 
observa t ion  pezmd ~s not taken ~nto accounl  
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not imply that ]36000 and PCAT, gwen by (4 23) and (4 26), respectwely, are 
unbiased The arguments  leading to the unbiased est imator  (4.12) m the 
case of  the Bernoulh distribution for the knock-out  probabd~ty m 
Subsection 4.1 suggest that the estmaator 

PCA, = 1-- (1--P6000"~N"x~"= 1-- " n / (1--6-/~'7"~ N ' ' " ~ " n  / (4 28) 

~S a small maprovement,  because tla~s would be an unbmsed estm3ator for 
PcA~ If bl7 were non- random Here the random variable Ni000,. denotes the 
number  o f  events with more than 1000 adjusted claims within the n 
observat ion periods. Recall that Nt000,. has a Polsson distribution with 
parameter  nA Substi tuting our  estmlate b l 7 ~ 1 3 7  from (4.20) and 
Nlooo,. = 17 for thc n = 10 observat ion periods into (428)  leads to 
PCAT ~ 0 1361. which gives a discounted value of  CH~ 263 13 for the three 
WINCAT coupons.  This is a decrease of  only CHF 0 16 compared  to the wdue 
arising from (4 26). 

If we consider Nl000,t0 = 17 as non- random and replace bl7 ~ 1.37 from 
(4.20) by bt7 - 6(biT) ~ 1.02 m the est imator  (4 28) to find a conservative 
estmaate, we get Pca~ ~ 0 242, which vm Table  3 2 leads to CH~ 232 14 for 
the discounted value of  the three WlNCAT coupons.  Note  that this knock- 
out  p robablh ty  is about  0.02 larger than the one obtained f iom (4.27) and 
is already very close to the conservatively rounded valuc of  0 25 f iom [3]. 

An examinat ion of  the above model reveals that the condit ional  
distr ibution of  the estmaator b,,, gwen m = Ni000,, Is only specified na 
the case Niooo,. >_ 2 Fur thermore ,  (4.21) shows that b,,, does not have a 
varmnce unless m = Niooo,. _> 3 Hence,  the above approach  of  fitting the 
empirical distr ibution o f  the adjusted clama numbers  by a Pareto d~stnbut~on 
~s apphcable  only m the case of  approprmte  data sets. Such an a p n o n  
exclusion of  certain data sets already introduces a bias which suggests that 
unbmsedness for estmaators hke (4.26) or (4 28) ~s a problematical  notion.  
Maybe a not ion o f  condtt~onal unbmsedness would be more  approprmte  
This means m our  case that one would hke to have estmaators for PCAr such 
that the condit ional  expectat ion given fi6oooN~ooo,. >_ 1, for example, ~s the 
right one 

4.3. Generaliscd Pareto distribution for the knock-out events 

Ill Subsection 4.2. we did not gwe a theoretical argument  in favour  o f  the 
Pareto distr ibution m addit ion to the desire to pick a heavy-tailed 
distribution. Let us use an ~dea From extreme value theory to overcome 
this deficiency. It wdl turn out that wc should use a generahsed version of  the 
Pareto dlstnbut~on defined m (4.15). 
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Let Xl, , Xk denote  the adlusted number  of  claims arising f rom k 
events We shall assume that X~ . . . .  , X~ are independent  and d~stnbuted 
according to a heavy-tai led dlstnbut~on function We are only interested 
m those numbers  which exceed a certain threshold a, which ~s I 000 m our  
case. This means  we are interested m the excess distr ibution functzon 

Err(X) = ~ ( X  1 - ( . / ~  X I X 1 > a ) ,  A" E ~ .  

Extreme value theory essentially says the following m our  case [6, Section 
3 4]" I f  the original distr ibution function of  Xj, . , X~ Is heavy-tailed,  then 
the excess dis tr ibut ion functions {F,),>o can be better  and better  
a p p r o x m m t e d  (wtth respect to the s u p r e m u m  norm)  by generalised Pare to  
dis t r ibut ions o f  the form 

{~ - (1 + ~x/r,,) -~/~ for ¥ > 0, 
G~,~,,(v) = 0 for ¥ < 0, 

as the threshold a tends to mfimty Here  ~ ~s a strictly pos~twe t shape 
pa rame te r  and the scale pa rame te r  ~-, > 0 vames with the threshold a. Th~s 
suggests that  we should try to fit the empirical  d~stnbut~on function of  the 
observa t ions  exceeding the threshold a by a d~str~but~on function o f  the 
form 

1 - ( 1  + ~ ( . v - a ) / 7 - )  -I/~ f o r x _ > a ,  

G,,~.~(x) = 0 for x < a 
(429)  

No te  that m the heavy-tai led case ,~ > 0, the (shifted) generalised Pare to  
dis tr ibut ion (4.29) with 7-=  a,~ reduces to the Pareto distr ibution (4 15) 
with b = 1/~. Hence,  G,,~T gwes us the f reedom of  the addi t ional  scale 
pa rame te r  y. 

Before fitting a generahsed Pareto d~stmbut~on function to the observa-  
tions, an exp lo ra to ry  data  analysis should be done,  see [6, Chap te r  6], to 
check the assumpt ion  of  a heavy-tai led distr ibution and to determine a 
s tatable threshold However ,  since there are only m = 17 observa t ions  
avai lable  m Table  1.1, there seems to be no point  m choosing a higher 
threshold than a = 1 000 m our  case, because the historical data  set Is quite 
small already.  The assumpt ion  o f  a heavy taft Is (at least partmlly)  suppor ted  
by Figure 4.4. 

The  Iog-hkehhood function for the m = 17 observa t ions  or iginat ing f rom 
a generahsed Pareto d~stmbut~on ~s 

/ ( , ~ , T ) = - m l o g ' r -  1 +  log 1 , ( > 0 , ' r > 0 .  (4.30) 

i The  cases ( -- 0 and ~ < 0 are discussed m Section 13, see (13 1) and (13 2) 
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N u m b e r  of a d j u s t e d  Clalnls 

0 20'00 4 0 ; 0  6000 80'00 1 0 ; 0 0  120;01~ 

FIGURE 4 3 The empirical dls tnbutmn of the number of adjusted claims per event (solid step function) and 
the fitted generahsed Pareto dls tnbuuon (sohd curve) with threshold a - I 000, estmlated exponent 
I /~ ~ I 38 and estmlated scale parameter '~ ~ 660 7 The cstunated probabdlty tfiat an event with at 

least I 000 cl,ums Causes at most 6000 cldmaS, is approxmldtely 0 924, and [0 813, 0 978] is an dpproxunate 
68%-confidence interval for flus probabdHy The two dashed curves arc gcnerdhsed Paieto d ,smbut lons  

chosen such that they indicate the stdndard devldlmn of the estnndled probdbfllty for at most 6000 elanns 

Inserting the data from the last column of  Table  I I, we can calculate the 
maxlmum-hkel ihood  est imator  (~, ~) numerically, i.e., we can search for the 
point  (,~, 7) which maxlmises / As starting values for the numerical i teration 
procedure,  we can choose { = l/b,,, and r = a/b,,,, where b,,, is the est imator  
(4 19) for the Pareto distribution,  or we can use a probablhty-weighted 
moment  approach (see [6, Section 6.3 2 and page 358]) to obtain a priori 
estimates for { and r .  We find 

hence 

~ 0 7 2 4 3  and ' f ~ 6 6 0 7 ,  (431)  

fi6000 = 1 - Gi000,Le(6000) ~ 1 - 0.92425 = 0.07575 (4.32) 

The corresponding fit o f  the empirical dis t r ibutmn with a generalised Pareto  
one is shown in Figures 4 3 and 4.4. A calculation as in (4.28) gives the estimate 

P6000"~ NI(M~ m 
PCA, = 1 -  I---]-0--, / ~O i2 i ,  

which leads via a recalculation of  Table  3.2 to a discounted value of  
CHF 267 48. 



124 UWE SCHMOCK 

1 ~___Tad  i>robCtblhty 

0 7  . ~ . o n l .  o g a r l t h r n m s c a l e  

0 5  " ~ ~ . ~ ' ' " i ' " - - . . . . . . .  

0 187 . . . . . . . . . . . . . . . . . . . . . .  . . .  

0 15 . . . . . . . . .  ""--... i " ' " ' " ' " ' "  

0 076 

0 03 i ' " ' " "  
0 022 

1000 1500 2000 2500 3000 4000 5000 6000 7000 9000 
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FIc, t'RI 4 4 Tlus Is Figure 4 3 on log-log scale to m,lgnfly the mlpozt,tnt p,trt Inslead of lhe dtsnxbutmn 
funcllons, the corresponding tml prob,lbdflms are shown Paxeto d ls tnbuhon I'unctlons del]ned by (4 15) 

would give str,ught hnes m Ilus log-log plol The estmmted genezahsed-Parelo lil .~, ~ I - Gt~x~z .(x) is close 
Io a strmght hnc becau,,e a~/÷ ~ I 096 ts qmte close to one The estmaates/q,~o "~" 0 022 fi~,o,~ ~ 0 0757 and 
]~:l~a ~ 0 187 are shown This ligurc supports the model assumption, Ihal the adjusted cI,Hm numbers Iollow 

a heavy-tailed d~st~but~on 

For  compamson with the earher  results on the s tandard dewatlon offi6o0o 
in the case of  the Bernoulh distr ibution for the knock-out  events m (4 6) and 
for the corresponding case of  the Pareto distribution in (4 25), we would hke 
to gwe again an estmaate for the s tandard devmtton Offi6000 ThIs does not 
seem to be possible by analytical means, however Therefore ,  we prefer to 

^ _ ^ . ~  

construct  an i n t e r v a l  [P6000'P6000] a round the esmnated value ,b6000 ~ 0 0757 
from (4 32), which can serve as the region for accepting the null hypothesis  
p =~b6o0o at a 68%-confidence level when using the Iog-hkehhood ratio 
statistic. We choose the 68% level, because th~s ~s the probabd~ty that a 
normally distributed random varmble w~th mean 11, and variance e2> 0 
takes ~ts value m the interval [I~ - o,/~t + o-] As Iog-hkehhood ratio statistic, 
also called deviance, we use 

D(( ,  T) = 2/(~,-~) - 2/(~, "r), e > 0, 7- > 0. (4 33) 

We want to detcrnainc the smallest ,nterval [,b~-00o,fi&00 ] such that 

(0,00) 2 < X],o 2} 
(4 34) 

(o ,  oo) 2 , -  ,0o0, .r 6000) 
k 
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where X~ 0 32 "~ 2 30 denotes the 32%-quantde of  the chl-squared distribu- 
tion with two degrees of  freedom. In other words: We are looking for the 

^+ which can arise smallest probabfllty P6-000 and the largest probability P6000, 
from generahsed Pareto distributions with parameters (,~, T) close to (~, -~) m 
the sense that the dewance D(~,7-) does not exceed the 32%-quantl le X~,0 32 
of  the x~-dlstnbunon.  This choice for tile upper bound of  the devmnce 
D(~,T) is based on the asymptotic  normali ty of  the maxnmlm-hkel ihood 
estimators, see for example [I 0, Section 8.8] According to [I 2, Appendix A], 
tile approxmlat~on of  the d l s tnbuhon  of  the dewance by the chl-squared 
distribution is often qmte accurate for small numbers of  observahons,  even 
when the normal approxmlat lon for tile parameter estinlates ~s unsatisfac- 
tory. When compared to methods using the second denvatwes  of  the Iog- 
hkehhood funcnon at the esmnated point (~,-~), the Iog-hkehhood rano 
stahsnc has the advantage of  being able to gwe asymmetric confidence 
intervals and thereby being less prejudiced. This is useful m our case, because 
we don ' t  want to obtain negative estnnates for P6-o00, for example It should 
be kept in mind that (4.34) is m general a strict inclusion, hence [j 600o,P60o0] 
can correspond to a higher confidence level than 68%. This ~s problemancal  
for larger numbers of  parameters, because the confidence intervals get too 
large Bootstrap methods are an alternative m this case 

^+ (4.34) does not depend on the Note that tile interval [/56o0o,P60oo] m 
parametr lsanon arising fi'om ( ( , T ) ~  Gio00a,T m (4.29). We can use this 
observanon to change to an advantageous parametnsat~on which reduces 
tile amount  of  numerical calculanons necessary to deternlme the above 
acceptance interval Since the equation p = I - Gi000,¢,T(6000) can be solved 
for 7- yielding 

5ooo~ 

~(Lp) p - ~ - i  ' 

we can use p itself as a parameter by changing tile parametnsat lon from (4 29) 
to (sO,p) ~ Gzoooz T(,~p) Rewriting the inclusion (4.34) with this parametrlsanon 

< 2 (0,  OO) IJ 6000, t 06000] y i e l d s  {(~,p) E (O ,oo )×(O, l ) tO(~ ,T (~ , ] ) ) )_ ,~ ,2 ,032}C  x 9- ~+ 
~- ^+ Numerical calculanons lead to [)6ooo,f6ooo] ~ [0 022, 0 187], the correspond- 

ing exponents ~ - , ~ 0  355772 and ,~+,~,1396 are the only ones with a 
deviance less or equal to the quantfle X~,o 32. The shifted generahsed-Pareto 
d ls tnbunon functions 

and 

x ~ Giooo,~ .~ (v) w,th ÷- = T(~-,fi~-oo,, ) ,~, 620.3 

^+ ^ + 
x ~ Giooo,0,÷~ (.\) wltli ~+ = "r((,P6ooo) ~ 740 6 
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are shown in Figures 4.3 and 4.4. If we consider the number  Ni000,10 = 17 
^+ 

as non- random and use P6000 ~ 0.187 instead of  ,b6000, a calculation as m 
(4.28) leads to the conservative estimate Pc , ,  ~ 0.274 A recalculation of  
Table 3.2 gives a discounted value o f  CHv 222.75 for the three WINCAT 
coupons  

