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ABSTRACT 

In this paper we compare, from the point of  view of reinsurance, the several 
risk adjusted premium calculation principles considered in Wang (1996b). 
We conclude that, with the exception of the proportional hazard (PH) 
premium calculation principle, all the others behave in a way similar to the 
expected value principle. We prove that the stop loss reinsurance premium 
when calculated using the PH premium principle gives a higher premium 
than any of the other transforms, provided that the priority is big enough. 
We observe a similar behaviour with respect to excess of loss reinsurance in 
all the examples given. 

We also study the behaviour of the adjustment coefficient, both from the 
insurer's and the reinsurer's point of view as functions of the priority, when 
the PH principle is used as opposed to the expected value principle. 
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1 THE RISK ADJUSTI~D PREMIUM CALCULATION PRINCIPLES 

A principle of premium calculation is a rule, say H, that assigns a 
non-negative number to every risk defined by its probability distribution of 
loss. It can be regarded as a functional from the class of distribution 
functions into ~+. 
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this paper. 
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We denote an insurance risk by a non-negative loss random variable Y. 
Let Sy( t )=Pr{Y>t}  be the survival function of Y. Given any survival 
function Sy(t), the equation 

Sz(t)=(sy(t))'/P (1) 

defines another survival function Sz(t). The mapping YIp(Y):Sy(t)~Sz(t)  
is called the proportional hazard (PH) transform. Wang (1995) has proposed 
a new premium calculation principle, based on PH-transforms, and defined 
in the following way, 

Definition: For a risk Y, with survival function Sv(t),  the premium 
calculated according to the PH-transform principle is defined as 

up(Y)=  (Sy(t))'/Pdt, p >  1, (2) 

where p is called the risk aversion &dex. 
When p = 1 the pure premium is obtained, that is, 7rl ( Y)= E( Y). 
Wang (1996b) has proposed a more general class of premium calculation 

principles, called risk adjusted premium principles by using other transforms 
to distort the survival function, i . e .  

Sz(t) =g[Sy(t)], (3) 

where g is an increasing; continuous and concave function, with g(0) = 0 
and g(1) = 1. The corresponding premium calculation principle is 

H(Y)  = fo~g[Sv (t)]dt. (4) 

The PH-transform arises as a special case of (3) when g(x)=x lip. 
The common point of risk adjusted premium calculation principles is that 

they all consist of taking the expected value of a distorted distribution of the 
original risk. They have many desirable properties, (see Wang (1996b)), 
namely: 
- E[ Y] < H(Y) < max(Y) (positive loading and no ripoff); 
- Pr{ Y=b} = 1 ~ H ( Y )  =b (no unjustified risk loading); 
- H(aY+b) =aH(Y)+b,  a>0 ,  b>O (linearitv); 
- H(Y) preserves first stochastic dominance'l :  Yi ~ls, Y2~H(Yi)<H(Y2);  
- H(Y) preserves the order of dangerousness 2: Yt ~o  Y2 ~ H(  Yi)_< H( Y2); 
- For any two non-negative random variable Yi and Y2, regardless of 

dependence, H( Yl + Y2) _< H( Yi ) + H(Y2) (sub-additivity); 

i lg ~l~t )'~ if and only if Sv,(t) < S~(t) ,  Vt > 0. 
2 ~q is less dangerous than Y2 (Y~ ~L~ ~ )  if E(Y~) <_ EO~) and there exists a unique crossit~g point to 

such that S~,,(t) > S~(t) ,  Vt < to and Sy,(t) < S~(t) ,  Vt > to. 
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- If YI and Y2 are comonotonic I then H(Yi+Y2)=H(Yi)+H(Y2) 
(additivity for comonotonic risks); 

D e f i n i t i o n :  A layer h in excess of  b of  a risk Y, which we will denote 
2 I(b.b+hl(Y), is defined as the loss from the stop loss cover 

0 O< Y<b, 
l(b,b+h]( Y)= Y - b  b_< Y < b+h, (5) 

h Y_>b+h, 

where b is called the retention or the priority and h is called the limit. We 
shall use I(b,b+h] instead of I(b,b+h](Y) when only one risk is under 
consideration. 

