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ABSTRACT 

This paper provides bonus-malus systems which rest on different types of 
claims. Consistent estimators are given for some moments of  the mixing 
distribution of a multi equation Poisson model with random effects. Bonus- 
malus coefficients are then obtained with the expected value principle, and 
from linear credibility predictors. Empirical results are presented for two 
types of claims, namely claims at fault and not at fault with respect to a third 
party. 
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INTRODUCTION 

Bonus-malus systems (later referred to as BMS) in use throughout the world 
rest on a single type of claim. An exception is Korea, where the severity of 
claims is allowed for (Lemaire, 1995). Usually, claims at fault for the 
policyholder are retained. Most of them involve a third party, but they can 
also stem from material damage caused by the driver to his own vehicle. 

The trend towards deregulation in insurance business will make it more 
and more difficult for countries to maintain a compulsory BMS. For 
instance, insurance companies in Europe operate within a framework of 
Freedom to Provide Services, and are not forced to follow BMS rules in 
foreign countries. 

t Thanks to an anonymous referee and to Georges Dionne for comments. This research received 
financial support from the F6d6ration Franqaise des Soci6t6s d'Assurance. 

ASTIN BULLETIN, Vol. 28. No. 2, 1998, pp. 205-220 



206 JEAN PINQUET 

This context gives more value to the design of optimal bonus-malus 
systems. They are derived from a statistical analysis of insurance contracts, 
which uses models with random effects. Hidden individual characteristics are 
first summarized by a fixed effect in the risk distributions of  an a priori rating 
model. This fixed effect could be also referred to as a structure term, or as a 
heterogeneity component. Considering it as the outcome of a random 
variable, we obtain distributions for generic individuals in a model with 
random effects. These distributions happen to be mixtures of  those of  the a 
priori rating model, and the generic individuals represent a class of  risks 
defined conditionally on observable rating factors. 

Once estimated, the model with random effects allows the prediction of  
the fixed effects, and the design of  optimal BMS. The basic motivation in the 
development of  these systems is to use the history of  the policyholder as 
thoroughly as possible in the prediction of  risks. 

Whereas the starting point for the history is the number of claims at fault, 
actuarial literature proposes extensions in different ways. 

• The allowance for severity of claims through a dichotomy between 
claims with or without bodily injury (Picard (1976), Lemaire (1985)), or 
through their cost (Pinquet (1997a)). 

• The allowance for the date of  claims, through credibility models with 
geometric weights (Gerber and Jones (1975), Sundt (1981)). 

This paper develops statistical models which lead to BMS from different 
types of  claims. There is evidence of  a positive correlation between claims at 
fault and not at fault (Lemaire (1985)), so you might think of using claims 
not at fault, in order to assess whether these minor claims are able to reveal 
hidden features in the number distributions of claims at fault. You could 
also consider events which are not claims, like infractions to the road safety 
code. Using moving traffic violations in an experience rating scheme is 
common practice in all states of the US, because US insurers have direct 
access to records of  the Motor  Vehicles Division. A speeding ticket related to 
more than fifteen mph above the speed limit entails the same penalty as an 
accident at fault, and so does failure to stop at a traffic light, or failure to 
respect a stop sign. Overtaking a school bus while its red lights are blinking 
is still more penalized. Since 1992 in Quebec, the public monopoly which 
provides automobile insurance for bodily injuries includes a history of 
"demerit points" in its rating structure. For empirical results on that kind of  
events, see Dionne and Vanasse (1997). 

This issue has already been addressed by actuarial literature, mostly 
within a multi-guarantee approach. Let us quote for instance 

• Larsen et al. (1991) (in a multi-product setting), Partrat (1992, 1993) 
for models with a degenerate distribution for the random effects. 

• Boulanger (1994) for a linear credibility approach and a joint 
distribution for the random effects. 