5. TESTING THE CONSTANT-PARAMETER POISSON MODEL 

5.1. Testing for over-dispersion 

In SecUon 4 the number  o f  events wxth at least 1000 adjusted claims per 
observauon  period is modelled by ten independent  random varmbles N~, for 
the years y E {1987, ..., 1996}, each one having the same Polsson 
distr ibution (4.1) with parameter  A _> 0. Since the expectauon and the 
variance of  the Polsson d i s tnbuuon  are equal to the parameter  A, the 

~.const o f  NI987, NI996 was used in (4 2) as an unbiased empirical mean "'1000 '", 
e sumato r  for the expec tauon and the variance However,  f fwe  don ' t  want to 
rely on the assumption of  a Polsson dls t r lbuuon when investigating the 
variance (but keep the assumpuon  that Ni987 , .., Ni996 are independent  and 
identically distributed),  then we should estimate the variance o-2u = Var(N,.) 
by the unbiased est imator  

1996 ^v 1 1996 1 Z Ny. 
O'~ = ~ ~ ( N . v -  fLN) 2 wi th  ~N = -i-~),=1987 

3'=1987 

The data of  Table  I. I leads to ~v = 2.9, which yields the s tandard deviation 

/ _ 
O'(]LN) = V/62/10  = v / ~ / 1 0  ~ 0.54 (5.1) 

for the empirical mean fi, u of  Ni987 , .., Ni996 Note  that ~v = ^~ 2.9 is quite a 
bit larger than "'1000x~°'l~ = 1.7 from (4 3). This observat ion raises the question 
whether  the data of  Table  1.1 exhibits over-dispersion, meaning m our  case 
that the var i ance  0fNi987, ., Ni996 is actually larger than the mean. Such an 
over-dispersion can arise, for example,  from a Polsson parameter  A which is 
itself a random variable. In the present case, global weather  condluons  could 
have determined d~fferent values for ,X m the ten observauon periods. See, 
e.g., [12] for a discussion of  over-dispersion 

To  lnvesUgate this quesUon o f  over-d~sperslon, let us consider the 
possibility that a large variance as above,  namely 6 2 , _> 2.9, happened by 
chance This means that we want to calculate the condit ional  probabih ty  
I?(d-2u _> 2 9 Ifi, N = 1.7) under  the null hypothesis  that N,gs7, , N,996 are 
independent  and distr ibuted according to (4.1) with an unknown Polsson 
parameter  A > 0 The small number  of  observat ions and their small values 
make it feasible to calculate the above condit ional  probabil i ty exactly 
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Under the null hypothesis, the s u m  Ni987 + . . . - { - N i 9 9 6  has a Polsson 
distribution with parameter  10A and we obtain 

F(N,.  = n, for eve ryy  E {1987, , 1996} I /i,v = 1.7) 

/ 1996 , , V q - A " ~  / ( l O ~ )  17 1996 1 
; < ) /  = ,o, 17' rI , : ,  2) 

),=1987 Y 

for every tuple (ni987, , 111996) E ~:J010 w,th n,gs7 + • + 111996 = 17. Note that 
the conditional probability in (5.2) does not depend on the unknown 
parameter A > 0 For  every tuple in (5.2), there are 

10 w 

1]]=70 ( # { y  E {1987, , 1996} with#,,, = t}) '  

d~fferent real'rangenlents of  the tuple; all of  these lead to the same 
probability in (5.2) A small p rog ram, '  which considers till possible tuples 
for (5.2) satisfying n),+i _< n). for all y E {1987, ..., 1995}, finds 267 such 
tuples and yields 

? ( a ~  _> 2 9 Ifi, U = 1 7) ~ 0 0889 (5 3) 

While this one-sided test does not show a significant devmnon from the 
Polsson d~stnbuuon on the 5%-level, it is certainly rnore conserwmve to use 
the standard deviation 6(fi, U) ~ 0 54 from (5.1) instead of  ag>o,k,,3 ~k"1000 J "~" 0.41 
from (4.4) to take the possibility of  over-dispersion into account.  Combining 
this result w~th the fitted Pareto d,str~btlnon for the knock-out  events (see 
Subsection 4.2), the analogue of (4  27) for the approximation of  the standard 
deviation of  the knock-out  probabl!lt'~ gives 6(Pc~,(biT, ) , ) ) ~  00893. 
Together with (4 26) we obtain P c , , , ( b , A ) + 6 ( P c ^ , ( b , A ) ) ~ O  225 as a con- 
servative esmnate of  the knock-out  probability A recalculation of  Table 3.2 
leads to a conservative discounted value of  CHF 237.15 for the three WINCAT 
coupons. This ,s only CHF I 10 below the conservative value CHF 238.25 
derived from (4 27). 

It ~s possible to test the assumpnon of  a Po~sson dlstr lbtmon further by 
choosing an exphclt alternative like a negative blnomml distribution and 
consldenng the corresponding Neyman-Pearson  test. In addmon,  we could 
choose a preferred measure of  d~screpancy for distributions and apply model 
selectmn criteria to come to a dec~smn about  the underlying dlstrlbutmn. In 
this paper, however, we want to pursue a different route, namely a possible 
determlnlStm t lme-mhomogenelty of  the distribution of  the numbers 
N 1 9 9 7 , . ,  NI996 of events per observation period Concerning model 
selection in the case of  independent and identically distributed random 

' The Mathematwa command NumberOfPartztzons[17] from the st,lndald add-on package 
Dzscret:eMar~h "Comb±natorzca shows that there are 297 partihons of 177 altogether, hence the 
running time of the progr,im wfll be acceptable Unnecessary Ioops m the program can be avoided 
by using the cond,tion (1996 - g)u,,tl _> 17 - (nl,~a7 + + n,;) for y 6 t ] 987, 1995} 
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variables, we therefore refer the reader to [11], in particular to [I 1, Example 
4.4 3], where the Polsson and the negative binomial distribution are the 
alternatwes. 

5.2. Test ing for t ime- inhomogenei ty  

When looking at Figure 4 1 which shows the number of  events in the ten 
observation periods causing more than 1000 claims, we can ask whether 
there is something special about  the order of  the ten observations; in 
particular, whether the assumption of  an ~denhcal d~stnbution for the 
r a n d o m  var i ab les  Ni987, , Ni996 IS just if ied.  

Starting from (0, 0, 0, I, 1, 2, 2, 2, 4, 5), namely the ten observations in 
increasing order, we need 38 successive transpositions of  adjacent entries of  
the tuple to rearrange it in decreasing order To rearrange the observed tuple 
(0, 0, 0, 2, 2, 4, 1, 5, 2, 1) into decreasing order, we need 28 successive 
transpositions of  a~acen t  entries 

( 0 . 0 , 0 , 2 , 2 , 4 , 1 , 5 , 2 , 1 ) ~ ( 2 , 2 , 4 , 1 , 5 , 2 , 1 , 0 , 0 , 0 )  

~ ( 2 , 2 , 4 , 5 , 2 , 1 , 1 , 0 , 0 , 0 )  

+ ( 4 , 5 , 2 , 2 , 2 , 1 , 1 , 0 , 0 , 0 )  

+ ( 5 , 4 , 2 , 2 , 2 , 1 . 1 . 0 , 0 , 0 )  

21 t ransposmons 

2 t ransposmons 

4 transpositions 

1 transposition 

(5 4) 

Since the number  of  28 t ransposmons ~s well above the half of  38, we can use 
this observatmn for a permutat ion test to find out whether the data  shows a 
tendency to be arranged in increasing order 

Under the assumptmn that the ten observations are given by ten 
exchangeable, N0-valued random varmbles NI987, ., NI996 every permuta- 
tion of  the ten observatmns has the same probability If NI987 . . . .  NI996 are 
independent and identically distributed, then exchangeablhty follows For 
every one of  the 

10! 
- -  - 50 400 (5 5) 
31 3! 21 

different permutations of  the ten observatmns, we can count the required 
number of  successive t ransposmons of  adjacent entries to obtain the 
decreasing order given by the tuple (5, 4, 2, 2, 2, I, I, 0, 0, 0). This number is 
always between zero and 38. Figure 5.1 shows the resulting d l s tnbuuon  
functmn of  this number  

Under the null hypolhes~s where all permutations of  the ten observations 
have the same probability, only for 2 953 permutat ions out of  50400, about 
5 86% of them, 28 or more t ransposmons of  adjacent entries are needed to 
reach the decreasingly ordered tuple (If there were a substantmlly higher 
number of  permutat ions than 50400, then a statable number of  random 
permutatmns would have to be generated m order to get an estimate for this 
percentage.) 
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FIGURE 5 I D~stnbutmn funclmn of the number of successive Iransposllmns of adJacent entrms necessary 
to order a random permutatmn of the ten observatmns into decreasing order For the observed data. 

28 transposmons are necessary At least 28 transposmons are necessary for about 5 86% of all permulatmns 

Note  that for the permuta t ion  test o f  this subsection we do not assume 
that the dls t r lbutmn of  N I 9 8 7 ,  . . . ,  N I 9 9 6  lies in a certain class; in particular,  
the test is parameter-f ree  Fur thermore ,  the test does not depend on the 
actual numbers  but  merely on their relative order  or ranks; an observat ion 
like (0, 0, 0, 3, 3, 4, 1, 7, 3, 1) would give the same test result. Fo r  such a 
distr ibution-free test and just  ten observations,  5.86% is a remarkable  result. 
However ,  as we can see from (5 4), ~t is mainly caused by the posmon  of  the 
three zero observations.  

6. F I T T I N G  A G E N E R A L I S E D  E X T R E M E  V A L U E  D I S T R I B U T I O N  

For  a knock-out  o f  a W I N C A T  coupon,  only the most  severe event within 
the corresponding observat ion period matters.  We can use extreme value 
theory to model this event directly. The theoretical background for this 
approach  is the F isher -Tlppe t t  theorem (see for example [6, Theorem 
3.2.3]), which identifies all possible hmlt distributions for proper ly  scaled 
maxuna  M ( n ) =  ma~x{Xi, ..., X,,} of  independent ,  identmally distr ibuted 
random variables Xl, . . ,  X,, as n ~ oo. If the distributions of  the proper ly  
scaled maxmla  do converge,  then the hmmng  d~stnbutlon is either a 
Fr6chet, a Wmbull or a Gumbel  distr ibution In the following we use the 
J enkmson- von  Mises representat ion o f  these extreme value distributions,  
see [6, Definition 3.4.1]. Let # E IR denote  the Iocatmn parameter ,  r > 0 
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FIGbRI 6 I The censored empirical dl~tzlbtmon functmn of  the number  of  adjusted clmms of the most severe 
event per year  (sohd step funcuon)  and the fitted generahsed exlreme value distribution (~ohd curve) with 

es tunatcd exponent  I / ( ~  I 316, scale parameter  ÷ ~ 1008 and locallon parameter  fi ~ 1168 The esmnated 
probabil i ty,  that  no knock-out  cvent occurs within one year, is approximate ly  0 876 The two dashed curves. 
derived from I 000 boots t rap  samples, indicate 68%-contidenee intervals for the fitted generahsed extreme 

valuc dv~tnbutmn 

the scale parameter and ~ E R the shape parameter.  In the case ~ > 0, which 
corresponds to the Fr~chet distribution, we define the distribution funcuon 
Hj,,~,T by 

{  xp(-(l + ,r I + > 0, 
H~,,~ , , - (x)  = 0 ,  otherwise 

In the case ~ < 0, which corresponds to the Welbull d ls tnbutmn,  we define 
smlllarly 

e x p ( - ( l  + ~ ( x -  i;)/T)-I/~), if 1 + ~ ( x -  #) /T  > 0, 

Hj,,~ ~-(r) = 1, otherwise. 

With the above representation, the Gumbel  dtstnbut~on 

H,,oT(x) = exp(-- e x p ( - ( x  - #)/~-)), x E N, 

for the case ( = 0 is actually the hmlt of  H~,,~,~ as ( ~ 0 
When fitting the generalised extreme value distribution H~,,~,, with 

/_L,~ C R and ~- > 0 to the observed maxima given m Table l 1, we have to 
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cope censored data. The most severe events of  the years 1987-1989 are not 
gwen because they caused less than 1000 adjusted cla,ms (assuming that 
there were damages caused by storm or had at all). Next, when we want to 
use the maxm3um-hkehhood method to estunate the parameters p,, { and r,  
we encounter  another  problem' The density of  H;,,e,~. is unbounded for 

< - 1  a n d x T i L - r / C  
Both problems can be solved by d~scretlzmg the d~stnbutmn H;,,~,~. The 

censored data for the years 1987-1989 corresponds to three observations ,n 
the interval (0, 1000] The most severe events m the years 1990-1996 are 
adjusted claml numbers which correspond to intervals of  the form (n, n + 1] 
with an integer n _> 1000 (at least approximately,  ignoring that the vehmles 
insured index m Table 1.1 is not always exactly one). This suggests the 
hkelihood functmn 

1996 

L(#,~,r) = (Hm(,T(1000) -- H;,,¢,~(0))3x H (Hm(#(M"+ 1) - HInes(M,,)) 
y =  1990 

with #, ~ E R and r > 0, where M I 9 9 0 ,  .. , M 1 9 9 6  denote the yearly maxima 
from Table 1 1. The numerical iteration procedure apphed to the log- 
hkehhood function leads to the max.mum-hkel ihood estimates /~ ~ 1168, 
~ 0.760 and ? ~ 1008; the corresponding fit is shown m Figure 6 1. 
These values lead to an estimated knock-out  probabdlty of  only 
Pc~v = 1 -  H/,,L~(6000)~ 12.4%, because the fitted distribution is well 
above the empmcal  one at 6000 m Figure 6.1 A recalculatmn of  Table 
3 2 gives a discounted value of  CHF 266.62 for the three W[NCAT coupons. 
For  further background on parameter est imatmn for the generahsed 
extreme value d ls tnbutmn,  see [6, Sectmn 6.3] and the references gwen 
there. 