As a layer is always an increasing function of  the original risk, the last 
property implies that, for any division 0=y0 <Yl < ... <Y,, < ... 

oo 

H(Y)=ZH(I(y,_.,y,]), (6) 
i=1 

i.e., layer premiums are additive. 
Based on the concavity of  g, Wang (1996b) shows that the relative 

loading for an infinitesimal small layer at (t,t+dt], 

. .  H(I(t.t+a,]) Sz(t)dt g[Sr(t)] 
~ t ) = ~ - S r ( t ) d t -  St(t) ' (7) 

3 is an increasing function of t. 
The minimum rate on line is an empirical reinsurance phenomenon. The 

rate on line is the premium divided by the limit h, and most reinsurers 
establish a minimum for this ratio, whatever is the priority. Based on this 
idea Wang (1996b) considers as desirable that od(0)=cx~, in such a way that 
E(It,t+hl) converges to zero faster than H(I~s+hl) when t goes to infinity, This 
will be clarified in the next section. 

Wang (1996b) gives some examples of the risk adjusted premium 
principles, by specifying different functions g, namely: 

I y[ and Y2 are comonotonic  i f  there exists a risk 1~ and weakly increasing functions f l  and/ '2 such 
that  1"] = / l ( Y a )  and  Y2 = f2(Y3). 

2 As in this paper  we are dea l ing  with reinsurance,  we follow the most  c o m m o n  te rmino logy  for excess 
of  loss and  s top  loss reinsurance,  i.e. s top  loss is an aggreg[itc type of  cover  while excess of  loss 
s tands  for individual  c la im amounts ,  see for instance Daykin ,  Pentikfi inen and Pesonen (1994) and  
Gera thewohl  (1980). 

3 Let u = St( t )  and let us choose  two points  tl and t2 such that  0 < gl < t2. As  SV(t) iS a decreasing 
funct ion of  t then Ul = Sr(ti)  > Sr(t2) = u2. But u2 can be wri t ten as a convex l inear  combina t ion  
of  the points  0 and ul  with weights  equal  to (Ul - u2)/u~ and ue/~q respectively, from which it 
follows from g ( O ) = O  and the concavi ty  of  g that  9(u2)>(u2/ul)9(ut) ,  this is 
9[Sr(t2)]/Sy(t2) >_ 9[Sr(tl)]/Sr(tt),  which proves that  4)(t) is an increasing funct ion of  t. 
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PH-transform principle (PH) g(x) = X I/p, p > 1, (g~(0) = CXZ); 
Dual power function principle (DP) g(x) = 1 - ( 1 - x) ~, c~ > 1, (g' (0) = c~); 
Denneberg's absolute deviation principle (AD) 

g~_J" (l+c0x O<x<OS,,< 
'~ J-[~+(1-~)xO.5<x<l ° ~<l,(g'(O)=l+~); 

Gini principle (GP) g(x)=(1  +~)x-crx2,0<c~_< 1, (g'(0) = 1 +c~); 
Square-root function principle (SR) 

g'(0/: 
o~=0, f f l + ~ - I  ' 

Exponential function principle (E) 

f l - c  , ~ > 0  ( .... c~ ) 
g ' ( O ) :  • 

1 - ~ - °  ' 

Logarithmic function principle (L) 

(, o ) 
f !.~.~.!._%~:~! a > O  g (O)=log(l + a )  <e~ 

As we have already mentioned, Wang (1996b) has considered as desirable 
that g ' ( 0 ) = ~ ,  which, among the functions considered, is only true for the 
PH transform. 

2 A P P L Y I N G  THE RISK ADJUSTED PREMIUM PRINCIPLES TO REINSURANCE 

These premium calculation principles seem to have all the nice properties we 
could think about. This is particularly important  in relation to reinsurance. 
In this section we shall compare these premium principles, for some 
examples, as functions of the retention, for different forms of reinsurance. 