A multi equation Poisson model with a joint distribution for the random 
effects (i.e. neither degenerate, nor with independent components) must be 
the basic tool here. Unfortunately, the likelihood of  such a model does not 



DESIGNING OPTIMAL BONUS-MALUS SYSTEMS FROM DIFFERENT TYPES OF CLAIMS 207 

admit a closed form. The author proposed an inference method for linear 
and Poisson models with random effects (Pinquet (1997b), (1998)), which 
stems from consistent estimation of  some moments of  the mixing 
distribution. In a parameterized framework, consistent estimators for the 
parameters of the mixing distribution are then obtained with a method of 
moments. These estimators are obtained from residuals derived from the a 
priori rating model. Ill Section 1.2.2, an example is provided for a multi 
equation Poisson model with a Gaussian distribution for the random effects. 
As compared to the preceding contributions, the estimation procedure 
presented here allows to assess whether it is possible to consider a joint 
distribution for the random effects, and provides consistent estimators from 
any a priori rating structure. 

The two ways of  relating a model with random effects to prediction on 
longitudinal data are used in Section 1.3. 

• The expected value principle (Lemaire (1985), Dionne and Vanasse 
(1989), Pinquet (1997a)), which rests on a parameterized specification of  the 
mixing distribution. It is applied here to a multivariate Gaussian distribution 
for the random effects. 

• The linear credibility approach (see Bfihlmann (1967), Boulanger 
(1994) for the issue addressed by the paper), which provides predictors from 
moments of the mixing distribution. Consistent es t imators  for these 
moments are given in section 1.2.2, regardless of  a parameterized 
specification for the mixing distribution. When applied to our model, the 
bonus-malus coefficient for each type of claim can be seen as a linear 
combination of  "loss to premium" ratios, with a first increasing, then time- 
vanishing credibility for the other t;cpes. 

Empirical results are provided in Section 2. We retain here two types of  
events, namely claims at fault and not at fault with respect to a third party. 

If compared to the case where only claims at fault are allowed for, the 
results obtained are the following. 

• Not  surprisingly, each claim at fault becomes less meaningful in the 
prediction, since more types of events are taken into account. 

• For each type of  claim, the revelation throughout time of  hidden 
features in the number distributions is enhanced. This improvement 
increases with the frequency of the other types, and with the squared 
covariances between the random effects. 

I.  A MULTI EQUATION MODEL FOR NUMBER OF CLAIMS 

1.1. Presentation 

Suppose q different types of  claims. The number of claims of  type 
j ( j = l , . . . , q )  reported by the policyholder i ( i = l , . . . , p )  in period 
t ( t  = 1, ..., Ti) is denoted as Njt. It follows a Poisson distribution with a 

l !  II  II  parameter A~ = exp(x!01j). In the last expression, x~ is a line-vector of  
covariates, ahd 01j a c~lumn-vector of  parameters. The~number variables are 
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supposed to be independent• This implies that the different types of claims 
do not overlap, an assumption which may lead to redefine them. For 
instance, if Ni is the number of  claims at fault with respect to a third party, 
with among them N2 claims which entail bodily injury, a two equation model 
will explain Ni - N2 and N2. 

Allowing for hidden features in these distributions, we consider the 
following equations with fixed effects 

Nfi ,,, P(exp(xij'o,j + uj:)). (1) 

We retain here a time-independent fixed effect for each policyholder and 
each type of  claim. 

For a generic individual, the fixed effect u~ is the outcome of a random 
variable U..', whose distribution is supposed not to depend on i. If this 

• . . J . 

dlstrlbutmn as that of  Uj, the supplementary parameters are the variances 
and covariances of  the (Uj)l</< q. The parameters of  the model with random 
effects are then 

0 1 ) "  01 vec(O,j); vec (Vjk), Vjk=Cov(Uj, Uk). 
0 = 02 ' = l<_j<q 0 2 =  I <_j_<k_<q 

(2) 

In the preceding expression, the different components of  01 and 02 are 
stacked in a column-vector. The parameter space is O = Oi x Oz, where O2 
is a cone of  positive semidefinite matrices. This cone is embedded in the 
space of  q-dimensional symmetric matrices, which can be identified with 
R q(q+l)/2. The random effects are supposed to have a null expectation. 
If 02 = 0, we have Uj _= 0 Vj, and we obtain the a priori rating model as a 
particular case, since no mixing of distributions is performed. 