It would be unreasonable to insist on estimates for #, s c and "r giving a 
generahsed extreme value d l s tnbuuon  with support  m [0, ec), because 
Hf,,L÷(O ) ~ 6 8 10 -s ~s already a very good approxlmauon of  zero, the true 
d is tnbtmon ~s almost certainly not in the famdy {H;,,~,~- [ #, ~ E IR, r > 0}, 
and a good fit at this end of  the distribution, where the data ~s censored 
anyway, is not our  primary concern. 

To estimate the 68.3%-confidence intervals m Figure 6.1, we use the 
bootstrap method; see e g. [5] for an introduction. We take I 000 bootstrap 
samples (MT987 , , M~996), where for each component  the values 
M I 9 9 0 ,  . -, M I 9 9 6  have probabdlty 1/10 of  being chosen, and with probability 
3/10 we take a censored observatmn For each bootstr~.p sample we calculate 
the corresponding naaxmaum-hkehhood estimate (fi,*, ~*, ÷*). This gives I 000 
bootstrap values for Hi2.~.÷.(x ), we take the 159th and the 841st largest 
values as boundaries for a 68 3 %-confidence interval for H;~,~,÷(x). The 
estimated 68.3 %-confidence interval for the above knock-out  probabd~ty ~s 
[0 046, 0 198], the conservative estmlate PcaE = 0.198 leads to a discounted 
value of  CHV 245 17 for the three WJNCAT coupons. 
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The model of  this section has a drawback in our  case: While we explicitly 
use the absence of  recorded events in 1987-1989, we are partially discarding 
10 of  the 17 adjusted claim numbers  given in Table  1 1, we only implicitly 
use that they do not exceed the corresponding maxima 

7. COMPOSITE POISSON MODELS WITH A TIME-DEPENDENT PARAMETER 

The cons tan t -parameter  composi te  Polsson models of  Section 4 are static 
ones They  give equal weight to every recorded event and, by construct ion,  
do not  allow to discover a trend in the data. Every redistribution of  the 
17 events in Table  1.1 to the ten observatmn periods would lead to the same 
result for the coupon  values (if we disregard the 15/17-correction in 
Table 3.2). However ,  the tests for over-dispersion and t ime-inhomogenel ty  
from Subsections 5 I and 5.2 suggest - a l though not slgmficantly on the 5%- 
level but  very close - to consider the possibility of  a t ime-dependent  
distribution Such a deterministic t ime-dependence can account  for the 
tendency o f  over-dispersion considered in Subsection 5. l, it doesn ' t  need to 
be a randomly varying Polsson parameter  as ment ioned m Subsectmn 5.1. In 
particular,  an investor might want to take a possible trend into account  
when estimating the discounted value of  the WINCAT coupons.  Even when a 
cons tan t -parameter  model is preferred for pricing the WINCAT coupons,  a 
model capable to accommoda te  a possible trend can be useful for risk 
managelnent ,  because model risk can be an Important  risk factor. In Section 
8, we shall test for the existence of  a trend within most of  these models we are 
considering below There  are several reasons why there might be a trend, for 
example: 

• The variability o f  the weather could change, due to human influence 
(increased CO2-part  in the a tmosphere)  or solar activity (11-year cycle of  
sun spots), for example. 

• Wmter thu r  might increase its market  share in other  regions like the 
French or I tahan speaking parts o f  Switzerland; this can happen in 
part icular  when Wlnter thur  merges with another  insurance company  
(like merging with Neuenburger  Schwelzerlsche Allgememe Versxche- 
rungsgesellschaft in 1997, for example). Due to the Swiss Alps, the 
local climate is in general quite different in different regions of  
Switzerland, so a change in Winter thur ' s  engagement  in a part icular  
region can considerably increase or decrease the company ' s  exposure to 
storm or hall damages 

• Severe damage caused by hall is a local event. If the density of  motor  
vehicles insured with Wmter thu r  increases (due to more cars per 
inhabitant ,  more  inhabitants  per area or a greater market  share of  
Wmter thu r  Insurance within an area), then more Insured moto r  vehicles 
are likely to be damaged in every single event 

• The relation of  the number  of  cars to the number  of  motor-cycles within 
Wlnter thur 's  insurance por t foho of  motor  vehicles might change. 
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• The habits of the insured might change They might buy a second or 
third car for the family without budding or renting an addittonal 
garage to protect the car in case of bad weather. Or the insured are 
better off financially and they can afford the deduchble, hence they 
take chances and don't  drive the car to a secure place in case of a 
storm/haft forecast. 

• Motor vehmles mtght get more or less suscepuble of hall damage, because 
the materml changes (different kinds of steel, aluminlum, different coats 
of lacquer, for example) or the thickness of the automobile body sheet 
changes (a thicker sheet can give more protection in case of an accident, a 
thinner sheet reduces welght and thereby fuel consumption) 

In any case - whatever the particular reason - it ~s a reasonable ~dea to 
consider a model which ~s flexible enough to take a possible trend in the data 
into account as long as such a possible trend can not be ruled out by 
addmonal mformahon concerning all the points mentioned above (and the 
ones we have not thought of). 

When modelhng low-frequency event risks, the scarcity of the available 
statishcal data is a typical problem. If one wants to follow a kind of 
Bayesian approach, it is desirable to take addmonal information into 
account when selecting a model (see [13, Section 6] for such a case study 
of the correlation of wind storm losses of the Swedish insurance group 
Lansfors/akrmgar with wind speed data prowded by the Swedish Meteor- 
olog~cal and Hydrologmal Inshtute). For a fair and transparent pricing of 
financml products, such information should either be pubhc or should be 
published together with the mtroducuon of the financml product. For the 
pricing of the WINCAT coupons, such addmonal mformauon besides the 
historical data of Table 1.1 is contained m the study [21] of Winterthur 
Insurance This study, as well as the pubhcly avmlable report [14], for 
example, provide mformahon on the vanabihty of the weather; they also 
describe the development of haft storms, the different frequency of haft 
storms m the various parts of Switzerland, and the properues of hailstones 
(size, shape, speed) that cause damage to motor vehicles. The study [21] 
also points out that damages to agriculture and motor vehicles are mainly 
caused by different types of haft storms: damage to motor vehicles reqmres 
a large momentum of the hailstones (large product of mass and speed), 
while damage to agriculture can already be caused by small but numerous 
hailstones. This indicates that the extensive statistical data collected from 
insured damages to agriculture since 1881 ts of bruited use when estimating 
a possible trend m the frequency or severity of damages to motor vehmles 
caused by hall Also in the report [14], the seventy of hail storms is 
measured by the number of communmes reporting damages to agriculture 

In the following subsecuons we shall use, for every year 
y E {1987, .. ,  1996}, a random variable Ny describing the number of 
calendar days within the observation period ending m year 3', dunng which 
more than 1 000 adjusted claims are caused by storm or hall. We assume that 
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these random variables are independent and that every N>, has a Polsson 
dlstr|butxon given by (4. I), but with a parameter  A(y) depending on the year 
y E { 1987, ..., 1996}. For  the purpose of  racer graphics, we shall treat y as a 
continuous variable within the figures. We shall discuss five different chomes 
for the dependence y ~ A(y). 

7.1. Linear trend of the parameter 

To start w)th the apparently simplest dependence, we assume that the 
Pmsson parameter  for the number  of  events with more than 1 000 adjusted 
claims depends linearly on the year y, namely 

Ao0(y ) = c~ +/3(y  - 1987), (7.1) 

where we subtract 1987 to get reasonable numbers for oe. When using (7. I), 
we have to make sure that  Aa,/3(y) > 0 for all years under consideration. This 
will certainly be the case when o,,/3_> 0. The corresponding hkehhood 
function arising from the ten observations N1987 , . . . ,  NI996 IS 

1996 

L(~,/3) = H Polsson;~,,,(,,)(N).) (7.2) 
3,=1987 

with the Pmsson distribution given by (4 1) and the parameter A~,,/j(y) as m 
(7 I) When trying to calculate the maxlmum-hkehhood estmaators for c~ and 
/3 numermally, ~t turns out  that for the given data there as no simultaneous 
solution of  

o O--~L(c~,/3) = 0 and L(c~,p) = 0 (7.3) 

satisfying c~ _> 0. As a pragmatic approach,  let us set a = 0. This means we 
consider the special case where the Poisson parameter  An(y) depends on/3 in 

0 the form At3(y ) = ~(v - 1987) In this case the equauon ,~,~log L(0, fl) = 0 for 
the max |mum-hkehhood  estimator ~ can be solved expllcltly, leading to 

~1996 M 1996 
y=1988 ~ ' y  l X"" 17 

: ~"~1996 . . . .  Z...., Nj, ~ 0 378 (7 4) 
z_.~>=~9~8 (Y - 1987) 45 >.=19ss 45 

The corresponding straight line ~s shown m Fzgure 7 I. Extrapolatmn to the 
years 1997-1999 gwes the estimated values for A~(.y) contained m Figure 7 1 
and Table 7.1. Using these extrapolated Po~sson parameters and the 
conditional probablhty ,b6000 ~ 0.0757 from (4.32), which was estmaated by a 
generahsed Pareto d ls tnbtmon,  the knock-out  probabdmes can be 
calculated as m (4.26) by the formula 

PC^T(Y) = I -- exp(--P6000 • A~(y)) (7 5) 
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FIGk, RI" 7 I Observed number  ofevenlq causing mo,e  titan I 000 adjusted clmms A hnear  fit of  the intensity 
A ~(j,) = / 3 0 '  - 1987), using the maxmmna-hkehhood  method leads to /3 = 17/45 ~ 0 378 The increasing 

dashed hnes indicate this esnmated s tandard  devmnon of  A ~0') Tlus model has a problem w,th the years up 
to 1987 and ~t ce~ta,nly underesmnates  the s tandard  devlauon m the first years 

for y ¢ {1997, 1998, 1999}. The results are gwen m the fourth column of 
Table7 1 Applymgthe l5 /17-cor rec t ionof (2  I) to PcAT(1997) and mserting 
the resulting coupon-dependent knock-out probabflmes into Table 3.2, a 
recalculanon of this table leads to the discounted values of the three WINCAT 
coupons. These values are gwen in the last column of Table 7 1. The sum of 
these discounted values of the three WINCAT coupons is CHF 223 88 

To estlnaate the standard deviation of the Po,sson parameter )~0:), note 
that Var(N),)= A / 3 ( y ) = P 0 ' - 1 9 8 7 )  for every one of  the independent 
random variables N I 9 8 7 ,  • , NI996 In this model. By (7.4), 

l 1996 1996 

Var(~) = ~ 2  Z Var(N, , )= /3 
y=1988  " 4 5 2  v=ZI988 ( ' 1 : -  1987)= 45 

Using (7.4), this leads to d-(,XB(y))=6(~)(y-1987) with 6-(/3)= 
v/W/45 ~ 0 0916. 

This model with a linear trend m the Poisson parametery  ~ ,X~(y) has a 
severe problem with the year 1987, because the estimate A~(1987)= 0 is 
certainly wrong. The esUmated standard dewat~ons for the years 1987-1989, 
as shown m Rgure  7.1, are qmte unreahsnc, too Model pred~cnons for the 
years before 1987 are impossible, because negative values for )~(y) are 
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unacceptable. In the following subsections we shall discuss models which do 
not have these defioencles. 

TABLE 7 I 

C A l . (  ULA l ION OE T I l E  D I S L O U N  I ED VAI .UE OI ~ I H E  I H R E L  W I N (  AT COUPONS IN TIdE CASE" OF A LINEAR 

DEPENDENCF A ~(y) = f 3 ( !  J - -  1987)  OE T I l E  POISSON I 'ARAME' I  ER T H E  POIbSON I 'ARAMEI  ERS A ~(/J) ARE T i l l :  

EXTRAPOI_ATED VALUES FROM FIGURE 7 I T H E  CONDIT IONAL PROBABILITY P~alt~ I'OR A KNOCK-OUT EVEN I GIVEN 

T H N I  AN E V E N T O C C U R S  IS T A K E N  FROM ( 4 12) T H E  F O R T H  C O L U M N  C o N - r A I N S  P ( ' ^ r ( Y )  = 1 - exp(-p/ ,O~Xl A j ( y ) )  

T H E  I)IS( O U N I  El )  (. O U P O N  VAI UES A R E TI IFN ( AI.C ULA I El) ACCORI')I NG TO T A B L E  ~ 2 T A K I N G  IN FO A C C O U N T  T H E  

I'~ 17-CORRECTION PROM (2 I) FOR I H E  SHOR FLR I-IRS1 OBSERVATION PERIOI') 

Year v Aa(y ) / ~  Pc^] 0') Coupon value 

1997 3 78 0 0757 24 9% CHr 80 64 

1998 4 16 00757 27% CHF 73 72 

1999 4 53 0 0757 29% C a r  69 52 

Discounted value of the three WINCAT coupons CHI, 223 88 

7.2. Log-linear trend of the parameter 

To avoid the problem of negative Po~sson parameters, let us consider the 
prime example of a model where this cannot occur, namely a generalised 
hnear model with the log-hnear dependence 

A~,/3(y ) = exp(~ + / 3 ( y - 1 9 9 1  5)), c~,/3,y E I~ (7.6) 

We subtract 1991 5 from y in order to get approximately orthogonal 
parameters, meaning that the max~mum-hkelihood estimators for o~ and /3 
have only a small correlation (for the notion of orthogonal parameters, see 
e g. [2, p. 182-185]) This parametnsatlon is also useful m Section 8, because 
it introduces a symmetry which reduces the computauonal effort for the 
permutation test. The log-likelihood function for this model arising from 
(7 2) with A~,~(y) as m (7.6) is given by 

1996 

E: ?) 
y=1987 

The maxm~um-hkehhood estimates for o~ and/3, calculated numerically, are 

6 ~ 0 . 4 0 6  and /3~0 .176 .  (7.8) 

The corresponding curve y ~ Ae,,3(y ) is shown m Figure 7.2. It approx- 
imates qmte well within the Ume span 1987-1996. The extrapolated values 
of the Polsson parameter A- t~(Y) for the years 1997-1999 can be read off ~,_ 
from Figure 7.2. A recalculation of Table 7.1 with these numbers leads to 
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FIGURE 7 2 Log-hnear dependence A. ,(y) = c~¢p( D +/3(y - 1991 5)) of the Polsson paramcter The 
m,txlmum-hkchhood method leads to ~ -~ 0 406 and {~ .~ 0 176, the resul! is shown as a sohd curve together 
wllh the extrapolation The dashcd p~cccwlsc hncal curvcs indicate for every year v thc estmaatcd slandard 
devl.mon of A, ~ , )  as denvcd flora the Iog-hkehhood r.mo slaU~uc Thc uncertainty of the cxtrapolated 

valucs ~s re ly  largc foe the ye,~rs 1997-1999 

the knock-out  probabdltmS 25.9% (without  15/17-correct]on), 30% and 
34.7% for the three WINCAT coupons  and a discounted value o f  CHF 214 37. 