2.1 Quota-share reinsurance 

Consider a risk for which the aggregate claim amount  in some fixed time 
interval is denoted by a random variable Y with distribution function Fy(.) 
and survival function Sy(.). 

Let a be, for quota-share reinsurance, the insurer retention level. As the 
risk adjusted premiums are scale invariant, the reinsurance premium is in 
this case ( 1 - a ) H ( Y ) ,  where H(Y) is the premium that should be charged if 
the whole risk was ceded. This is exactly what happens in practice for 
proportional reinsurance. 
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2.2 Stop Loss 

Let us consider a stop loss contract, such that the cedent retains min(Y, M) 
of risk Y, and reinsures max(0, Y - M ) ,  which is the same as I(M~). The 
distribution function of the ceded part is then F~(t)=Fr(t+M)'and the 
corresponding survival function S~(t)=Sr(t+M), both for t>0.  Denoting 
by P(M) the reinsurer's premium with respect to this contract, we have that, 
if a risk adjusted premium calculation principle is used, 

P(M) = fo~g[Sr(t + M)] dt=/2diS  y(t)] dt (8) 

Let ¢(M)=P(M)/E(I(M,~)) and let ¢(M) be defined as in (7), i.e. 
¢(M)=g[Sv(M)]/Sr(M). Note that as P'(M)=-g[Sy(M)] and 
E'(I(M,co))=-Sr(M) and using L'Hospital's rule we can say that 

lim ¢(M)=Mlhn ¢(M)=g'(O ). (9) 
M,--moo 

Hence if the PH-transform is applied we can say that 

lim P(M) M~oo~b(g)= 1~1 =------.=cxz. (10) M ooE(I(M,oc) ) 

Condition (9) clearly shows why it is desirable 5(0)  to be infinity. Although 
both P(M) and E(I(M.co) ) converge to zero as M goes to infinity, the later will 
go faster when g'(O)=c<z. 

If the aggregate claim amount is limited, i.e. if there exists a finite tl for 
which S~,(tt)=O, then the limit in (10) should be substituted by the limit 
when M~t l  which is still infinity. 

When the PH-transform is applied, the stop loss premium is particularly 
easy to compute for some distributions as we will see in the next section. 

2.2.1 The stop loss premium when the PH premium calculation principle is used 

1. If Y is exponential distributed with mean I/c, i.e. if Sr(t)=e -ct for t>0,  
then: 

P(M) =-Pe-~ M. (l l) 
C 

2. If Y is Pareto distributed with parameters (a,fl), i.e. if St(t) = , for 
t_> 0, then 

P(M) ~- l  \/3+MJ ' a>P" (12) 
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3. If Y has a Weibull distribution with parameters (c,T), i.e. if Sr(t) = e  -ctr, 
for t > 0, then 

P ( M ) = I " ( ! + I ) ( - P c ) ' / ~ ( I - J \ ; ~  / / ,  (13) 

where J(a,y) denotes the incomplete gamma function, i.e. 

1 Y J(a,y)=F f0 t"-te-'dt, y>0. 
4. If Y has a Burr distribution with parameters (aft,T), i.e. if Sy(t)= ~+tr , 

for t_>0, then 

p(M)=/f /T \P , /  11 fl  '~ 
r,T,/3+M~_j, o~- > p, (14) 

where B (a, b, y) denotes the incomplete Beta function, i.e. 

B . . . .  F(a+b)  fY_l,-I _x)b-I 
la,o,y)-i.,(a)r,(b)j ° x- (1 dx, 0 < y < l .  

For these distributions it is easy to deduce P(M) because these distributions 
are closed under the PH-transform. For some other distributions we have to 
use numerical techniques to calculate P(M). 

