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A B S T R A C T  

Largest claims reinsurance covers are reconsidered. Allowing the original 
claims sizes to be not necessarily independent, a new, upper premium bound 
is derived and explored. 

I. INTRODUCTION 

Reinsurance mathematics is one of the classical fields of mathematical risk 
theory (see e.g. B0hlmann (1970)). First important contributions go back to 
the thirties (see e.g. Thesen (1937)), newest ones to the last few years (see e.g. 
Kremer (1998)). 

Certain classical reinsurance treaties became of new interest to several 
researchers. E.g. the famous stoploss treaty was reinvestigated for many 
times (see e.g. De Vylder & Goovaerts (1983), Kremer (1990 c)) and a 
comprehensive new theory was developed for reinsurance treaties of the 
largest claims type (see e.g. Kremer (1984), (1985), (1986), (1988), (1990 a), 
(1990 b), (1992), (1994 a)). 

Most results are based fundamentally on the assumption of independence 
of the individual claims sizes. Only little is known under allowing the claims 
sizes to be dependent. 

A paper by Heilmann (1986) treats with the stoploss cover under 
relaxation of the independence assumption. Some results in Kremer (1988) 
hold also in case of  dependence of  the claims sizes for (generalized) largest 
claims covers. 

But those results are too crude to give sufficiently strict guidelines for 
practical work. Consequently one would like to know more about the 
premium of (generalized) largest claims reinsurance covers under conditions 
allowing the individual claims sizes to be dependent. 
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In the following note that point is taken up. Certain handy, more strict upper 
bounds are given for the premiums of (generalized) largest claims covers 
under conditions of possible dependence of the individual claims sizes. 

2. T H E  TREATY 

Let the random variables Xt, 2"2, ... on (f~, A, P) denote the claims of a 
collective of  risks and let N on (f~, A, P) describe the number of claims. We 
order the claims in decreasing size resulting in the ordered claims: 

XN:I ~_ XN:2 ~_ ... > X'N: N. 

For given constants ca, c2, ... such that: 

ci " Yi E O, Yi 
i=l 

holds true for all: 

Yl >__ Y2 > _ ... > y,, >_ O, 

define the claims amount taken by the reinsurer according: 

N 

SN = Z el" ZN:i. (2.1) 
i=l 

Consequently the family (Ci, i >_ 1) defines a reinsurance treaty, which shall 
be called generalized largest claims reinsurance cover ( G L C R ) .  

The name is obvious from the fact that (2.1) reduces for the special 
choice: 

cl = c2 . . . . .  Cp = 1 (2.2) 
cj = 0, for all j > p 

to the claims amount of  the (classical) largest claims reinsurance cover, like 
defined e.g. by Ammeter (1964). The (net)  premium: 

#(ci, i > 1) := E(SN)  

is subject of many mathematical investigations (see e.g. Kremer (1984)). In 
all papers one assumes that: 

(A.I) the claims sizes are identically distributed with the same distribution 
function F on [o, oo), 

(A.2) the claims number N is independent of the claims sizes 
( X , , i =  1, 2, ...). 

and in nearly all papers it is basic that: 

(A.3) the claims sizes Xi, X2, )(3, ... are independent. 
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For continuous F one knows under (A. 1) - (A.3) that (see Kremer (1985)): 

1 (c,)/ I~(ci, i>__ l ) :  Z -~-1)! F - i ( t ) . ( 1 - t ) i - l M ( i ) ( t ) d t ,  (2.3) 
i=Ioo 

0 

where: 

F- i (u)  = inf{x : r(x)  > u} 

is the pseudo-inverse of F and M (g) is the i-th derivative of  the probability 
generating function: 

o~ 

M(s) = Z P(N = n) . d' 

of the distribution of  N. Clearly in case that (A.3) is not necessarily given, 
the formula (2.3) is not expected to hold true. What can one say then? 

3. T H E  P R E M I U M  B O U N D  

For the sequel assume (A. 1) and (A.2) but not necessarily (A.3). Denote the 
mean claims size with: 

assumed to exist and with: 

(20 

Iz = i x F(dx), 

oo 

P 

the (net) premium rate of an excess-of-loss cover with priority P >_ 0. 
Remember that the net premium of  this reinsurance cover is just: 

oo 

E(N) . f (x- e)F(ax) 
P 

under the given conditions. One has the 

Theorem: 
Let F be continuous and suppose that: 

ci>O, for a l l i >  1 
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Then the (net) premium JZ(Ci, i > 1) is bounded by: 

+ cm " P ( N  = n) • P,,,, 

where the priorities are defined as: 

Pro,, = F - i ( l  - (re~n)). 