1.2. Inference from the Lagrangian 

1.2.1• Local expansion of the likelihood 

An important point to notice is that the model with random effects does not 
necessarily outperform the a priori rating model on a likelihood criterion, 
since 02 = 0 lies at the boundary of  O2. Now, this condition must be fulfilled 
if you want to design an optimal bonus-malus system from this model, with 
an estimation performed from likelihood maximization. Here, 0 is the vertex 
of  the cone of  positive semidefinite matrices• It is natural then to compute 
the Lagrangian with respect to the parameters of  the mixing distribution. 
Differentiation with respect to 02 can be performed at the boundary of O2, 
since O2 spans Sq(R), the space of symmetric matrices• For instance, the 
Lagrangian with respect to a covariance could not be defined as a partial 
derivative, but is obtained by the extension of a linear form from O2 to Sq(R). 
Let 01 ° be the maximum likelihood estimator for the parameters of the a 
priori rating model• The separate estimation of the q equations leads to &jlj ° 
(/' = l, . . . ,q), then to ~0 by stacking these components. The Lagrangian 
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computed later is the score with respect to  02, computed for 0~ = ~0, 02 : 0. 
Write a symmetric matrix V as V = )"]l<~<k<_cl Vjkejk, Let /2jk be the 
Lagrangian with respect to ejk. We have 

1 ~ .  [ Sj] ; r e s ) r e s k i  i IZjj = (rest) 2 - 12jk -= Z (1 < j  < k <_ q). 
i 

In this expression, res! and s~ are obtained from the first and second 
. . . J . . 

denvatwes, with respect to the ~xed effects, of the Iog-hkehhood (see Pinquet 
(I 997a) for expressions in a single equation model). This type of  derivation 
has been addressed for a long time by statistical literature, since the seminal 
papers on the subject date back to Neyman (1959, 1966). 

For the model defined in (1) and (2), we obtain 
A 

resj = Nj-  Aj; s~-- ~ Vi,j, 
A A 

if we write Nj= ~ , N j t ;  Ay = exp(xyOij°); Aj = ~tA~. t. 

The model with random effects will outperform the a priori rating model 
on a likelihood criterion if the Lagrangian belongs to a set defined in 
Section 3.1. 

1.2.2. Estimation o f  the mixing distribution f rom the Lagrangian 

Rewrite equation (1) as 

i, i w; = exp(u~). Nj' ~ P(Aj. w)), with ' 

If  the distribution of  the Wi is that of Wj, straightforward computat ions in 
• J 

the model with random effects lead to 

E(Nj) = AjE(Wj); E(NjN'k)i i = A~AkE(Wj)E(Wk)i i (j ¢ k); 

V ( N j ) -  E(Nj)  = E2(Nj)CVZ( Wj). (3) 

We wrote CV2( Wj)= V( Wj) /E2(Wj)  (remember that N i - V "  N it A i - V "  Ai'~ j - -  Z...~ t j ,  'j - -  L..~ t j J" 

Now it can be proved that 

Aj. ~ E(Nj)Vi , j ,  (4) 

where A).is the frequency-premium in the a priori rating model and where the 
expectauon is taken in the model with random effects (see Pinquet (1997b)). 
Thus, the a priori premium of any individual converges towards the 
frequency-risk of the related generic individual, this whatever is the value of 
the rating factors and of the mixing distribution. 
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From equation (3), we obtain 

E [ ( N j t ' - ~ : ) 2 - ~ ]  
•jj l i 

2 

i 
, 

~ j k l  i 
Z ~i~i j"k 
i 

CV2(WA; 

__,Cov(Wj, Wk) (l <j<k<_q), 
E(Wj)E(Wk) 

if the number distributions belong to the model with random effects. Some 
moments of the mixing distribution are then consistently estimated 
regardless of a parameterized specification. Notice that the Lagrangian 
appears at the numerator of these estimators. The superscript "1" is used for 
the estimators V'~.J and ~j.k I because they are obtained at the first step of the 
Newton-Raphson algorithm of likelihood maximization, if the initial value is 
01 = ~0, 02 = 0, with the notations of the preceding section. 