If instead of an tinlimited cover, only a limited layer, h in excess of M, of 
the aggregate claim amounts is covered by the stop loss treaty, then the 
reinsurance premium is 

/~ M +h 

H(I(M,M+,,J)=JM g[Sv(t)]dt=P(M)-P(M+h). 

2.2.2 Comparing different risk adjusted premium principles 

We are interested in comparing the stop loss premium when different 
transforms are applied. Assuming that the total premium for an entire risk is 
fixed, we will use various risk adjusted premium functionals to allocate the 
total premiums to layers. 

Let gl and g2 be two continuous, increasing and concave functions 
defined in [0,1], with gl(O)=g2(O)=O and gl(1)=g2(l)=l. Let us assume 
that 

•o ~gl [Sy (t)] dt = foC~g2 [Sy (t)] dt, (15) 
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i.e. that the reinsurance premium for full coverage is the same for the two 
principles, gl (x) has to cross g2(x) at least once for xE (0, 1), otherwise (I 5) 
could not hold. Let U be a random variable with survival function gl [St(t)] 
and V another random variable with survival function g2[Sv(t)]. If gl (x) and 
g2(x) cross exactly once in (0, 1) and ifg'l(0)>g~(0 ) we can say that Vis less 
dangerous than U. As in general the order in dangerousness implies stop loss 
order I (see e.g. Wang (1996a) or Kaas, Van Heerwaarden and Goovaerts 
(1994)) we can conclude, under the above conditions, that the stop loss 
premium is greater, for all the values of the retention limit, using transform 
gt than transform g2. This together with the fact that, among the transforms 
considered in section 2, the PH-transform is the only one for which 
g~(0) =cx~, has the obvious implication: ifgl is the PH-transform and g2 any 
of the other transforms, if condition (15) holds and if gl and g2 only cross 
once, then the PH principle gives a higher stop loss premium than the 
premium based on transform g2, for all the values of the retention limit M. 
When gl andg2 cross more than once we can still say, attending to (9) that 
there is an M_>0 from where onwards the stop loss premium using gl is 
greater than when g2 is used. This implies that, in general, the PH premium 
calculation principle, gives a higher premium than when any of the other 
transforms is used, provided that the retention is big enough. 

We have calculated the  stop loss premiums for the different principles 
considered in section 2, for two loss distributions: the Pareto (2,1) truncated 
at 1000 and the exponential with parameter 1 truncated at the point 8.33. 
The last value was chosen in such a way that both have the same expected 
value, p was chosen equal to 1.15. 

Truncated Pareto loss distribution 

Table 1 shows the values of a (see the premium calculation principles in 
section 1) for the different risk adjusted premium principles, as well as for the 
expected value principle, calculated in such a way that the premium for full 
coverage is the same and equal to f~(Sv(t))l/Pdt, with p=  1.15. 

Figure 1 shows P(M), as function of the retention limit M, when the 
several risk adjusted premium calculation principles are used, as well as for 
the expected value principle. The curves between the expected value principle 
and the PH principle curves are ordered by increasing order of the premiums 
for every M greater than 0,4, what is to say according to the order of 
magnitude of g'(0) (1 + a for the expected value principle). 

As we have already seen, if two functions gl and g2, with g~ (0)>g~(0) 
cross exactly once then, Pi(M)>P2(M), for all M. This is the case, in the 
example, for the PH, the square root, the exponential and the logarithmic 

V is smaller than U in stop loss order (V ~,t U) if and only if f~o Sv(t)dt < f~  Su(t)dt, Vz > O. 
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T A B L E  I 

L O A D I N G  C O E F F I C I E N T S  F O R  P = 1.15; S T O P  L O S S  R E I N S U R A N C E ;  T R U N C .  P A R E T O  D I S T R I B U T I O N .  