For calculating the max~mum-hkehhood estimates (7.8), we needed 
appropriate starting values for the numerical iteration procedure. We took 
c~0 = log' .-co,~stAt00 ° : log 17/10 ~ 0 53 wlth Ai000~°n~t from (4.2) This value for c~ is 
the correct choice m the constant-parameter case/3  : 0. For /3  we used the 
fol lowing heuristic: The approximating tangent o f y  ~ A~0,/j(y ) at the middle 
y = 1991.5 of  the mtelval [1987,1996] is A~,,/~' (v) = e + /3e  () - 1991 5) 
with e ~o = 17/10 The optimal /3 for the least-squares fit of  thas tangent to 
the data N I 9 8 7 ,  .. , N I 9 9 6  has to satisfy 

_ _  tangent - 0 N),- A(,0,/. ~ (y) --- 0. 
0 f l  Y= 1987 

This hnear equat ion in /3  is solved by 

x-"1996 N v ( F ' -  1991.5) 94 
/30 ---- z.-,~,=1987 " " = ,-~ 0.168 

X--~ 1996 e~° z_~y=lgs7 (Y - 1991-5) 2 561 

To  obtain an estimate for the standard deviation of  the estimated Po~sson 
parameter A6.~(y ) for every year y E {1987, , 1999),  we use the log- 
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likehhood ratio stanstlc, which we already applied in Subsection 4.3. 
Similarly to (4.33), we define the Iog-hkelihood ratio stausnc or deviance by 
D(cx,/3) = 2l(&,/3) - 2l(o~,/3) for c~,/3 E 1K. Corresponding to (4.34), for 
every year ~, E {1987, ., 1999}, we want to determine the smallest 68%- 
confidence interval lay, A~7] C (0, oo) such that 

{(ct,/3) ER2]D(ol,/3)<_X~,o32}C {(Ct,/3) ER21Aa~(1,')E [Af,A;]} (79) 

Solving equation (7.6) for c~ yields o_5,(/3, A ) = l o g A - / 3 ( ~ - 1 9 9 1 . 5 )  With 
this reparametrlsation, the inclusion (7.9) reduces to 

{(/3, A) e R × (0, oo) I D(~S,(/3, ,X), /3 ) <_ X~,032} C R x [A~-,,X~] 

The numerical results are shown m Figure 7.2 as dashed piecewlse hnear 
curves. 

The results m Figure 7.2 for the years 1987 up to 1996 look quite 
sansfactory, although the 68%-confidence intervals are larger than the 
estimated standard deviation ^ (xc°nbt~ ak,,~ooo ) In the constant-parameter model, see 
Figure 4. I. (However, since the inclusion (7.9) IS strict in general, we may have 
slightly overesnmated the size of the confidence intervals here.) In Figure 7 2, 
the upper 68%-confidence bounds A[997, A+998 and /~1-1-999 for the future 
observation periods show a large uncertainty of  the estimates. Of course, 
the small size of the historical data set is partmlly responsible for this 
uncertainty. The main contribution, however, comes from the log-linear 
mode[ itself, because it blows up the unavoidable uncertainty of  the 
maximum-hkehhood estimators 6 and ~ m an exponential way. This log- 
hnear model ts already a very pesslmmstic one with respect to the future 
development of the event frequency. Due to the exponentml amplification of 
the estimator uncertainty, the log-linear model ~s certainly not the favounte 
one for calculating a conservative estimate for the value of  the WINC,',T 
coupons. 

7.3. Square-root linear trend of the parameter 

To avoid the possibly negative Polsson parameters of the hnear model from 
Subsection 7 I and the very pessimistic perspective of the future event 
frequency m the Iog-llnear model from Subsection 7.2, we want to consider 
the usual root-linear model 

Ao,c3(y) = ( c ~ + , 0 ( y -  1991 5)) 2 , a,13, yE  I~ 
Along the lines of the previous subsection, we obtain Figure 7.3 A 
recalculation of  Table 7.1 leads to the knock-out probabilities 27.8% 
(without 15/17-correction), 31 4% and 35% for the WINCAT coupons and a 
discounted value of CHF 210.86 

Incidentally, note that the nlaxlmuna-hkehhood estimators 6 and ~ are 
not uniquely defined in this square-root hnear model: If (&, ,~) maximlses the 
hkehhood function, then so does ( -&, - ,~ )  The starting values for cv and/3 
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determine which of  these solutions ts found by the numerical iteration 
procedure. 

In this square-root linear model, the estimated Po~sson parameter drops 
to zero between 1983 and 1984 and increases m the more distant past. This 
model deficmncy, however, ts not of great importance for the extrapolation 
into the future. A more important problem ~s, as in the Iog-hnear model of 
Subsectton 7.2, the built-in pesstm~st~c perspective of a future quadrattc 
growth of the evcnt frequency. In the next subsection we shall present a 
model which ~s better tailored for the extrapolation of  the estimated Poisson 
parameter m our case. 
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FIGURE 7 3 Rool -hnear  dependence A,, a(Y) = (q + / ' 3 0 ' -  1991 5)) 2 of  the Polsson parameter  The 
max lmum-hkehhood  method leads to 6 ~ I 23 and [3~ 0 154 These e~t,mate~, give the sohd curve and the 

extrapola lcd values The 68%-confidence bounds  are indicated by the dashed plecewlse hnear  curves 

7.4. Modified-linear trend of the parameter 

To avoid the problems of  negative Po~sson parameters and too pessimistic 
perspectives of the future event frequency, we want to consider the 
dependence 

Ao,;3(y) = l o g ( l  + e x p ( o e + / 3 ( y -  1991 5))), oe, f3 ,yER.  (7.10) 

We shall call it modiJied hnear, because y ~A,,,;3(y) Js approximately linear 
for c ~ + / 3 ( y -  1991 5) >> 0 and the graph bends smoothly for 
o ~ + / 3 ( y -  1991.5)~ 0 to avoid negative values The number one in (7.10) 
arises from this restriction, another value, let us call it "7, would lead to the 
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asymptonc value log ~ when o + , B ( y -  1991 5) << 0. Maximum-likelihood 
esumators and 68 %-confidence intervals are calculated with the procedures 
outlined m Subsections 7 1 and 7 2. The results are shown m Figure 7.4, the 
maxlmum-hkehhood estimates are d ~ 1.36 and ~ ~ 0.521 Figure 7.4 also 
shows that the estimator uncertainty is anaplified only in a linear way. A 
recalculation of  Table 7.1 with the extrapolated values of  the Polsson 
parameter from Figure 7 4 lead to the knock-out probabdmes 27.4% (without 
15/17-correction), 30.2% and 32 9% for the three WINCAT coupons and a 
discounted value of CH v 214.44. 
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FI~,/,R[ 7 4 Observed number of  events wtth more than I 000 adlusted claims together with a 
moddied-hncdr fit of the Pols,,on parameter for such events using ,\,, ~(3,) - log(I + exp(a + l:~0' - 1991 5))) 

The maxmmm-hkehhood method leads to d .~ I 36 and ~ ~ 0 521 The dashed plecewlse hnear curves 
indicate the esumated 68%-confidence interval for A,, ,0') as derived ['tom the Iog-hkehhood r.mo stausUc 

The uncertainty of the estimates glows only hnearly 

7.5. Smooth transition of the parameter 

The models from the previous subsections can be cnticlsed m the sense that 
an extrapolahon far into the future gives unreasonable results, Of course, 
such a far-reaching extrapolation should not be done in the current case with 
just ten observations, and the models of  the previous subsecnons were not 
chosen for this purpose. If future observauons would confirm an increasing 
trend of the strength estHnated m the previous subsections, then Wmterthur 
Insurance would have a strong mcennve to introduce preventive measures. 
Notice that the WINCAT coupons provide a reinsurance on the financial 
market for only half the amount necessary for the adjustment of  damages 
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arising from just o n e  event per observahon period with at least 6000 
adjusted clmms. Hence, let us also consider a model for a smooth transition 
between two hmmng mtens~tms, where the speed and the d~rectmn of the 
transmon ~s measured by a parameter /3. Whale zero is certainly a natural 
lower hmlt for the mtensihes, there is some ambiguity for the upper bound. 
A plausible ad hoc choice based on the data ~s the largest observation. To 
avoid an exponentmlly fast convergence to the hmmng values, we do not 
propose a scaled version of the normal or the Ioglsuc dtstnbutmn functton 
but take a scaled version of the Cauchy dtstnbutlon function instead 

"k~'~(Y) = 5 (~ + 1-arctan(ee + 'O(Y- 1991 5)))  ' 7r o~,,6',y E ~ (7.11) 

Max~mum-hkehhood eshmators and 68%-confidence intervals are calcu- 
lated with the procedures outhned m Subsections 7.1 and 7 2. The results are 
shown m Figure 7.5, the values of the estmaators are & ~ - 0  466 and 

~ 0.442. A recalculation of Table 7.1 with the extrapolated values of the 
Po~sson parameter from Ftgure 7 5 lead to the knock-out probablht]es 
27.5% (without 15/17-correction), 28 2% and 28.7% for the three W]NCAT 
coupons and a discounted value of CHF 220.53 
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FIGbR~: 7 5 A s m o o t h  t r a n s m o n  o f  the P o ~ o n  parameter  according  to (7 I I) The  possible  range o f  the 
parameter  is de termined  by the smal lest  and largest obscrved  value,  rc~pcctwely The  m a x l m u m - h k e h h o o d  
m e t h o d  lead~ to ,5 ~ - 0  466 and fl .~. 0 442 The  dashed pmcewlse  hnear curves  indicate  the es tmlated  68%- 
~onfidence intervals for ,\,, ~(y) as derived from the Iog-hkehhood ratio stausUc Thcse  ]ntcrval,~ clearly s h o w  

thc art]floral restr~ctmn o f  the range o f  the Po~sson parameter  
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The drawback of  this model is illustrated by the 68% -confidence intervals 
given xn Figure 7.5. For  the years 1990-1994, they are considerably larger 
than the ones in F~gure 7 4, and starting from 1991, one clearly sees the 
influence of  the artificial model assumption about the upper bound. 

8 TESTING FOR A POSITIVE TREND IN THE POISSON PARAMETER 

For the various models with a t ime-dependent Polsson parameter discussed 
in Section 7, it is of  interest to check whether the addmonal  parameter/3 for 
modelhng a trend is significantly different from zero For this purpose 
we shall assume that there is no trend m the data, and try to determine the 
probability that the estimated trend parameter /3  takes values which are at 
least as large as the observed one 

The model with a hnear trend m the Polsson parameter gwen by (7 l) has 
a serious deficiency with respect to the posltivlty of  the Polsson parameter as 
pointed out in Subsection 7.1. However, we can test whether the 
observations Ni987 , . . . ,  N1996 exhlbtt a linear dependence on the year of  
the observauon period. For  this test, as for the one m Subsection 5.2, we 
assume that N1987 , , N1996 are exchangeable so that every permutat ion of  
the ten observaUons has the same probablhty.  We do not assume that 
NI987,  -, NI996 are independent or that they have a Poisson distribution. 
For every permutat ion 7r of  the ten years 1987 . . . .  1996, which gwes a 
different sequence of  observations, we calculate the value of  

1996 

¢p(Tr) = Z N~O')(Y-1991.5). (8 1) 
y=1987 

This test stanstlc has a symmetric distnbuUon under the above null 
hypothesis and attains all 88 possible values of  the form k+½,  k E Z, 
between -43 .5  and 43.5. When the permutat ion ~- is the ~denuty id, then 
N~v(1987), . . . ,  NTr(1996) are gwen by the observed values (0, 0, 0, 2, 2, 4, I, 5, 2, 
1) and we obtain ~ , ( ld )=23.5 .  Working through all 50400 different 
permutaUons from (5.5), it turns out that for 3 726 of  them, about  7 39%, 
the value of  ~,(Tr) is larger or equal to ~(ld) = 23.5. (Due to symmetry,  It 
suffices to consider only one half  of  these permutations m our case. If there 
were a substantially higher number of  pernmtations,  then a statable number 
of  random permutat ions would have to be generated ) 

For  the remaining tests of  this section we assume that N1987, . . . ,  N1996 are 
independent and identically distributed according to a Polsson d~stribuuon, 
meamng that the trend models are correct with fl = 0. Th~s no-trend 
assumpnon ~mplles m particular that every permutat ion 7r o f  N1987, - . . ,  Ni996 

has the same probabdlty.  The maxlmum-hkehhood esUmator /3,~ corre- 
sponding t o  N~(1987 ) . . . .  NTr(1996) wa one of  the trend models ~s then a 
funcUon of  the random permutanon 7r, and we can determine the percentage 
of  all permutat ions^which lead to a value of  /?~ larger or equal to the 
observed value for/3~d. 
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The model with the log-linear trend (7 6) of  the Po~sson parameter  is not 
more sensitive to permutat ions  than the test statlstm (8.1): For  a 
permutat ion 7r of  the years 1987-1996 we can define the log-hkehhood 
function 1~ similarly to (7 7) by 

1996 
[~r(gr,/3) = ~ (N~(v)(O~ +/3(y  - 1991.5)) - e ~+/3(y-1991 5 )_  log Nrr(y) !) 