# + 

(3.1) 

[] 

Proof: 
According to Corollary 3(b) in Rychlik (1994) (with theref (x)  -- x) one has 
given N = n" 

"(~.:ml : . (~ : . . ,~ : . )_<  (-~) . / x~(.xl. (,.,~ 
Pmn 

Obviously: 

(x~ 

S x.<,.~ :,i..,,,l..+ c)..,... 
Pmn 

Furthermore one has: 

#(c i ,  i >_ I) = E ( E ( R N [ N ) )  = 
Oo 

= Z P ( N  = n) • 
t l =  l 

O0 

= ~ Cm • 

m=[  

(3.3) 

I1 

Zc,,,.EIX.:.,) 
,,=l (3.4) 

Z P ( N : n ) ' E ( X , , : m ) .  
?1=?~1 

Inserting (3.2), (3.3) into (3.4) gives at once the upper bound of the Theorem. 
[] 

Remark 1 
The upper premium bound is defined with help of the premiums of countable 
many excess-of-loss covers, what shows again the intimate connections 
between largest claims and excess-of-loss reinsurance that were already 
discovered by Benktander (1978). [] 
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One can expect to get simpler expressions for the upper bound of  the 
theorem in case of additional, handy model assumptions. In many practical 
situations it will be adequate to assume that F is of the Pareto type, i.e. that 

F(x) = 1 - (x/a) -~, for x >_ a, (3.5) 

where a is a non-negative threshold and a > 1 the (unknown) parameter. 
One has the following: 

Corollary 
The upper bound of the theorem reduces under (3.5) to 

[ ~ ( c,,, "~ a 
a • ~ • E ( g l / a )  • ( ~ " i ' - - l ) - R  

m=l  t, mil<~J 
where the remainder term R is given according: 

[~'~( / #'n-lcm nl/~ } ( I  OL 
" Z P(N = n). R = a .  ~ " -S-2S-1 

(3.6) 

Proof 
One has simply: 

implying: 

Furthermore: 

and 

F- l ( t )  = a .  (1 - t) -l/a,  

P,,,, = a. (m/n) -1/~. (3.7) 

O~ 
. = a  

p(P) = (P/a) t - ° l s .  (3.8) 

Inserting (3.7), (3.8) into (3.1) implies after few routine calculations (3.6). 
[] 

Remark 2 
Usually one will have a natural p such that: 

~., = o, vj  > p. (3.9)  
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In  case that P(N < p) is sufficiently small (i.e. p is sufficiently small and 
E(N)  sufficiently large) one has that the remainder term R is nearly zero and 
one can put: 

R ~ 0 .  

Remark 3 

(3.1o) 

[] 

With the help of a Taylor-expansion of the function g(x) = xUO one comes 
to the approximation: 

o e - I  fVar(N)'~ 
E ( N ' / ° ) ~ ( E ( N ) )  '/° . ( 1 - ( ~ ) ( ~ ) .  \ E - - - ~ J )  (3.11) 

Anyway, one gets with Jensen's inequality that: 

E(N '/°) <_ (E(N)) '/~ (3.12) 

Obviously (3.6) becomes quite handy in case of (3.10) and by using (3.11) or 
(3.12). [] 

4. NUMERICAL EXAMPLE 

Consider the special case (2.2), which is of type (3.9), and suppose that N is 
Poisson-distributed, i.e.: 

P(N = n ) =  \n!J " exp(-A), n = O, 1, 2, 3, ..., 

where A = E(N)  is the distribution parameter. One knows that (for not 
small A) the premium rate of the treaty, i.e.: 

pp = \ E - ~ 7 ~ j  , 

can be calculated in case of Pareto-distributed claims sizes (see (3.5)) nearly 
exact with the formula (see Ammeter (1964)): 

i r e +  1 - ~ p  1/°0] ~l/~-I, (4.1) 

where P(y) is defined as: 
o o  

r(y) = f ,¢'-~ • exp(-s)ds,  

0 
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when in addition to (A.I), (A.2) also (A.3) is assumed. When (A.3) is 
dropped, then one can take the bound (3.6) with (3.10), (3.12) (for smaller p 
and larger A) and (3.12), giving the premium rate bound: 