(if(0) = oo for the PH principle) 

Principle ~ ~ (0) 

EV 0.343105 (I + a =)1.343105 

AD 0.414264 1.414264 

DP 1.480544 1.480544 

Gini 0.515115 1.515115 

E 0.949823 1.548985 

L 1.371120 1.588116 

SR 4.157265 1.635481 

1.6 

"1.4 

1.2 

1 

• 0 .8  

0 . 6  

0 . 4  

0.2 

I I I I I I I 

1 2 3 4 5 6 7 8 

M 

FIGURE I: Stop loss reinsurance - truncated Pareto distribution 

transforms, which cross all the others exactly once. The conclusion is simple: 
they are all very similar, with one singularity: the PH-transforms gives much 
higher premiums for not very small values of the retention. 

Truncated exponential loss distribution 

Table 2 and Figure 2 are in all similar to Table 1 and Figure 1, respectively, 
but using the truncated exponential distribution function. The ordering of 
the premiums, between the expected value principle and the PH principle, for 
M>0.9125 is the same as for the Pareto distribution, because the order of 
g'(0) was the same. 
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TABLE 2 

LOADING COEF. FOR p = 1.15; STOP LOSS REINSURANCE; TRUNC EXPONENTIAL DISTRIBUTION 

Principle e~ g~ ( O ) 

EV 0.148521 (I + c~ = )  1.148521 

AD 0.214432 1.214432 

DP 1.248052 1.248052 

Gini 0.297496 1.297496 

E 0.579275 1.317446 

L 0.751445 1.340810 

SR 2.020900 1.369037 

1.4 

1.2 

1 

0 . 8  

0.6 

0.4 

0.2 

I i I 

0 1 2 3 

M 

FIGURE 2: Stop loss reinsurance - truncated exponential distribution 

Figure 3 shows P(M) when the PH-transform principle and the expected 
value principle are used, for the truncated exponential and Pareto loss 
functions. As it is natural the Pareto loss distribution implies a higher 
premium than the exponential distribution, for the same priority. The same 
happens for the other transforms, but the difference is higher when the PH 
premium principle is applied. 
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1.6 

1.4 

1.2 

1 

0.6  

0 .4  

0 .2  

0 , , i , " i , , 

I 2 3 4 5 6 7 8 

M 

[ Parcto-PH ...... Pareto-EV Expon-PH .......... Expon-EV ] 

FIGURE 3: Stop loss rcinsurance - PH-princip[e,  Pareto versus exponential  

2.2.3 Excess of Loss 

We assume that Y has a compound distribution, so that 

N 

Y=~-~X/ 
i=0  

where Xo-O,{Xi}i-i~ U is a sequence of i.i.d, non-negative random 
variables, denoting-tJ~e'individual claim sizes, with common distribution G 
independent of the number of claims N which is a counting random variable. 
Let Fbe  the distribution function of Y. We shall consider the case where N is 
either a Poisson, or a negative binomial random variable. Let us consider an 
excess of loss arrangement, such that the aggregate ceded claims are 

N • y'~S=oma~x(O,Xi-M), and the aggregate retained claims are ~-~i=omm(Xi,M). 
To obtain in this case P(M) we have to calculate first, using numerical 

techniques, the survival compound function, in second place to distort it and 
finally to calculate the mean with respect to the distorted distribution. This 
procedure is very time consuming, specially for very skewed claim amounts, 
as for the Pareto (2,1), even when truncated (in a big value). 
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For the calculations we have used Panjer's algorithm, after discretising the 
individual claim amount distribution, by matching the first moment, in steps 
of 1/30, for the truncated Pareto, and 0.0025 for the exponential case. The 
survival functions were calculated until they reached the value 1 0  - 9  . 

Table 3 gives the coefficient c~ for each premium calculated in such a way 
that the premiums are equal to the PH premium for the retention limit M = 
0, with p=l .15,  for a compound Poisson distribution with A=I  and 
individual claim amounts Pareto distributed with parameters (2,1) truncated 
at 1000. Figure 4 shows the reinsurance risk adjusted premiums, as well as 
the reinsurance premium calculated according to the expected value 
principle. 