If we retain a multivariate Gaussian distribution for the random effects, i.e. 

U,-,~ Nq(O, V), (U = ve.c(Uj)l, then 
\ J 

Coy( Wj, Wk) = exp(Vjk) - 1. : Cov( Uj, vk) E( wj)E( wk) 

(5) 

Hence 

Vjk = log(1 + Vjj.k I ) (1 _<j < k _< q) 

are consistent estimators for the parameters of the mixing distribution. 
Owing to the unconstrained approach in the estimation, the^ V# are not 

bound to belong to the parameter space. For instance, the (V~j)l<j<q are 
nonnegative if there is an overdispersion of residuals for each of  the 
equations. An opt!mal BMS can be designed from the data if the matrix ~" 
derived from the Vjk is positive semidefinite. 

1.3. Prediction with the expected value principle and with a linear credibility 
approach 

1.3.1. Expected value principle 

Let us specify a multivariate Gaussian distribution for the random effects. 
The bonus-malus coefficient for the frequency of claims in equation 
j ( j  = 1, ...,q) is the ratio of estimated expectations of Wj = exp(Uj) with 
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respect to prior and posterior distributions. Before any estimation, this ratio 
is equal to 

E[exp(Uj+ Y~k=,q(n~Uk -- A~. exp(Uk)))] 

s [exp( t6)] E [exp(E =, - 

for the policyholder i. From equation (4), we have 

k --* E(N~) = A~,E[exp(Uk)] Vi, k, 

if A~ is the frequency-premium in the a priori rating model and if the 
expectation of N~ is taken in the model with random effects. To obtain a bonus- 

malus coefficient, replace expectations by estimations derived from equation (5), 

and replace A~. by A~k / LE[exp( Uk)]. Here .E[exp ( Uk)] = e x p ( ~  / 2 ) = ~/I + ~ 1 .  

The other expectations do not admit a closed form with respect to the 
parameters, but tlaey can be estimated from simulations. A Choleski 
decomposition of V must  be performed first (see Pinquet (1997a) for an 
application to a two equation model on number and cost of claims). 

1.3.2. Linear credibility predictors 

A linear credibility predictor of w!. which rests on all the equations stems 
from the affine regression of ~ with respect to the (N~) k t ,.. The 
notations are those of Section 1.2.2. For convenience, we ~v~l( ~egress 

i _ _  i Aj.-q A)Wj on the (N~)k_ I u" Since a bonus-malus coefficient is a ratio, 
results are unchanged if-tile"random effect ~. multiplied, by a non-random 
value• We denote the predictor of E(Aj) as aj + ~ = 1  i i b~knk, with 

a),bj, k arg m i n E  - - ~ b}kN [. 
k=l,...,q-- aj,b~k a) k = l  " 

The expectation is taken in the model with random effects. Writing 

N i =  vec (N~); b~ = vec (b~.k) , 
I<k<q I<k<q 

it is well known that 

b~ [V(Ni)]-'Cov(Ni, Aj);a~ E(Nj) £ '  i = = - b)kE(N~.), (6) 
k = l  

since E(A') = E(N i) If the moments in the preceding equation are seen as 
• . , J • , . . . . .  

lnd~v~dua~ parameters, consistent estimations are obtamed from the hm~ts 
almost everywhere 
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~ E(Nj); Vj~'k ' ~ Cov(Wj, Wk) Vj, Vk 
E(Wj)E(Wk) 