3'=1987 

for ec,/3ER. Using (8.1) and the assocmtw~ty of  summat ion to rewrite 
/~(a,/3), we see that 

'~--,, 1996 (oiNy_ea+fl(y_19915)_logNv!) 
/ r r ( " , / 3 )  = /36p(7I') --[-- Z--.~y=1987 

which means that all the dependence of  the Iog-hkehhood funct ion/n on the 
permutat ion 7r ~s contained in the test statistic ~(~-) and no new reformation 
can be obtained by calculating the maxmaum-hkehhood est imator ,~,, 
corresponding t o / , .  

A smadar permutat ion test for the model from Subsection 7 3 with a 
square-root  hnear trend of  the Poisson parameter  is meaningless. As 
already noted in Subsection 7.3, if (6:,/3) maxlmlses the likelihood 
function, then so does (-5,- /36 ') ,  Hence we should only consider the 
absolute value of  the est imator /3. Furthermore,  a large value such as 

~ 0 2486 for the maximum-hkehhood  estnrmtor arises from an increas- 
ing tuple like (0, 0, 0, 1, I, 2, 2, 2, 4, 5) and also from a^decreasmg tuple 
like (5, 4, 2, 2, 2, 1, I, 0, 0, 0) An even larger value of  1/31 -~ 0 4535 arises 
from a "U-shaped"  tuple hke (5, 2, 1, 1, 0, 0, 0, 2, 2, 4) A corresponding 
"N-shaped"  tuple like (0, 1, 2, 2, 5, 4, 2, 1, 0, 0) gives lfl] "~- 0 047 however. 
Therefore,  large values of  1/31 are not eqtuvalent to a large "rate of  
change" in the tuple. Nonetheless,  for the curious reader: Abou t  24 7% 
of  all permutat ions  result in >- 0 154. 

We can use the permutat ion test to challenge the no-trend hypothesis 
within the rnodlfified-hnear trend model. For  every permutat ion 7r of  the 
50400 ones, which lead to different sequences of  the ten observations,  we 
determine the est imator ,2~ which maxlmises the corresponding log- 
hkehhood function 

1996 

/7r(O', /3) ---- ~ log(Polsson~,,,(v)(NTr0,))) (8.2) 
j,=1987 

with Ao.g(y) given by (7.10). The corresponding distribution function for ~, 
viewed as a random variable depending on 7r, is given in Figure 8 I. Note  
that ~ is quite sensitive to the permutations,  because - except close to zero - 
the distribution function in Figure 8. I looks " 'smooth" compared  to the one 
in Figure 5 1 or the one with 88 .lumps which would arise from the test 
statistic (8. l) The probabil i ty under the no-trend assumption for ~ >_ 0.52 is 
about  I 66%, which is quite significant 
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FIGURE 8 1 DIstrlbuUon funcUon of  the estxmated trend parameter  ~ m the modlfied-hnear model under  
the assumpt ion that there i~ no trend, t e ,  all pe rmutahons  of  the ten observatmns have the same probabf lny 

Under this a s sumptmn the p r o b a b d n y  for D _> 0 52 is about  I 66% 

For  the permuta t ion  test in the model with a smooth transition of  the 
Polsson parameter ,  we also determine,  for every permuta t ion  7r, the est imator  

^ 

/3,~, whlch maxlmlses the log-hkehhood function (8.2) with A,~.O(y) gxven by 
(7.11). The corresponding distribution function looks similar to the one in 
Figure 8.1 in the sense that it is " ' smooth"  and therefore sensitive to the 
permutanons .  There  are I 504 permuta t ions  o f  the 50400 different ones, 
about  2.98% of  them, which lead to a maximum-l ikel ihood eshmate  
/3 > 0 442 Again, the result is quite significant for the small data  set. 

Note  that the various trend models "measure  t rend"  by the parameter /3  
m different ways, therefore it is no surprise that the test results^depend on the 
used model. More  exphcltly, every model defines a map  ~r ~ / 3 w o n  the set of  
all permuta t ions  of  the ten observauons ,  and if /3, _</3,e for two 
permuta t ions  7r and ~ in one trend model,  then the corresponding inequality 
does not need to hold for the maximum-l ikel ihood est imators m another  
trend model 

9. COMPOSITE POISSON MODEL WITH A CHANGE-POINT 

The models in Section 7 allowed to take a cont inuously  changing Polsson 
parameter  into account  by choosing a non-vanishing trend parameter /3  By 
extrapolat ing far enough into the future, these models - with the exception 
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of  the smooth- t ransi t ion model of  Subsection 7 5 - lead to ext rapola ted 
values o f  the Polsson parameters  whmh are larger than any value observed 
so far. Since the Polsson parameter  is equal to the mean of  the 
corresponding Polsson d l smbut lon ,  such large values might not be desirable 
or might be too pess~m~stm While it IS desirable that more recent 
observat ions have a greater  influence than older observat ions for estimating 
the value of  the WINCAT coupons,  new obserwtt lons can have a consMerable 
~mpact on these estimated wdues when one o f  the models of  Secuon 7 ~s 
chosen; see Section 12 for a more  detailed discussion. If  one is willing to 
accept a discontinuously changing Possson parameter ,  then a compromise  
between the constant  parameter  models of  Section 4 and the trend models of  
Section 7 can be considered, namely a model with a change-point  in the 
Po~sson parameter .  

Let y~ E {1988, .., 1996} be the year o f  the parameter  change The 
corresponding likelihood function arising from the ten observatmns 
N I 9 8 7 ~  ...~ N I 9 9 6  I s  

I', - I 1996 

L(y~) = H P°iss°n~,,0c)(NY)x H PoIsson~,(v,)(N,) , (9.1) 
y =  1987 v=y,  

where 

- 

v, - I 1996 

1 Z  and AI(Yc) -- 1 ~ N ~ ,  
Y c -  1987 Ny 1997-ycy=,~, 

y =  1987 

are the (maxmlum-hkehhood)  Pmsson parameter  estmaators arising from the 
observatmns before and after  the change-point  For  y,. = 1987, which means 
that there is no change-point  m the observed data,  we omit  the first product  
in (9.1) For  the log-likelihood function I(y , )  = l o g  L(yc), we get 

~,~ /0',) y, tO,c) yc 

1988 -16 23 1991 -14 69 1994 
1989 -14 23 1992 -15 52 1995 
1990 -II  96 1993 -17 45 1996 

tO,c) 

- 1 6 9 4  

- 1 7 9 9  

- 1 7  84 

and /(1987) = -18 .02 ,  if there is no change-point .  Clearly, the choice 
Yc = 1990 by far maximlses the log-likelihood, leading to A0(1990) = 0 and 
A1(1990) = 17/7 ~ 2 43, see Figure 9.1. Of  course, the estimate A0(1990) = 0 
cannot  be the true value and this lmght be considered a model deficiency. 
However ,  only the Poisson parameter  Ai (1990) for the observat ions after the 
jump ~s of  interest for the extrapolat ion and the esumate  of  the knock-out  
p robablh ty  PeA1 This also means that all observat ions before the change- 
point  are ignored for the extrapolat ion.  Using,b6000 ~ 0 0757 from (4.32), we 
obtain similarly to (4.7) and (4.8) that 

PCAV = 1 -- exp(--/36000Ai (1990)) ~ 0.1680.  
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FI(,URE 9 I A model wllh a change-point m the POLSSOn parameter A change from A0 = 0 to 
Ai = 17/7 ~ 2 43 belween 1989 and 1990 maxmuqe~ the hkehhood Tile dashed hnes red,tale tile esumated 
standard dewatmns of the Pol,,son parameters &sregardmg the uncertainty ,m',mg from the esUmale of the 

location of the change-point 

A recalculanon of Table 3.2 gives a &scounted value of CHF 253.80 for the 
WINCAT coupons Using an analogue of (4.28) leads to P(:,,T ,~ 0.1689 and 
CHV 253.56. 

For the standard devtatlon of A1(1990) mdtcated by the dashed hnes m 
Figure 9.1, we take an estimate similar to (4.4), namely 

6(A1(1990)) = x/At(1990)/7 = x / ~ / 7  ~ 0.59. 

A similar estimate for A0(1990) does not lead to a meaningful result, because 
A0(1990) = 0. The log-likelihood ratio statistic does not seem to be statable 
here, because the application of asymptotic results to just three observattons 
is questionable Looking for the largest Poisson parameter A such that the 
hkehhood for the joint occurrence of the three independent events Nl9s7 = 0, 
NI988 = 0  and N1989-----0 is 68%, we get exp(-36(A0(1990)))=0.68, 
which gives 5(A0(1990)) ~ 0.13. However, the smallest possible observation 
for A0(1990) besides zero is I/3, hence we should take at least 
5(A0(1990)) = I/3. This is also the smallest value beszdes zero, which we 
can get by the formula ~/A0(1990)/3 similarly to (4.4). 

Note that the two estimates 5(A0(1990)) and 5(A1(1990)) do not 
incorporate any uncertainty about the locauon of the change-point Whde 
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asymptotic results for confidence regions of change-point estimates based on 
likelihood ratio tests are avadable, see e.g. [9] and [22], it ~s problematical to 
apply these to the present short sequence with a priori unknown A0 and Ai, 
In particular since the Iog-hkehhood functton gives such a clear-cut answer 
for the location of the change-point here 

10. PEAKS-OVER-THRESHOLD METHOD 

The composite Polsson models discussed m Sections 4, 5 and 7-9 make an a 
pnon distinction between the event frequency and the event seventy, which 
IS the adjusted number of claims arising from these events. Th~s distinction 
allows to choose from a selection of constant-parameter and time-dependent 
parameter models for the event frequency and, independently, to choose a 
distribution for the event severity: the Bernoulli distribution, the Pareto 
distribution and the generahsed Pareto d~strlbution have been discussed in 
Section 4. 

So far we fitted several Po~sson models with a time-dependent 
parameter to the observed event frequencies It ~s an obvious idea to 
consider also a time-dependent distribution for the event seventy; most of 
the arguments given at the beginning of Section 7 can be used to support 
this ~dea. However, there is also the ann of parameter parsimony and the 
danger of overfitting With the present small historical data set, this 
danger probably becomes real when we try to estimate trend parameters 
for the event frequency and the event seventy separately. If we tear down 
the wall between event frequency and seventy, then there is a three- 
parameter model available, which incorporates the for theoretical reasons 
desirable generahsed Pareto dtstribut~on for the event severity and the 
Poisson distribution for the event frequency The Poisson distribution is 
also backed up by extreme value theory, because the point process of 
exceedances over thresholds, in an appropriate set-up, converges weakly 
to a tmae-homogeneous Po~sson point process as the threshold increases 
and the time IS rescaled accordingly to keep the expected number of 
exceedances constant, see [6, Theorem 5.3.2]. By allowing a trend in one 
of the three parameters, which requires a fourth parameter, we can model 
a possible time-inhomogene~ty m both distributions. Note that such a 
joint model for event frequency and seventy might better account for the 
two events in 1994 which Just pierced the threshold of 1000 adjusted 
clamas. 

The original continuous-time model is called peaks-over-threshold model 
and we shall give a brief outline adapted to the present problem below. For a 
more detaded dtscussion, see [6, Chapter 6.5] for example This peaks-over- 
threshold model is also used in a case study of wind storm losses 
encountered by a Swedish insurance group, see H. Rootz6n and N. Tajvtd~ 
[13], their fifth section ~s devoted to trend detection. 
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Consider a Polsson point process on the set {1987, ..., 1996} x IR with an 
intensity measure A;, o- which is uniquely determined by 

where "r and ~ are strictly positive model parameters and # E I~ denotes a 
location parameter l f ~ ( x - # )  < -T,  then the right-hand side of (10.1) has 
to be interpreted as infinity. The value 

Au~,,-({y } x ( a ,  e e ) ) =  ( 1 +  a - # ) - ' / ~  (10.2) 
7" z +  

is the Po~sson parameter for the number of events exceeding the threshold a 
in the observation period ending in year y. All events for which the number 
of  adjusted claims exceeds the threshold of  a = 1 000 are recorded in Table 
1 1. Of course, the model parameters should be chosen such that the Polsson 
parameter in (10.2) is finite, which is equivalent to ~(a - ~) > - 'r .  For x >_ a, 
the ratio of  the Poisson parameters from (10.1) and (10.2)is 

A,,,O({Y} x (x, ° c ) ) ( , + ~ x ~ a )  lIE 
Au~,,({y } x (a, o c ) ) =  with r , ,=T+,~(a -# ) .  (10.3) 

ThJs ratio is the cond~tional probability for a Poisson point to lie in the 
subset {y} x (x, oe) given that it lies in {y} x (a, oc). It is also the expected 
number of points in {y} x (x, oe) divided by the expected number of points 
in {y} x (a, oe). As the right-hand side of  (10.3) shows, the conditional 
probability is the tall I-G,,,~T,,(x) of a shifted generalised Pareto 
distribution of the form (4 29). 

The above calculation shows that the points-over-threshold model is 
structurally stable with respect to an increase in the threshold a; according to 
(10.2) and (10.3) we just get different Polsson and scale parameters. This 
stability can be used to determine an appropriate threshold by exploratory 
data analysis; due to our small historical data set, we do not attempt such an 
analysis here. Note that we have chosen the set {1987 . . . .  1996} instead of  a 
ten-year interval because we want to refrain from modelling a seasonal 
dependence of the storm and hail damages. 