TABLE 3 

L O A D I N G  C O E F F I C I E N T S  FOR to = 1.1,5; X L - R E I N S U R A N C E ;  P O I S S O N - T R U N C A T E D  P A R E T O  

egi, ciMe o~ ~ ( o ) 

EV 0.380533 (I + ~ =)1.380533 

AD 0.391033 1.391033 

DP 1.465864 1.465864 

Q 0.494443 1.494443 

E 0.910526 1.523415 

L 1.293763 1.558387 

SR 3.856743 1.601901 

1.6 

1.4 

1.2 

1 

• 0,8 

0 ,6  

0,4 

0.2 

0 
1 2 3 4 5 6 7 

M 
Figure 4: XL reinsurance: Poisson claim numbers and trunc. Pareto claim amounts. 
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Although we are not able to take any conclusions in theoretical terms, we 
can say from all the cases that we have considered that the behaviour is very 
similar to the stop loss case. The order of  magnitude of  the risk adjusted 
premiums for big enough values of  the retention is the same as the order of  
the g'(0)'s. 

When the individual claims are truncated exponential instead of 
truncated Pareto, with the same expected value, the relative behaviour of  
the risk adjusted premiums is similar, but the figures are lower in the 
exponential case, as they should be. 

When we use a different Poisson parameter the conclusions are all 
similar. 

Table 4 gives the reinsuranc e premiums calculated according to the PH 
transform principle and the ratio ~ (M) ,  both for the truncated Pareto and 
truncated exponential individual claim amounts. 

The relative behaviour of  the risk adjusted premiums is similar when a 
compound negative binomial distribution is used for the aggregate claim 
amounts. 

Figure 5 shows the PH premium as function of  the retention for the 
compound Poisson with A= 1 and for the compound negative binomial with 
mean equal to 1 and variance equal to 10, in the Pareto case. An interesting 
feature is that for not small values of  the retention the premiums are almost 
identical for both the compound Poisson and the compound negative 
binomial. 

TABLE 4 

XL-REINSURANCE; COMPOUND POISSON DISTRIBUTION 

Trunc. Pareto claim amounts Trunc. exponential claim amounts 

M PH ~b(M) PH ~(m) 

0 1.377767 1.380524 

1 0.804207 1.614856 

2 0.590210 1.781285 

3 0.474030 1.911361 

4 0.399763 2.018928 

5 0.347647 2.111116 

6 0.308790 2.192076 

7 0.278550 2.264447 

8 0.254257 2.330012 

9 0.234253 2.390040 

10 0.217457 2.445466 

15 0.161810 2.673750 

20 0.130073 2.849837 

25 0.109260 2.994291 

30 0.094427 3.117334 

1.208096 1.210526 

0.489168 1.336667 

0.200338 1.499517 

0.081743 1.693323 

0.032626 1.915186 

0.012341 2.166502 

0.004122 2.457970 

0.000993 2.833274 

0.000053 3.600732 
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1.8 

"1.6 

1.4 

1.2 
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~ 0 . 8  
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0.4 

0.2 

0 I [ I I ( I I 

0 1 2 3 4 5 6 7 

M 

[ ........... Neg Bin Poisson I 

FIGURE 5: XL reinsurance; Poisson versus negative binomial claim numbers; trunc. Pareto 

Figure 6 shows the ratio 'g, (PH premium divided by the expected value) 
as a function of the Poisson parameter ~ and truncated Pareto claim 
amounts,  for three retention levels: 0, 20 and 100. The calculations were 
performed using a precision of 10 -6 in Panjer's algorithm. 

3 T H E  ADJUSTMENT COEFFICIENT AS FUNCTION OF THE RETENTION 

Let 0 be the retention level ~, taking values in the interval from 0 to L, with L 
= 1 for quota-share reinsurance and L = o o  for stop loss or excess of loss 
reinsurance. Let Y(O) be the aggregate net (of reinsurance) claims and P(O) 
the reinsurance premium. Y and P denote the aggregate gross claims and the 
gross (but net of expenses) premium, respectively. 