(see Section 1.2.2). Remember that A~ is the cumulated frequency-premium, 
• . . J , 

computed in the a pnon  rating model• From equation (3), we obtain 

E(Ni  ) Ai; _ A k +  Cov(Ni,N~, ) i i = = AkA k, (k ¢ k') (7) 

as consistent estimators for the moments of equation (6). Besides, 

, , Cov(Wj, Wk) Cov(g~.,Aj) ~i ~ . ~ k j l  (8) 
= E(N~)E(Nj)  E( Wj)E(Wk) = "'k 'j Cov(N~, Aj) i i Vk ~ ~ i 

are con~stent .estimators for the other moments of equation (6). 
Let aj and blk be the coefficients derived from equation (6) and from the 

• . J , • , 

preceding estimators. The predmtor of E(A)) is equal to 

From equations (6), (7 )and  (8), the (b~.k) are the solutions of the 
linear system k=l,....q 

V S I , Z "  VS, t ;7" ^ V k = l ,  ..., q : ( l + , , k  k k ) U j k + Z , % ,  kk uj.=Aj.~kj' (10) 
k'#k 

(both members were divided by A~). 
The bonus-malus coefficient for equation j is the ratio of the predictor 

f A} f E(A}) (9) and o , the a priori estimation o . It is obtained in equation as a 
. . . .  " " " ' ( 4 )  ' " linear funcnon of loss to premium ratios. From equation , this entails a 

fairness property in the prediction. Notice that the preceding results do not 
rest on a parameterized specification for the mixing distribution. 

Suppose that the duration of observation converges towards infinity. The 
frequency premiums will behave in the same way, and we have 

i i lira b j j = l ;  l m  b . , . = 0 ( k C j ) ,  
Ti--*+oo T ~ + o o  jK 

where Ti denotes a number of periods, or a duration if we reason in 
continuous time. To obtain this result, denote the j  a' vector of the canonical 
basis of  Rq as ej. From equations (7) and (8), we obtain 

(z(Ni)ej = ~ov(Ni, Aj:)+ ~:e]. 
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Equation (6) leads then to 

Hence lira b', = ej, since each premium becomes negligible if compared to 
T,.-.-,+oo a 

its square. 
This result means that, for each type of claim, the contribution of the 

9.ther types in the prediction vanishes with time. The credibility coefficient 
b}j increases with time from 0 to 1, whereas the others coefficients 

(i.e. i Ai i (Ak/ j)b~.k, k e j )  first increase from 0, then decrease towards 0. 
Besides, this property entails the consistency of the bonus-malus 

coefficient, since its limit is w~/E(j Wj), the ratio of  expectations of  Nj taken 
in the models with fixed and random effects. 

2. E M P I R I C A L  RESULTS FOR CLAIMS AT  F A U L T  A N D  NOT AT F A U L T  

WITH RESPECT TO A T H I R D  PARTY 

The motivation here is to improve the prediction of  the third party liability 
risk. We compare here bonus-malus coefficients derived from claims at fault, 
and from all the claims that trigger the guarantee. 

Let us recall briefly the compensation scheme in France, if two cars are 
involved in an accident. The fault is determined from reports of the drivers 
and of the police, if any. In order to avoid contestation of  the repair costs by 
the insurer of  the third party, direct compensation works in the first place. 
The insurer of  the driver not at fault receives a lump sum from the other 
insurer, and pays for the material damage of  his policyholder (at least below 
a certain level). On our data, the average costs of  claims at fault and not at 
fault are respectively equal to 11000 FF and 1400 FF (the observations date 
back to several years). The last average is the sum of 800 FF, a difference 
between the repair costs and the lump sum, and 600 FF due to payments to 
other third parties and administrative costs. The motivation here is to assess 
whether minor claims (claims not at fault) are able to reveal hidden features 
in the number distributions of  claims at fault. 