As an abbrewatlon for the Poisson parameter from (10.2), let V(x; ~, ~, "r) 
denote the right-hand side of (10.1) for all ~,~- > 0 and ~L,x E IR satisfying 
~(x - / z )  > -T,  and let v(x, #, ~, T) = -(O/Ox) V(x, #, ~, 7). The function 

v(x;#,~,r)  1 ( l + ~ x - a ) - ' - I / Z  
[o, 3 x v(<,, ;5, To 

IS the (-O/Ox)-derivative of (10.3) and therefore the density of the shifted 
generalised Pareto distribution G<,,~,~o on [a, oc), see (4.29). 
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To take a t lme-lnhomogenel ty  into account ,  we first consider a linear 
dependence o f  the location parameter  given by 

izo,~(y)=c~+/30,-1991 5), c~,/3,y¢IR. (10.4) 

The location parameter  has to satisfy sC(a- #~,,/s(Y)) > - r  for all years y 
under  considerat ion In this way we get a family o f  Pmsson parameters  and 
shifted generahsed Pareto distributions via (10.2) and (10.3), respectwely 
Motivated by the simulation study in [13, Section 3], we use only the 
m a x m m m - h k e h h o o d  method for es tmmtmg the parameters  and do nmther 
consider the method o f  moments  nor  probabil i ty  weighted moments .  The  
maxmmm-l ikehhood  method is also more flexible with respect to model 
extensions. 

The hkehhood functmn is given by 

1996 

(Poissonv(,l,t,,, &),~,r), N, tN "~[-[v(X"Y;l#a'~(Y)'{"r)~ (10 5) L(a,/3,~,r)= H 
11 J .v= 1987 

with the Polsson d l s tnbu tmn as m (4 1), where N1987, . . ,  N1996 are the 
numbers  of  observed events exceeding the threshold a = I 000 m the years 
1987, . , 1996 and Xi.y, ..., XN, y are the numbers  of  adjusted claims o f  the 
events m the year y gwen by Table  I 1 Using the abbrewatmn 

1996 l o  N i c = - -  ,~--.,v=1987 g y., we can write the log-likelihood functmn correspond-  
mg to (10.5) as 

1996 17 

I(a,/3,{,r) = c -  Z V(a,#a,/~(y),{,r) + ~logv(X,,#.,/3(y,),{,r) , (10.6) 
y =  1987 I =  1 

where Xl, , Xi7 are the numbers  of  adjusted clawns of  the 17 events 
recorded m Table  1.1 and )q, , Y~7 are the corresponding years these 
events happened Incidentally, note that the Iog-hkehhood functmn m (10 6) 
would be flexible enough to accommoda te  a changing threshold for 
recording historical events; the constant  a = I 000 simply has to be replaced 
by a function y ~ ay for this purpose.  

If we take /3 = 0, then we actually have a three-parameter  model 
consisting o f  the cons tan t -parameter  Polsson model for the event frequencms 
and the generahsed Pareto distribution for the event seventy.  This model 
coincides with the one discussed m Subsection 4 3 The max lmum-hkehhood  
method using (10.6) leads to the estm~ates f~0 = &0 ~ 1427.5, ~0 ~ 0.7243 
and ?0 ~ 970 3, whmh give vm (10 2) and (10 3) the Polsson parameter  
A/,o,6,,÷,({y } × (1000, oo)) ~ 1 7 for every year y and the scale parameter  
?,,0 ~ 660.7, where the index zero refers to /3 = 0 These estmaated values 
coincide with the ones m (4 3) and (4.31), which is reassuring. On the other  
hand, we can use thxs fact to determine the naax~mum-hkehlaood esttmates 
arising from (10.6) with/3 = 0 m an easier way The scale parameter  "?,,,0 and 
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the shape parameter ~0 for the generahsed Pareto distribution can be 
calculated as m Subsection 4.3, the Pmsson parameter xco,,~t is given by (4.2) "'1000 
Solving (10.2) and (10 3) leads to 

A 

^ [ ~ l o n ~ t  "~ ~o 
÷o = r,,.O~,A,o00 ) and fi,0 = a + ('?0 -- "r,,,o)/~o 

In this way we can determine starting values for the numerical iteration 
procedure in the hme-mhomogeneous cases &scussed below 

Maxlmismg the Iog-hkehhood funchon (10.6) without the restriction 
/ 3 = 0 ,  we obtain the estimates & ~ 1 3 7 6 9 ,  /3~93.99, ~ ,~06534  and 
~ 1021 3. The positive value of /J leads to an increasing value of 
the Iocatmn parameter, whmh leads to an increasing Pmsson parameter 
via (102) and to a decreasing scale parameter via (10.3) This means 
that the event frequency increases, but the event severity decreases. 
The expected number of events above the thresholds 1000 and 6000 
for the years under consideration, calculated according to (10.2), are 
given m the second and third column of Table 10.1. A recalculation of 
Table 71 using the estu'nated parameters from the last three hnes of 
Table 10.1 leads to a discounted value of CHF 26400 for the three 
WINCAT coupons. 

Note that /3 is so large that the restnchon ~(a-#&,O(Y) )  > - '?  is 
violated for the years y _> 2005, which shows again that extrapolation has 
to be done with great care. We should test whether the trend parameter/3 
is significantly dllTerent from zero Under the null hypothesis/3 = 0, every 
redistribution of the 17 observatmns to the ten observation periods has 
the same probablhty, the log-hkehhood function m (10.6) would not 
depend on this redJstnbutmn. In principle, we could use this observahon 
for a permutation test. In practme, it ~s numerically demanding to 
determine the four maxmlum-hkehhood estimators for several thousand 
random redJstnbutmns (there are 1017 redistrlbutmns in total, hence it is 
impossible to use all of them). We therefore resort to asymptotic results 
and use the log-hkehhood ratm stanstm. Assuming the model with /3 = 0 
and tl~e ̂ above estimates &0, {0 and "?0 to be the correct one, the deviance 
2l(&,/3,~,~) - 21(&0,0,~0,'~0) has approximately a x2-dlstnbutlon with 
one degree of freedom [15, Sectmn 5.2.3].^ With the above maxlmum- 
hkehhood estlynp.tes &,-~ 13769, ~ 9 3 . 9 9 ,  {~0.6534 and ~ 1021.3, we 
obtain 21(d,/3,{, '~)-2/(d0,0,{0,'~0)~3.166, which corresponds to the 
7.52%-quantil of the x~-dlstrtbution 

Another possibility to allow for a trend in the model is to assume that the 
Iocatmn parameter p and the strictly posmve scale parameter r depend in 
the same way log-hnearly on the year, meaning that 

P,,,.o(Y) = exp(o~ +/3(y -- 1991 5)), 
r~,~(y) = exp(7 +/3(y - 1991.5)), o~,/3,7,y E ]R (10 7) 
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TABLE 10 I 

R E S U I  IS I'OR T I l E  P E A K S - O V E R - T I I R E S H O L D  M O D E l .  WIFII A LINI2AR L)LPENI)ENCE ,~lr, l(,q) = o -'[- ~ ( q  - -  1 9 9 1  5 )  OF 

TI lE  I .O(A I ION P A R A M E  I I:R OR & L O G - L I N E A R  D E P E N D E N C E  I I0 7) OF I HI. SCALE A N D  I Itl- LOCATION P A R A M E  FERS 

FOI l  BOI H M O D E L S  T H L  t I I't El)  POISSON P A R & M E T E R S  ~I/IL~I A N D  ~taltll  I-OR "1 f iE N U M B L R  OF EVENTS WITII M O R E  

I IIAN lOiN) A N D  6(IO0 C L A I M S  RESPECI IVEI .Y  A R E  I.ISI ED I N &DDII  ION q l IE  C O N D I T I O N A l  PROBABILIq Y 

~t~lO = ~t,.I£~1/ ~10t~  "111A I AN EVLN l ( AUSES M O R E  TI IAN 6018) C L A I M S  A N D  I HI. I 'qTIMA I El)  K N O C K - O U  I 

PRDBABIIATY P(  ~ A R E  G I V E N  I OR FHE YEARS 1087 1999 

Log-hnear dependence of  the ~eale 
Lmear dependence o f  the location pm ameter and location pm ameter~ 

Year ~ IINI41 ~6000 fi~10o ec^r Aim~ A~Hio fit~J~MI ecru 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1998 

1999 

0957 0 I10 0 115 104% 

1049 0113 0107 106% 

I 157 0115 0099 109% 

1 285 0 118 0092 II I% 

1437 0120 0084 113% 

! 623 0 123 0 076 II 6% 

I 851 0 126 0 068 I1 9% 

2 139 0 129 0060 12 I% 

2 508 0 132 0053 124'7o 

2995 0 136 0045 127% 

3663 0 139 0038 130'7o 

4618 0143 0031 133% 

6067 0 147 0024 136% 

0616 0036 0058 35% 

0 756 0 045 0 059 4 4% 

0925 0056 0061 55% 

I 128 0070 0062 68% 

I 369 0 088 0 064 8 4% 

I 655 0 110 0 066 10 4% 

I 990 0 137 0069 128% 

2381 0171 0071 157% 

2831 0213 0075 192% 

3 347 0 265 0 079 23 3% 

3 930 0 328 0 084 28 0% 

4 583 0 406 0 089 33 4% 

5 307 0 501 0 094 39 4% 

Such a model extension is approprmte when the event severity is measured in 
currency umts subject to a yearly inflation rate of  e r~ - i, for example. The 
parameters have to satisfy ~(a- p,,,~(y)) > -r~,~(y) for all years y under 
conslderat~on Defining the corresponding log-likelihood functmn Snnllarly 
to (10.6) by 

1996 17 

I(a,/3,7,~) =c- S V(a;#a.~(y),~,T~,~(y)) + ~ l o g v ( X , ; # o  ~(y),~,7~.~(y,)), 
v= 1987 t= I 

(10.8) 

and maMmlsmg it numerically, we obtain the estimates d ~ 7  199, f l~0.1379,  
,-~ 6 835 and ~ ,~ 0 5972 Since ~exp(6,) ~ 799 1 < 929.8 ~ exp(~), the 

above inequality ~(a-/La,~b(y)) >--~-~,5(Y) is satisfied for all y E II~ The 
results are given m Table 10.1, the discounted value of  the three WINeAT 
coupons IS CHF 204 34. W~th the values estimated above, the Poisson 
parameters Ai000 and A6000 for the frequency of  events with more than 1 000 
or 6000 claims, respechvely, increase with hme This ~s illustrated by the 
sixth and seventh column of  Table 10.1. Note that the two extensions of  the 
peaks-over-threshold model come to opposite conclusmns concerning the 
trend of  the event seventy. The fourth column of  Table 10.1 exhibits a 
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decreasing trend o f  the probabil i ty  p6000, that an event causes at least 
6000 clmms, while the eighth column shows an increasing trend Of/36000 
This partial cancellation or superposltlOn o f  trends leads to a difference of  
CUE 59 66 between the two estimated values o f  the three WINCAT coupons  

To  test the null hypotheses /3 = 0 in the model extension specified 
by (10.7), we assume that this model with / 3 = 0  and the above 
estxmates ~0 ~ 1427 5, ~0 ~ 0.7243 and ÷0 ~ 970.3 is the correct  one (which 
via (10.7) gives ~ = log~0 ~ 7 264 and % = log?0 ~ 6.88 here) and 
determine the value of  the log-likelihood ratio statistic. We get 
2/(&,/3, ~, ~) - 2~(&~), 0,'%, ~0) ~ 4.088, which corresponds  to the 4 320/o - 
quantll  o f  the x~-dlstributlon. 

Various other  extensions o f  the peaks-over- threshold model for 
incorporat ing a trend are possible. We could consider a t ime-dependent  
shape parameter  ~, for example. Fur thermore ,  Instead of  a linear or log- 
linear dependency as in (10.4) or (107),  we could consider a greater 
selection of  possible dependencies as we have done for the Polsson 
parameter  m Sections 7 and 9. I f  the historical data set were bigger, also 
other  suitable selections of  two or even all three parameters  ~, ~, and ~- 
could be made t ime-dependent.  We refrain from justifying, discussing, 
fitting and testing such models here, but we hope that the worked-out  
cases in this section can serve as a gmdehne when the need for one o f  the 
above-ment ioned e x t e n s i o n s  a r i s e s .  

I 1. COMPARISON OF THE ESTIMATED VALUES 

Table 11.1 contains the estimated discounted values of  all three WINCAT 
coupons  for the models considered m the prewous  sections. We have added 
several addit ional models, which arise by combining the Bernoulli or Pareto 
distribution for the event severity with the various models for the event 
frequency. The entries of  the table are grouped according to the used model 
for the event frequency. There  is an addmona l  partial order  according to the 
value o f  the coupons.  

The following remarks should be kept m mind when compar ing  the 
"conse rvauve"  value o f  CHF 229.78 obtained in [3] with the results of  thIs 
paper. 
• No explicit risk premium ~s included m the &scounted  values of  the 

WINCAT coupons  given m Table 11.1. 
• The extrapolated estimated Polsson parameters  are in the region from 

3.78 in Figure 7.1 up to 5.68 m Figure 7.3. In the historical data  set, two 
observat ion periods with four and five events are recorded, hence the 
extrapolated parameters  are not  unreasonable  if one accepts the 
posslblhty o f  a trend. 