Let C(O)=P(0)-E[ Y -  Y(0)] be the loading of  the reinsurance premium. 
The adjustment coefficient of the retained risk is, for each 0, as it is well 

known, the unique positive root R=R(O), when it exists, of 

E[exp[R[ Y(O) - (P- e(0))]]] = 1. (16) 

The adjustment coefficient of the reinsurer is, for each 0, the unique positive 
root R=R(O) of 

E [ e x p [ R [ Y -  Y(O)-P(O)]]] = 1. (17) 

i We shall denote by a the quota-share retention level, and by M the excess of loss or stop loss 
retention limit. 
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0 10 20 30 40 50 60 70 80 90 100 

M=I00 - -  M=20 . . . . . .  M=0 ] 

FIGURE 6: ~b as function o f  A 

Waters (1983) studied the behaviour of the adjustment coefficient of  the 
retained risk, for quota-share, excess of loss and stop loss reinsurance. 

In all the examples considered we have chosen P in such a way that 
P=O.95P(O). In this way the insurer will not make a profit with full 
coverage. 

3.1 Quota-share 

Under very weak assumptions Waters (1983) proved that the adjustment 
coefficient of the retained risk R(a) is a unimodal function of a attaining its 
maximum value at a = 1 if and only if 

P ' ( l )e  R(')P+EIYeR(I)v ] _<0. (18) 

As we have already mentioned P ( a ) = ( I - a ) P ( 0 ) = ( 1 - a ) H ( Y )  when a risk 
adjusted premium is applied, which implies that 

C(a) = (1 - a ) [ H ( Y )  - E( Y)]. (i 9) 

As it is easy to verify l~he risk adjusted premiums satisfy all the assumptions 
made by Waters (1983) if we consider that 

H ( Y ) > P ,  (20) 

(i.e. that the ceding insurer does not make an expected profit by means of 
reinsurance) in which case we can say that his result applies. 
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When we consider the adjustment coefficient from the reinsurers point of 
view, i.e. the unique positive root R=R(a) of  

E[exp []~(1 - a ) (  Y -  P(0))]] = 1, (21) 

the adjustment coefficient is such that ]~(a)=]~(O)/(1-a), which is an 
increasing function of a, going to infinity when a goes to 1. 

Although a bit puzzling this is a good point in favour of both the 
adjustment coefficient and of the risk adjusted premiums: let ~b(u) be the 
probability of ultimate ruin associated to (Y, P(0)), which is equal to the 
probability of ultimate ruin associated to ( ( 1 - a )  Y,P(a)), and an initial 
reserve of ( 1 - a ) u  (note that for risk adjusted premium principles 
P(a)=(l-a)P(O)). This is exactly what happens with the upper bound 
provided by Lundberg's inequality so far as the reinsurance premium 
calculation principle used is scale invariant, which is the case for the risk 
adjusted premiums (this is also the case for the expected value and the 
standard deviation principles). This implies that it does not make sense to 
maximize the reinsurer's adjustment coefficient, by itself, when quota-share 
reinsurance is considered. Note that if the insurer's adjustment coefficient 
goes to zero as the expected profit goes to zero, the reinsurer's adjustment 
coefficient goes to infinity as the expected profit goes to zero. The reinsurer 
share should only depend on the size of the company (through the reserve) 
and on the risk aversion index (through P(0)). 

3.2 Stop loss 

When the expected value principle is applied, it is not possible to prove, in 
general, that the insurer's adjustment coefficient is unimodal with the 
retention. The same happens when the risk adjusted premiums are applied. 
We were not able, however, of finding a counterexample. 

Figure 7 shows the insurer's adjustment coefficient, assuming that the 
aggregate claim amounts are either truncated exponential or truncated 
Pareto as in section 2.2.2, and the reinsurer premium is calculated according 
to the expected value or the PH principle. In the exponential case the 
adjustment coefficient attaints its maximum value at 0.805 and 5.27, when 
the reinsurance premium is calculated according to the expected value and 
the PH principle respectively. In the Pareto case the respective values are 0.5 
and 4.0. 