AI/~-I (4.2) 

which is even more handy than (4.1). When one takes a closer look into 
Kremer (1988), one can find out that the theorem 1 there holds true also in 
case that (A.3) is not necessarily given. This means that the there given 
premium rate bound: 

= + 
[ a .  ( a - 2 )  J (4.3) 

can be taken also in case one does not necessarily have independence of the 
claim sizes. 

The question arises which one is the sharper bound, (4.2) or (4.3). 
Furthermore one would like to know how much maximally the premium 
rate can raise when one neglects the assumption (A.3). In the typical 
situations where one applies the (classical) largest claims cover one has 
c~ E [2.0, 3.0] and p < 10. 

Numerical values for ,b , ~ and ,hp are given for those practical situations in P p 
the following tables, where A = 1000 is chosen. 

TABLE I 

a = 2.01 

p = I 2.76% 3.1 1% 22.39% 

2 4.14 5.31 31.71 

3 5.18 7.11 38.88 

4 6.05 8.67 44.92 

5 6.81 10.06 50.25 

6 7.49 11.34 55.07 

7 8.12 12.52 59.51 

8 8.70 13.62 64.64 

9 9.25 14.67 67:50 

10 9.76 15.66 71.18 
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TABLE 2 

o = 2.50 

p =  I 1.42% 1.58% 2.90% 

2 2.27 2.79 4.20 

3 2.95 3.81 5.19 

4 3.54 4.72 6.05 

5 4.07 5.55 6.81 

6 4.55 6.32 7.51 

7 5.01 7.05 8.16 

8 5.44 7.74 8.77 

9 5.85 8.40 9.35 

10 6.24 9.03 9.90 

TABLE 3 

a = 3.00 

p =  I 0.90% 1.00% 1.92% 

2 1.50 1.79 2.78 

3 2.01 2.49 3.46 

4 2.45 3.12 4.04 

5 2.86 3.70 4.57 

6 3.24 4.25 5.06 

7 3.60 4.77 5.51 

8 3,95 5.27 5.94 

9 4.27 5.76 6.35 

10 4.59 6.22 6.74 

Obviously the bounds (4.3) are of  no great help for smaller values of  c~. They 
are hit out for the relevant values of  a by the bounds (4.2), which seem to be 
quite strict. One can compute the rations (~p/,bp) = rp for seeing how much 
the premium rates can maximally increase when deleting the assumption 
(A.3). One gets as results: 

TABLE4 

=2.01 

p =  I 2 3 4 5 6 7 8 9 10 

r: 1.13 1.29 1.37 1.44 1.48 1.52 1.54 1.57 1.59 1.61 
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T A B L E  5 

a = 2,50 

p = !  2 3 4 5 6 7 8 9 10 

r. I. 11 1.23 1.29 1.33 1.36 1.39 1.41 1.42 1.43 1.45 

TABLE 6 

a = 3.00 

p= l 2 3 4 5 6 7 8 9 !0 

rp l . l l  1.19 1.24 1.27 1.29 [.31 1.32 1.33 1.34 1.35 

The range of r e is approximately the interval [I.1, 1.6], the mean value is 
about 1.35. These results might be very helpful for practical rating 
situations, where one does n o t  know anything about the dependence of 
the original claims sizes, and one is not willing to assume (A.3). 

5. ECOMOR 

In the theorem of section 3 it is assumed basically that the coefficients ci are 
all non-negative. Unfortunately there exists a special GLCR, that has a 
negative coefficient ci. This is the so-called E C O M O R - c o v e r  that is defined 
by the choice 

cl =c2  . . . . .  Cp-i = 1, c p =  1 - p  

c) = 0, for all j > p. 