• Time homogenei ty  is possible with all the models considered m this paper  
by choosing ezther/3 = 0 or no change-point  It is the historical data  set 
that leads to the positive estimates for /3  or the clear-cut location of  the 
change-point ,  respectively. 
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TABLE II I 

C O M P A R I % O N  OF I II E V A L U E  OF I l iE  FIIRr_E D I ' q C ( ) I I N T E D  W I N C A  F ( O U P O N S  A R I g l N G  F R O M  1111: B I N O M I A L  M O D L L  

I l IE  ( O M P O S I T E  P O I S S O N  M O I ) E L S  I H E  G E N E R A L I S L I )  LX I R E M E  V A L L E  M O D E L  A N D  I l i e  r~.%o E'K I E N S I O N S  OF FFIL 

P E A K S - O V E R  T I I R E M I O L D  M O I ) L L  NO I _ \ P L I C l l  R I S K  P R L M I U M  15, I N C L U D L O  T I l E  V A R I O U S  E b l I M A T E D  C O U P O N  

VAI UES C L E A R L Y  I I . I . U S I R A I E  III1" M O I ) L L  RISK 

No. Coupon value CorPe~pondtng model  

I CHF 244 44 

2 CHF 267 48 

3 CHF 263 29 

4 CHF 247 37 

5 CHF 266 62 

6 CHr 264 O0 

7 CHr 204 34 

8 CHF 253 80 

9 CHF 247 99 

10 CHr 225 28 

11 CHF 223 88 

12 CHF 220 53 

13 CHF 214 44 

14 CHF 214 37 

15 CHF 2 1 0 8 6  

16 CHF 215 19 

17 CHF 211 54 

18 CHF 204 96 

19 CHF 204 93 

20 CHr 201 12 

21 CHr 189 56 

22 CHF 185 I I 

23 CHF 177 36 

24 CHF 177 44 

25 CHF 172 87 

Bmomml model of Sectmn 3 

Constant-parameter Pmsson model of Section 4 and 

- generahsed Pareto dt.~tr~buuon o f  Subject ion 4 3 

- Pareto ~hstrtbutton o f  Sub~e~tton 4 2 

- Bernoulh rh.~trthutton o f  Subsectton 4 1 

Generahsed extreme value d~stnbutmn of Secuon 6 

Peak's-over-threshold model of Section I0 find 

- Imeclr rre~ld o f  the Ioc~mon par~mwter 

- log-linear trend o[ the scale attd Io~atton parameter 

Change-point model of Sectmn 9 and 

generahsed Pareto dtatrtbutton o f  Aubsectton 4 3 

- Pateto  (hstrtbutton o fSubsec t t on  4 2 

- Ber#tou]h dtstrtbtttton oJ Subsectton 4 I 

Generah.'..ed Pmeto distribution (4 29) and 

tmle-dependent Poisson parameter with the 

- hnear trend oJ Subsectton 7 1 

smooth tratt~ttlo#t o f  Suhsecfton 7 5 

- modtfied-lmear trend o f  Sub~ectton 7 4 

- Iog-hnear trend o f  Subsectton 7 2 

- .wuate-root hnear trend o fSubaee t ton  7 3 

Pareto distnbuuon (4 15) and a ume-dependent 

Po~sson parameter wnh the 

- hnear trend o f  5ttbseetton 7 I 

~mooth tran.~mon o f  Subaec lion 7 5 

modtfied-hnear trend o f  Sub.se~ tton 7 4 

- Iog-hnear trend o f  Suhsectmtl 7 2 

- Square-root hnear trend ofSubaect#on 7 3 

Bernoulh distnbutmn and a tmle-dcpendent 

Po~sson parameter w , h  tile 

- hnear trend o[ Subset  tton 7 I 

- vmooth tran.sttton o f  ~ubse~tton 7 5 

- ntodtfied-httear trend oJ Sub~ectum 7 4 

- log-linear trend o f  Subsection 7 2 

- .wuare - roo t  hnear trend o f  Subsectton 7 3 
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A higher event frequency magmfies the differences between the estimate 
~b6000 ~ 0.0857 from (4 24) obtained by the Pareto fit of the adjusted clmm 
numbers, the estimate ~b6000 ~ 0 0757 from (4.32) obtained by the general- 
ised-Pareto fit, and the estimate ,b60o0 = 2 /17 ,~0  118 from the Bernoulh 
distribution of Subsect|on 4.1. As Table I1.1 shows, these differences 
between the empmcal and the fitted distribution functmns m Figures 4 2 and 
4 3 give rise to quite dIfferent values of the WINCAT coupons The specific 
form of a possible trend is of minor mlportance. 

in the hnear-trend model of Subsectmn 7. I, the slope/3 is restrmted by the 
pos|t~vity reqmrement of the PoJsson parameter Similarly, m the smooth- 
transition model of Subsechon 7.5, there is the mlposed upper bound for the 
Pmsson parameter Both restrictions lead to higher estimated coupon values. 

12 M O D E L  ROBUSTNESS AND SENSITIVITY ANALYSIS 

When choosing a model, in particular for low frequency event risks, it ~s of 
interest to know how sensitive the model reacts to changes of the data We 
refrain from mampulatmg the available hlstormal data of Table I 1 for this 
purpose Instead, we employ a scenario techmque by adding fictitious data 
for 1997 to the hlstortcal data set of Table 1 I For a favourable scenario, we 
assume the best possible case, namely that no event with more than I 000 
clmms is recorded m 1997. Such an event h~story happened three tmles 
already during the recorded 10-year history For a stress scenario, we want 
to add a bad event record for 1997 To remain reahstlc, we prefer to pick a 
bad year from the available historical data set While the year 1994 is 
certainly the worst case with respect to the event frequency, it would not lead 
to a knock-out of the coupon and therefore counts as a favourable year for 
the bmomml model of Sectmn 3 Hence we choose the data of the year 1992 
as a common stress scenario for all models hsted m Table 11 1. 

For an easy comparison of the previous results with the coupon values 
arising from these scenarios, we assume that an ~dentmal three-year bond Is 
~ssued in February 1998, that the observahon period for the first coupon ~s 
shorter for applying the 15/17-correction from (2 I), and that the interest- 
rate structure for the coupons ~s again gwen by Table 3 1. Based on the 
extended I l-year data set, we estmlate the discounted value of  the 
corresponding three WINCAT coupons using all models discussed so far 
The model-dependent changes of the value are given m the third and forth 
column of Table 12.1 

The robustness and sensitivity Of the models should not be judged 
excluswely on the numbers m Table 12 1, because the two scenarms do not 
illustrate every possible behawour of the models In the change-point model 
of Section 9, the change-point illustrated by Figure 9.1 remains between 
1989 and ]990 in both scenarios Smlflarly, m the hnear-trend model of 
Subsectmn 7 1, there is no solution of  the hkehhood equatmns (7.3) in rather 
scenario, hence we use the pragmahc approach again and set ee = 0 Three 
trend models, namely the root-hnear model of Subsectmn 7.3, the modified- 
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hnear model of  Subsectmn 7.4, and the smooth- t ransi t ion model of  
Subsectmn 7 5 lead to a shghtly smaller estmaate for the trend parameter  F4 
even in the stress scenario. These are exactly those trend models o f  Section 7 
that predmted a Po~sson parameter  larger than four for tim year 1997 For  
the favourable  scenario, the biggest relative change shows up ~n the smooth-  
t ransmon model of  Subsectmn 7.5; the trend paramete r /3  drops from 0.442 
to 0.114. Due to our  choice of  the stress scenario, the m~posed upper bound 
m the smooth- t rans l tmn model remained at 5 

TABLE 12 1 

A%%LJM E I I | A q  A S I M I L A R  I I O N D  WI I II [ I l l ( E L  W I N (  A I f. O U P O N g  IS I S S U L I )  O N L  ~ I .AR I.A I 1.1( A N D  A S S U M L  I HA I I H L  

I N T E R E S T  R A l l ]  S " I R I J ( - I U R E  I S ' I l I E  b A h | l ]  11 t i l l  RIS IS NO IJVENq IN 1997 {I A V O I H ( ~ I ~ I . I  SCI NARIO}  I I I I  N I I I I  

M O I ) F I . S I . I ~ I I - I ) I N  IAII I_L Ii  I G I V E t l I ( J H I . R  \ A L U L S  FOR I I I L C O R R L S I ' O N I ) I N ( ,  I I I R L L W I N ( A I  ( . ( ) [ I p O N S  IF I I t L I ( L  

A R I .  I O I J R  I _ V I N I S  IN I t ~ ) 7 ( S I R I _ ~ , ~ , . S L L N A R I O ~ W l l t l  A I . ) J U S I I . I ) ( L A I M ~ , A S  IN 1~'~2 SEI.: TAIfl_I .  I I  I I I L N  II l l_  M O I ) E I . S  

I_EAI) q O I_f)\~ LR V A L U E S  T I l E  V A I . U I . (  H A N G L S  S H O W  FI IE R O B I J b l  \ E S $  bI.NS, Iq IVI-I Y OI 711E M O I ) E I . S  W I I I I  R L S P I _ ( 7  

I O  N E W  I ) A I A  " l ' l lE  I .AST l -OUR C O L U M N S  ( ' f l A R A C T E R I S I "  T I l E  I ) l S I  R I B U q  IONS OI  "lille ( O U P O N  VAI UES  BASED 

ON 10~10 S I M U L A T E D  I)A IA  %1:1'~ I ( )R  I VI 'R~ I I'1 FLI )  M O D L I -  SI ' I  S l  ( I ION I~ 

h¢odel Coapon Valae ~hange tn Coupon value di~trtbutton (m CttI)  art~mg 
No. value ~cenarto with fi'om ~msulated model data 

15.9%- 
I n  CItF nO event 4 event~ Mean Medtan Medtan 

quanttl 

l 244 44 5 33 -21 35 244 74 244 44 37 45 215 07 

2 267 48 3 04 - 8  90 272 26 274 20 22 51 249 68 
3 263 29 3 36 - 7  83 258 46 260 43 22 95 234 81 

4 247 37 4 81 - 17  21 249 41 247 37 33 69 223 60 

5 266 62 3 20 - i 2  51 271 18 273 96 23 83 246 69 

6 264 00 4 78 - 9  98 266 55 268 70 26 52 241 89 

7 204 34 43 24 -21 19 199 05 206 37 70 18 121 53 

8 253 80 5 66 - 9  R8 259 95 262 69 31 04 226 60 
9 247 99 6 27 - 8  29 240 95 243 39 3] 32 208 54 

10 225 28 9 09 -19  07 230 90 225 28 46 00 194 34 

II 223 88 7 36 - 1 6  21 235 17 236 03 47 37 185 22 
12 220 53 28 89 - 1 0  14 232 08 231 12 43 26 185 78 

13 214 44 24 41 - 1 6  51 225 32 230 68 54 55 165 14 

14 214 37 32 83 - 2 4  93 223 21 233 39 62 27 154 02 

15 210 86 28 59 - 1 8  60 223 55 227 69 56 13 159 I1 

16 215 19 8 02 - 1 3  76 208 39 210 39 41 98 162 12 

17 211 54 31 61 - 7  26 207 96 209 10 39 16 166 62 
18 204 96 26 56 -13  71 195 08 198 98 49 90 140 85 
I~ 204 93 35 79 - 2 2  48 196 7~ 205 29 59 55 132 81 

20 201 12 31 07 - 1 5  76 189 15 193 58 51 33 134 90 

21 189 56 9 74 -27  72 196 58 189 56 60 75 150 18 
22 185 II 38 98 - 1 9  84 195 82 195 63 55 54 136 24 
23 177 36 32 19 - 2 7  85 185 41 182 04 65 20 115 16 

24 177 44 43 60 -38  05 187 14 189 51 73 88 106 55 
25 172 87 37 51 - 3 0  28 183 51 182 14 70 87 108 60 
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The trend models o f  Sectmn 7 combined with the generahsed Pareto 
d l s tnbuuon  of  Subsectmn 4.3 have four parameters ,  similarly as the two 
extensmns o f  the peaks-over- threshold model of  Secuon 10 However ,  as 
Table  12.1 for models no. 6 and 7 shows, an extension of  the peaks-over- 
threshold model may be more robust,  because the increasing trend m the 
event f iequency is partmlly compensated by the decreasing trend m the event 
severity (see the left part  of  Table  10.1 for model no. 6), or the extension call 
be more sensmve if both trends go m the same d~rectmn (see the right part  of  
Table  10 I for lnodel no. 7). 

13. M O D E L  CONSISTENCY AND DISPERSION ANALYSIS 

For  every fitted model hsted in Table  I l .l  - under  the assumptmn that the 
model describes reahty correct ly - we generate l 000 new random data sets 
according to the dls t r lbutmn specified by the fitted model. These data sets 
replace the actual observat ions recorded m Table  l .I ,  and we use the model 
to estmlate the dtscounted coupon  values based on the random data set Th~s 
gives a hst o f  I 000 (not necessardy different) values for the coupons,  for 
some selected models the corresponding histograms are shown m Figures 
13.1 and 13.2 Using these simulated d ls tnbutmns,  we can calculate the mean 
value of  the estmaated coupon values, the medmn, and the s tandard 
dewat lon,  these results are hsted r a T a b l e  12.1. For  models no 1,4, 10, and 
21, the exact d ls tnbut ton  could have been used For  some model varmnts,  
the results are m Table  13 l For  compar ison with conservahve cstnnates 
calculated in prevmus sechons, we also give the 15 9% -quantiles of  these 
smlulated distributions This 15.9% -quantll  corresponds  to one standard 
devmtmn in the case of  a normal d ls tnbutmn.  If  the s tandard deviatmn or 
the desired quantll  cannot  be derived by analytmal means, these smaulated 
values Call gwe an lndmatmn for a conservatwe estmlate within the used 
model, see the end of  the introduct ion for a further dlscusston o f  this topm 

TABLE 13 I 

M L A N  M E D I A N  , b l A ~ ' , , I . ) A R I ) I ) L V I A I I O N  A N D  I ~ i g * I - Q U A N I I L I N  C H I  OI  IHL%I ,MI .  L A I I _ I . ) I ) I S I I , H B L ,  I I O \  IOl,~ 

\ A R I A N  I S OF  I H E  M O D L L S  g I0 [VARIAIt I_I  LO(  A I ION Of  "1 ]1L ( HA,NGE POI N I O1 ~ I I t  L POISSON PA RAM k I ER)  A N I )  I~OR 

T H E  ~¢ARIANTS OF M O D E L S  12 17 A N D  22 q \ A R I A B I  IF U P P E R  B O U N D  I OR FHI" S M O O T H  T R A N S I T I O N  OI T H E  POISSON 

P A R A M L I L R )  C O M I ' A R L  F i lL  R E S U L I S  W I I H  IHIz  ¢ . O R R L S P O N D I N ( ]  E N I R I L ~  IN T A B L L  12 ] 

ll4odel Coupon value Value~ front 1000 ~imulated data ~et~ 
variant no. m CLIFF Mean Me&an St. def. 15.9%-quantil 

8' 253 80 256 91 259 99 34 00 223 36 
9' 247 99 238 05 240 69 31 67 206 93 

10' 225 28 229 77 225 28 47 84 179 22 

12' 220 53 226 20 229 06 49 56 175 94 
17' 211 54 196 89 199 26 45 22 147 65 
22' 185 II 185 85 186 34 58 50 126 56 
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IZlGURL 13 I Dismbutmn of the esmnated coupon values fm model~ no I, 4 21. and 23 of Table I I I 
resuhmg from I 000 smmlaled data set', The mean, medum, standard devmlmn and 15 9%-quanlfl  are gwen 
m Table 12 I Note the different ~cale% the (hscreteness ol the two upper and the lower left dlstnbulmn the 
d~ffcrent sx/eq of  the gaps. and the pms~slence of  the peak at tim lughest possible coupon valuc represenung 

the numbm of  Mlnu]alcd data .~et.~ vdthout a knot.k-out e'~enl 

We want to explain the model variants first. For the models no. 8-10, 
the change-point of the Pmsson parameter was kept between 1989 and 
1990. Therefore, these models correspond to the constant-parameter 
Pmsson models no. 2-4 with a shorter h~storical data set of seven years 
Table 13.1 contains the smmlauon results for the model variants 8'-10', 
where the change-point IS taken to be the earhest year such that the 
hkehhood function (9.1) corresponding to the simulated data set is 
maxmllsed. Since A0(y) = 0 for y E {1987, 1988, 1989}, the change-point 
y~ can only move to later years; it has done so for 133 of the 1000 
sm~ulated data sets. 