We will first compute bonus-malus coefficients for the frequency of claims 
at fault. Applying these coefficients to the third party liability risk supposes 
that claims not at fault have a negligible cost. We will then introduce costs in 
an example. 

The working sample is part of  the automobile policyholders portfolio of  a 
French insurance company. The rating factors are: 

• The characteristics of  the vehicle: group, age. 
• The characteristics of  the insurance contract: type of use, geographic 

zone. 
Other rating factors are the policyholder's occupation, as well as the year 

when the period began (in order to allow for a generation effect). The 
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different levels of  these six rating factors are represented by thirty-five 
indicators. The periods have not the same duration, and the parameters of 
the Poisson distributions are proportional to this duration. 

The policyholders considered in the working sample are observed on one, 
two or three periods. More precisely, we have 

Number of policyholders observed on: 
at least one period 85909 
at least two periods 68344 
three periods 44428 

Hence, p = 85909; Yf=l Ti = 198681. The working sample is here a non- 
balanced panel data set, and the average duration of observation of a 
policyholder is equal to nineteen months. 

The first equation will be related later to claims at fault, and the second to 
claims not at fault. The average of nl conditional on n2 = 0 ,  1 or 2 is 
respectively equal to 0.092, 0. 149 and 0.207, so there is evidence of a positive 
correlation between the two number distributions. From the estimation of 
two Poisson models with the aforementioned covariates, we obtain 

P 

Z B i l  : 8495; ~ (nil- A'~)2 = 9374.6; ~ ~2  = 1191.6. 
i=1  i i 

V i ~ ~  I = 

E Aq 
i 

=0.738; Vii = l o g  1+  l =0.553. 

. p  

Z n ~  = 9968; ~ (n~ - A~) 2 
i =  I i 

=10968.12; Z~2 
i 

= 1592.18. 

Vz-"--21 =0.628; V2"~2 = log(1 + ~221) =0.487. 

i i 

"~121  = A A 

E i i AiA2 
i 

=0.366; Vt--~2 = log(l + ~ l z ' ) = 0 . 3 1 2 .  

Let us compute bonus-malus coefficients for the frequency of claims at fault. 
From equation (10) and the preceding estimations, the linear credibility 
predictor is obtained from the linear system 
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(1 + ( 0 . 7 3 8 ~ ) ) ~  + (0.366A"2)b11"2 = 0.738~ 

(0.366A~)bl"-'~ + (1 + (0.628~'2))~ = 0.366~ (11) 

if both types of claims are taken into account (we drop the individual index). 
Consider an insurance contract without claim of any type reported during 
the first year. Suppose that the frequency p~miums related~o claims at fault 
and not at fault are respectively equal to A1 = 6.5% and A2 = 7.5%, which 
are roughly the average values for one year. The credibility coefficients 
related to both types of claims are then 

A ~ 2 A  
bll = 4.5%; ~t-b12 = 2.5%. 

From equation (9), they represent the contribution to a 7% bonus for this 
type of contract. The bonus is found equal to 6.7% with the expected value 
principle (see Pinquet (1997a) for a computation of coefficients with this 
approach). If only claims at fault are taken into account, the bonus is equal 
to 4.6% with the linear credibility approach, and equal to 4.4% with the 
expected value principle. 

Let us use equation (I I) to study the linear credibility predictor as a 
function of  the frequency-premiums (or as a function of time). If the 
premiums per yea L haue t..he average values, the credibility granted to claims 
not at fault (i.e. (A2/Ai)b12) increases from 0 to 15.7% during 25 years, then 
decreases towards 0.^ 

Suppose now: Ai =~'2 = 1, which means ab._.put fifteen years of 
observation on average. We obtain: b11 = 0.396, bl2 = 0.136. The bonus- 
malus coefficient derived from both types of claims with a linear credibility 
approach is then equal to l + (0.396 x (nl - 1)) + (0.136 × (n2 - 1)). Here, 
three claims not at fault are as significant as one claim at fault. But it must be 
kept in mind that this type of result depends on the level of premiums, and 
hence depends on time. We obtain for example 