Obviously the net premium of the ECOMOR cover is just the net premium 
of the (classical) largest claims cover (GLCR with (2.2)) minus: 

p .  E(XN:p) 

Consequently one needs in addition to (3.1) (or (3.6)) only a lower bound on: 

~p = g(.,~N:p) 
oo 

= P(N = n).  E(xn:A 
n = p  

A lower bound on E(Xn:p) can be given again with Rychlik (1994), Corollary 
3(a) (with there f ( x )  -: x). With the priorities: 

a,,,n = F - I ( I  - (m - 1)/n) 
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One finally gets (like in the proof of the theorem): 

#p > P ( N  = n)  • n ( l -p(Qmn))  • tz + 
- n - p + l  

+ P ( N = n )  • 1 -  n - p + f  • Q,m 

Even under (3.5) this lower bound does not simplify considerably and 
remains comparably unhandy. Certain cruder simplifications turned out to 
be too crude for getting suitably strict handy bounds on the net premium of 
the ECOMOR. Concerning the ECOMOR the author restricts on the given 
remarks. As far as the author knows, the ECOMOR is not in current 
practical use, though it is an attractive alternative to the classical excess-of- 
loss treaty (see Kremer (1994 b)). 

REFERENCES 

AMMETER, H. (1964): The rating of 'largest claim' reinsurance covers. Quarterly letter from the 
algemeene reinsurance companies, Jubilee number 2, 79-109. 

BEtqK'rANDER, G. (1978): Largest claims reinsurance (LCR). A quick method to calculate LCR- 
risk rates from excess-of-loss risk rates. ASTIN Bulletin, 54-58. 

BI~IHLMANN, H. (1970): Mathematical methods in risk theory. Springer Verlag, Berlin & 
Heidelberg, chapter 5. 

HEILMANN, W.R. (1986): On the impact of the independence of risks on stop loss premiums. 
Insurance: Mathematics and Economics, 197-199. 

DE VYLDER, F. and GOOVAERTS, M. (1983): Best bounds on the stoploss in case of known 
range, expectations, variance and mode of the risk. Insurance: Mathematics and Economics, 
241-249. 

KREMER, E. (1984): An asymptotic formula for the net premium of some reinsurance treaties. 
Scandinavian Actuarial Journal, 11-22. 

KREM ER, E. (1985): Finite formulae for the premium of the general reinsurance treaty based on 
ordered claims. Insurance: Mathematics and Economics, 233-238. 

KREMER, E. (1986): Recursive calculation of the net premium for largest claims reinsurance 
covers. ASTIN Bulletin, 101-108. 

KREMER, E. (1988): A general bound for the net premium of the largest claims reinsurance 
covers. ASTIN Bulletin, 69-78. 

KREMER, E. (1990 a): On a generalized total claims amount. BIdtter der deutschen Gesellschaft 
fiir Versicherungsmathematik, 183-189. 

KREMER, E. (1990 b): The asymptotic efficiency of largest claims reinsurance treaties. ASTIN 
Bulletin, 12-22. 

KREMER, E. (1990 c): An elementary upper bound on the loading of the stop loss cover. 
Scandinavian Actuarial Journal, 105-108. 

KREMER, E. (1992): The total claims amount of largest claims reinsurance treaties revisited. 
BIgitter der deutschen Gesellschaft f~ir Versicherungsmathematik, 431-440. 

KREMER, E. (1994 a): Recursive largest claims reinsurance rating, revisited. BIdtter der 
deutsehen Gesellschaft ffir Versicherungsmathematik, 457-469. 

KREMER, E. (1994 b): The asymptotic efficiency of the ECOMOR cover. Proceedings of the 
DGOR/NSOR meeting at Amsterdam in August 1993. 

KREMER, E. (1998): Largest claims reinsurance premiums for the Weibull model. Bla'tter tier 
deutschen Gesellschaft fffr Versicherungsmathematik, 279-284. 



LARGEST CLAIMS REINSURANCE PREMIUMS UNDER POSSIBLE CLAIMS DEPENDENCE 267 

RYCHLIK, T. (1994): Distributions and expectations of order statistics for possibly dependent 
random variables. Journal of  muhivariate analysis, 31-42. 

THESEN, G. (1937): Le calcul de la prime en r6assurance d'exc+dent de sinistres. Scandinavian 
Actuarial Journal, 272-279. 

E. Kremer 
Institut ffir Mathematische Stochastik 
Universit{it Hamburg 
Bundesstrafle 55 
20146 Hamburg 
F.R.G. 