To obtain the smmlanon results for the models w~th a smooth  t ransmon 
of the Polsson parameter (models no. 12, 17, and 22), the mlposed upper 
bound for the Pmsson parameter was kept at 5 However, m Subsecuon 7 5, 
we took the largest observation as the upper bound. Doing the same for the 
s~mulated data sets leads to the model variants 12', 1T, and 2T. 
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FIGURE 13 2 Dl~tnbtmon of the cstundted coupon values for models no 3, 18, 2, and 13 of Table I I I 
le~ultmg from I 000 smmlated data set~ Note the different scales and the peak at the highest possible coupon 
~,dltle for the two models u M n g  d gencldhsed Parelo dlst l lbutlon The mean, medmn, standard dcvldtlOn and 

15 9%-qu,mld of these d ,s tnbunons are gwen m Table 12 I 

Using the same model for generating the data and for fitting this smmlated 
data creates a bins towards the model, hence the model should exhibit a good 
performance.  Let us comment  on some pecuharmes of  the models. 

The binomial model no. I can lead to at most 11 different esumated 
values for the WINCAT coupons;  seven of  them are shown m the upper left 
histogram of  Figure 13 1 Since we used b = 0 2 fl'om (3 1), the other  four 

I0 IO-k values have a probabdl ty  of  ~ k - 7  (la°)bk(l - P) ~ 0 000864 together and 
did not show tip m the smmlat~on. 

For  the cons tan t -parameter  Po~sson model w~th a Bernoulh d~smbtmon 
for the event seventy (model no. 4), we generate the number  N6000,m of  
knock-out  events during the ten years using a Polsson distribution with 
parameter  2, see Subsecuon 4 1 The smaulated knock-out  probabil i ty Pc^~ 
Is calculated from N6000 l0 using the unbmsed eshmator  (4 12), the resulting 
discrete d l s tnbu tmn is the upper  right histogram m Figure 1 3 I. Snmlarly for 
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model no. 10 we generate N6000 7 from a Polsson distribution with parameter  
2 and use (4.12) with n = 7. The resulting histogram has bigger gaps than the 
u p p e r n g h t o n e m  Figure 13 I When the change-pomt  can move (model no. 
10'), then small bars appear  between the large ones of  the histogram, 
representing about  13% of  the simulated data sets with a later change-point .  

The  model with a hnear trend A:~O;)= ~5'(y-1987)  of  the Polsson 
parameter  and a Bernoulh distr ibution for the event severity (model no 21) 
also results m a d~screte distribution,  see the lower left h~stogram m Figure 
13 1 Notice the large gap between the two highest values, it is about  twice 
as large as the gaps m the bmomml model With fi from (74) ,  the number  

1996 NI000.10 = ~1988Nt, of  events from 1987 until 1996 in the hnear- trend model 
has a Poisson d l s tnb tmon  with parameter  17. Remember  that m this model 
there can be 11o events during 1987. With P6000 = 2/17 from (4.5), the 
number  N6000,10 knock-out  events in the 10-year period has again a Polsson 
d l s tnbu tmn with parameter  2 Corresponding  to (7 5), the knock-out  
probabil i ty is calculated from N6000,10 by 

PCA. (.V) = 1 -- exp(-N6000 10(3'- 1987)/45) 

for ),C {1997, 1998, 1999}. If desired, an unbiased est imator  for Pc^r(Y) 
could be used, see the discussion m Subsecuon 4.1 

For  the discrete d l smb tmons  o f  rnodels no. 1, 4, 10, 10', and 21, the 
medmn of  the mmulated distribution coincides with the estmlated value of  
the coupons;  the other  possible case of  a substantml dewat lon did not occur 
in our  smmlat~on runs. 

The other  models with a tune-dependent  Polsson parameter  and a 
Bernoulh dis tr ibtmon for the event severity (models no 22-25 and 22') give a 
histogram smldar to the lower right one m Figure 13 1 The peak in the 
histogram at the h@lest  possible value of  the WINCAT coupons  reflects the 
fact that. depending on the estmaated event frequency, about  10% of  the 
snnulated data  sets do not contain a knock-out  event Table  12 1 shows that 
the mean of  these snnulated dls tr lbtmons is about  CHF 10 above the 
esmnated values of  the WINCAT coupoIaS This mdmates a bias towards 
higher coupon values. Mowng  the nnposed upper bound of  the smooth-  
transition model according to the data seems to compensate  this effect, see 
the results for model no. 22' m Table 13.1 

All models using a Pareto d~strlbutmn for the event seventy (models no. 
3, 9, 9', 17', and 16-20) lead to a histogram sumlar to the two upper ones 
m Figure 13.2. Depending on the estmlated event frequency for the years 
1997-1999 in the used models, the simulated distribution is more or less 
concentrated.  Since the Pareto distr ibution for the event seventy reflects the 
model assumption of  a heavy-tailed &stnbut~on, none of  the histograms 
contains a peak at the highest possible value As Tables 12 1 and 13 I show, 
the mean of  the s~mulated distributions for these models ~s always below the 
esumated value of  the coupons  With the exceptmn of  model no 19, the 
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same observat ion applies to the medmn. Th~s indicates a bins towards lower, 
hence more conservative coupon  values 

The cons tan t -parameter  composi te  Po~sson model with a Pareto  
dxstnbutmn for the event seventy (model no. 3) that was used m [3], 
exhibits one of  the smallest s tandard dewanons  in thls s lmulatmn study, only 
the s tandard dewat lon of  model no 2 ~s shghtly smaller, but  the difference is 
within the v a n a n o n  arising from repeated slmulatmn runs Note that model 
no. 5, whmh uses a generahsed extreme value d ls tnb tmon,  exhibits a 
s tandard de wa non  of  smlflar small size as models no. 2 and 3. The histogram 
for model no. 5 looks similar to the lower left one in F~gure 13.2 

The models no. 12. 17, and 22 use a smooth t ransmon of  the Polsson 
parameter  with a fixed upper  bound at 5 This clearly restricts the possible 
extrapolated values o f  the coupons  and leads to the smallest s tandard 
devmtmn of  the smmlated d ls tnbutmns  within the corresponding model 
groups I 1-15, 16-20, and 21-25. If the upper bound is allowed to move to 
the highest simulated event frequency (models no. 12', 17', and 22' m Table  
13.1), then the sunulated mean coupon  values and the 15 9%-quantf les  drop  
considerably and the s tandard devlatmns increase. 

When es tnnatmg the shape parameter  ~ and the scale parameter  r of  
the generahsed Pareto d ls tnbut lon  (4 29) for the models no 2, 8 .8 ' ,  12', and 
11-15, then m about  10% of  all simulated data  sets there is no pmr ({,'r) of  
strictly posttn,e numbers  maxlmlsing the log-hkelihood function An 
examlnauon  of  the corresponding data sets reveals that this tends to happen 
when the simulated data  set is smaller than the average one and does not  
contain events w~th a large number  of  clmrns. For  th~s reason we consider 
the full Pamfly o f  (shifted) generahsed Pareto dlstr lbunons,  whmh are 
defined, for all locanon parameters  a E IR and scale parameters  "1- > 0, by 
(4 29) m the case ~ > 0, by the shifted exponentml distribution 

{ I  - exp( - (x  - . )h-) ,  
G. o:(-v) = 0, 

m the case { = 0, and by 

1 - ( 1  + - 

G,e:(x) = O, 

I, 

i f  X ~ CI, 
(13.1) 

i f x < a ,  

i r  x e [ a ,  a - 

I f  X < £/: 

l r  x _> a - rl , 

(13.2) 

m the case { < 0. The shifted exponennal  d l s tnbuuon  G,,o¢ is the pomtwlse 
lumt of  G,,,~:- as ~ ---+ 0. Note  that the dJstr ibuhons G,,,e,T with { < 0 have a 
bounded support .  For  ( < - 1 ,  the densmes of  G.,e,~ are unbounded  at the 
left-hand side o f  a -  r/{.  Hence, maxnnum-hke l ihood  esumators  (~, 4) are 
not well-defined within the full family consisting of  (4.29), (I 3.1), and (13 2), 
because the hkehhood function Is unbounded  for every sequence 
{('r,,~,,)},,~N m ( 0 , ~ ) x  ( - o o , - 1 )  such that a - r , / ~ ,  approaches  the 
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largest observation from the right-hand side as n--~ oo. Therefore, 
naax~muna-hkehhood estHnators ~ are only meaningful within the range 
r > 0 and ~ >_ -1 However, m about 2% of all simulated data sets, there is 
no maximum of the Iog-hkehhood function m the range r > 0 and ~ > -1 
An example is the set of clama numbers 1021, 1256, 1420, 1450, 1493, 1839, 
2251, 2326, 3109, 3167, 3403, 4857, 4865, and 4877, which showed up m 
one of the sm]ulatmn runs. A similar problem for obtaining lnaxmaum- 
hkehhood estmaates for small sample sizes m a sHnulatlon study is reported 
m [8, SecUon 4]. 

A possible soluUon well adopted to the present case ~s to maxma~se a 
grouped-data hkehhood functmn, tins method is investigated m [7]. For this 
method we have to remind ourselves that the spacing of adjusted clmm 
nunabers m the last column of Table 1 1 is gwen by the corresponding 
vehmles insured index of that table, for simphclty we set this spacing to one 
m the following conszderatmns. Every smmlated value fl'om the generahsed 
Pareto distribution with parameters given by (431) then represents an 
interval of length one If X~, .., X,, represent the s~rnulated values, then we 
use the grouped-data Iog-hkehhood functmn 

II  

/ (<,r)  = ~ log(G,,,<,.(l_XkJ + I) - G. ,e , r (k~kj)) ,  
/,=1 

(13 3) 

where ( E  IR and "r > 0 have to sausfy max{Xi, , X,,} < a -  r / (  ,n the 
case ~ < 0 Tins Iog-hkehhood function avmds the singularity of the density 
of G,,,~,~ for ~ < -1 All smaulatlon results of this sectmn for the models 
using a generahsed Pareto dlstNbut~on rely on the grouped-data log- 
hkehhood function (I 3 3) 

We conclude from these observatmns, that in about 10% of all smmlated 
data sets the models using a generahsed Pareto distribution do not reproduce 
the original heavy-tailed behawour because there is no such ewdence m the 
smmlated data sets. The data sets with a negatwe maxmlum-hkehhood 
esmnate for the shape parameter ~ are mainly Lesponslble for the high peaks 
in the lower two histograms of Figure 13.2. I f (  < 0, then the support of the 
distribution is bounded above. If tlus bound is below 6000. then the 
probability of events with more than 6000 clamas is zero, making a knock- 
out of the coupons mlposslble and thereby leading to the highest possible 
value for the coupons. As Tables 12 1 and 13.1 show, the mean and the 
medmn of the simulated dlstrlbtmons are well above the coupon value for all 
the models using a generahsed Pareto thstr~btmon. This mdmates a bias o1" 
these models towards Ingher coupon values 

When we use the grouped-data Iog-hkehhood function (13.3)instead of 
(4.30) for the original data set of Table I I, then the maxmlum-hkehhood 

t Remembm that the data ¢,els :ue generated flora a genmahscd Pareto d~strlbtmon with paramelezs 
given by (4 31) According to [16, Section 7], tile ck~ssmal asymptottc theoly of nulxtmtnn-hkehhood 
esumators  is apphcable, because ~ from (4 31) saushes ( > - 1 / 2  
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estimates are ~ ~ 0 7229 and ~ ~ 662.1 instead of ~ ~ 0 7243 and ? ~ 660 7 
from (4 31). This leads to/56ooo ~ 0 07573 instead o f  P6000 ~ 0.07575 from 
(4.32) The change in the coupon value stays below CHF 0 02 Therefore, our 
use of dlfl'erer~t likelihood functions does not explain the observed bias. 

To perform the slrnulation study also for the two extensions of the peaks- 
over-threshold model from Secuon 10, we extended the definition of the 
Poisson point-process intensity (10.1) to the cases ~ = 0 and 6, < 0 as we have 
done for the geilerahsed Pareto distribution (4.29) by addnlg (13 1) and 
(13 2). We rnodified the log-likelihood fullCtlons (10 6) and (10.8) by using 
grouped-data Iog-hkehhood functions similar to (13.3). We lefiam frorn 
spelling out all the details here. Note that in the case ,~ < 0 and the 
extensions specified by (10 4) and (10 7), the range of  the possible nurnber of 
claims depends on the year. The histograms for these extensions look like the 
lower left and the lower right ones in F~gure 13 2, respectively The sarne log- 
hilear trend in the scale and location pararneters leads to a more spread-out 
distl'~but~on of the simulated coupon values. 
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