T A B L E  I 

BONUS-MALUS COEFFICIENTS FOR TIlE FREQUENCY OF CLAIMS AT FAULT (LINEAR CREDIBILITY APPROACH) 

/11 

0 I 2 3 

0.58 1 1.42 1.85 c la ims a t  faul t  on ly  

c la ims  a t  faul t  o r  not  a t  faul t  

n2 = 0 0.47 0.86 1.26 1.66 

n2 = I 0.60 1 1.40 1.79 

n2 = 2 0.74 1.14 1.53 1.93 

n2 = 3 0.88 1.27 1.67 2.06 
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The bonus-malus coefficient derived from claims at fault only is equal to 
1 + (0.425 x (nl - 1)). If both types of claims are taken into account, the 
claims at fault are less meaningful in the prediction, but the decrease is not 
important. 

Let us use the average cost of claims of both types in the prediction of the 
third party liability risk. The linear credibility predictor for the frequency of 
claims not at fault is obtained from a linear system derived from equation 
(10). We obtain 

b21 = 0.136; b22 = 0.355. 

A bonus-malus coefficient for third party liability can be obtained from an 
average of the coefficients related to both types of claims, with weights equal 
to their average cost, since here frequency-premiums are equal. The 
coefficient is equal to 1 + (0.367 × (nl - 1)) + (0.161 × (n2 - 1)). As com- 
pared to the preceding results, the claims not at fault become more 
significant, whereas an opposite effect is obtained for claims at fault. 

With the same assumptions on the premiums, the coefficients for the 
frequency of claims at fault which are derived from the expected value 
principle are the following 

T A B L E  2 

BONUS-MALUS COEFFICIENTS FOR THE FREQUENCY OF CLAIMS AT FAULT (EXPECTED VALUE PRINCIPLE) 

nl 

0 I 2 3 

0.65 0.94 1.30 1.74 c la ims at  fau l t  on ly  

c la ims  a t  fau l t  o r  no t  at  faul t  

n2 = 0 0.56 0.81 1.12 1.50 

n2 = I 0.67 0.94 1.28 1.68 

n2 = 2 0.78 1.07 1.43 1,85 

n2 = 3 0.89 1.20 1.58 2,03 

For a given number of claims at fault, the bonus-malus coefficient 
increases at a steady pace with respect to the number of claims not at fault. If 
this number is fixed, the bonus-malus coefficient is a convex function of the 
number of claims at fault. 

Let us compare the evolution throughout time of bonus-malus 
coefficients for the frequency of claims at fault, if this type of claims or 
both types are accounted for. Using both types of claims will increase the 
number of events to be used in the prediction, but on the other hand each 
claim at fault will be less meaningful. Credibility predictors are here 
compared on a portfolio. We consider a simulated portfolio, derived from 
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the working sample. The characteristics of each policyholder are those of the 
first period, and we suppose that they remain unchanged. Fixed effects are 
drawn at random from the bivariate Gaussian distribution estimated before. 
Then numbers of claims are simulated, and bonus-malus coefficients are 
computed with the linear credibility approach. Their dispersion is measured 
by the standard deviation, almost equal in the simulations to the coefficient 
of variation because of the fairness of the rating structure. The results are 
given after T years of observation. Because of the consistency of the bonus- 
malus coefficients, the limit of the standard deviation when T converges 

towards infinity is C"~(Wi) = ~-'~ll I • 

TABLE 3 

EVOLUTION THROUGHOUT TIME OF BONUS-MALUS COEFFICIENTS 

Standard deviation of the bonus-malus T=! T=2 T=5 T=iO T = + ~  coefficients 
from claims at fault only 0.177 0.244 0.363 0.471 0.859 

from claims at fault or not at fault 0.198 0.271 0.395 0.502 0.859 

The addition of claims not at fault improves the prediction of the fixed 
effects. The result may seem disappointing, since the increase of the standard 
deviation is equal to 12% after one year. The improvement depends on the 
frequency of claims not at fault, and on the squared covariance between the 
two random effects (see Section 3.2). 