The most interesting feature is that when the expected value principle is 
applied the adjustment coefficient for the Pareto case is greater than for the 
exponential case, but the order is reversed if the PH principle is applied. This 
is quite a point in favour of the PH principle and is due to the fact that the 
PH principle differentiates much better the most dangerous risks than the 
expected value principle. 
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Figure 8 shows the reinsurer's adjustment coefficient for the same 
examples. This function does not obey to a specific pattern. When the 
premium used is calculated according to the PH principle it is a decreasing 
function of M for very skewed distributions, unless p takes extremely high 
values, where it increases. 

0.01 10 

0.009 

0.008 

0.007 

0.006 

0005 

~ 0.00,4 

0.003 

0.002 

0.001 

0 I I I I I I I 

1 2 3 4 5 6 7 8, 

M 
FIGURE 8: Stop loss reinsurance: the reinsurer's adjustment coefficient 

9 

8 

7 

'I 5 

3 ~ 

2 

1 

0 



COMPARING RISK ADJUSTED PREMIUMS FROM THE REINSURANCE POINT OF VIEW 237 

In the exponential case it increases with M, going to infinity as M goes to 
the truncation point, both for the expected value and PH principle. Note 
that when the random variable is a non truncated exponential and the 
expected value principle is applied, the reinsurer's adjustment coefficient is 
independent of M. 

3.3 Excess of Loss 

When the expected value principle is applied to calculate the reinsurer's 
premium and the aggregate claims are compound Poisson, the insurer's 
adjustment coefficient is, as it is well known, a unimodal function of the 
retention. We were not able of proving a similar result when the PH principle 
applies, but we could not find a counterexample either. 

The insurer's and the reinsurer's adjustment coefficients, behave in a very 
similar way to the stop loss case, when A is I. Figure 9 is equivalent to Figure 
7, but for excess of loss reinsurance. 
In the truncated exponential case, when the premium principle is the 
expected value the maximiser of the adjustment coefficient is 0.69 and 3.73 
when the principle used is the PH premium principle. For the Pareto case the 
corresponding values are 0.63 and 3.37 respectively. 

Figure 10 shows the insurer's adjustment coefficient when the aggregate 
claims are compound negative binomial, as opposed to the compound 
Poisson, with individual claim amounts truncated Pareto (2,1) when the 
premium used is calculated according to the PH principle. The expected 
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value of the claim numbers is 1, and the variance is in one case 2 and in the 
other 10. The conclusion is expected, i.e. for the same priority the retained 
adjustment coefficient increases as the variance decreases. 

4 C O N C L U S I O N S  

The main conclusion to be taken when applying risk adjustment premium 
principles to non-proportional reinsurance is that with the exception of the 
proportional hazard (PH) premium calculation principle, all the other 
behave in a way similar to the expected value principle. Hence although all 
of the risk adjusted premium principles considered in the paper share 
common and very interesting properties, just the PH premium principle 
provides, from the practical point of view, significant differences when 
compared to the classical expected value principle. This is due to the fact 
that it is the only principle, among the principles studied, for which 
g ' (0)=oo.  Using this property we have also proved that the stop loss 
reinsurance premium when calculated using the PH premium principle gives 
a higher premium than any of the other transforms, provided that the 
priority is big enough. 

Also, we have mentioned in section 3, when using the Pareto distribution 
versus the exponential distribution for modelling the claim size, the PH 
principle discriminates much better the most dangerous risks than the 
expected value principle. We obtain a higher value for the insurer's 
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adjustment coefficient for the Pareto case when the reinsurance premium is 
calculated according to the expected value principle, but the order is reversed 
if the PH principle is applied. 

Although the examples presented in the paper assumed that p=  l.l 5, the 
main conclusions are independent of this particular value. The difference 
between the PH principle and the expected value principle increase with the 
value of the risk aversion index p. 
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