3. APPENDIX 

3.1. Do data allow distribution mixing from the a priori rating model? 
Geometrical conditions for the Lagrangian 

On the data, the model with random effects will outperform the a priori 
rating model on a likelihood criterion if the Lagrangian does not belong to 
O2, the negative dual of  02, which is equal to 

02 = { E = Z ff-.jkejk/ Z Ejk Vjk <_ OVO2 E 02, 02 = ~_~ Vjkejk }. 
I <_j'<_k<_q 1 <j'<k<q 1 <_j<_k<q 

If q = 1, this simply means that Eli is nonnegative, which implies an 
overdispersion of residuals. If q = 2, we have 

0 2  : { ~ gjkejk/Vll -q- V22 ~ O, VI1V22- V122 ~ OI ; 
I ~.j<k<_2 
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O~-= { E =  I~<k<2Z 12jkejk/Ell+£22--<O' 4EIlE22-E~2->O) 

(the proof for the expression of O~ is available from the author upon 
request). The model with random effects will outperform the a priori rating 
model on a likelihood criterion if one of the two last conditions is not 
fulfilled. 

Degenerate distributions for the random effects are investigated by 
Larsen et al. (1991) and Partrat (1992, 1993) for bonus-malus systems with 
two guarantees. If the Lagrangian belongs neither to 02 nor to O~, the 
direction defined by the projection of the Lagrangian on @2 will correspond 
to the steepest ascent for the log-likelihood. It is related to degenerate 
distributions for which U2 = aUi, or Ui =- 0. 

3.2. Rate of revelation of hidden features in the number distributions 

Owing to the consistency of an optimal bonus-malus system, the limit of  the 
bonus-malus coefficient related to typej, j = 1 .... , q and to the policyholder i 
is equal to w(/E(Wj), with the notations of the paper. On a portfolio, the 

. . . .  J .  

hmlt distribution is that of  Wj/E(Wj). 
Let us consider a simulated portfolio, with time independent rating 

factors, and start with q = 1. We reason in continuous time, and write 

N[ ~ P(Ai Wl t) (12) 

for the distributions of claims reported by a policyholder between 0 and 
t years (we drop the individual index)• This distribution depends on .X~, a 
function of the rating factors, and on the fixed effect wj. The bonus-mafus 
coefficient derived from the negative binomial model (expected value 
principle) or from the linear credibility approach can be written as 

BMIi - 
1+ G'2,  

Hence BM]"= 1 + -~i '(N~ 1 ' -  ;dt )+o(dt) .  If we replace ; ,  the premium 
for one year in the a priori rating model, by its limit AiE(Wt), we have 

E(BM~ h) = 1 + /~1G I (w, - E( Wi ))dr +o(dt); V(BMeiIt)= Ai Wl ( G  I ) 2dr +o(dt) 

for the risk distribution given in (12). On a portfolio, Atwl is the outcome of 
Ai, a random variable. Then we obtain 

= dt + o(dt) 
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for the unconditional variance. At the beginning, the rate of  revelation 
increases with the frequency of claims, and with the squared variance of  the 
random effect. 

Let us consider several types of  claims. The bonus-malus coefficient for 
one type of claim (say, typej, j = i, ..., q) obtained from the linear credibility 
approach is equal to 

A 

The bl. k were computed in Section 1.3.2, and it is easily seen from equation 
(10) tl~at 

~,l, ~ jk ld t+o(dt ) ,  ~jk = 

since premiums are negligible at the beginning. Hence 

q 

k=l 

Computing first the conditional expectation and variance, then the 
unconditional variance, we obtain 

/ ~.~. i \  2_ 
v(ggf/ t l , . . . ,q)  =- ~ E ( A k ) ~  Vjk ) dt  q- o(dt)  

k=l 

and the conclusion given in the paper. 
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