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ABSTRACT 

In this paper we investigate multlvariate risk portfolios, where the risks are 
dependent. By provMlng some natural models for risk portfohos with the 
same marginal d~stnbut~ons we are able to compare two portfohos with 
d~flierent dependence structure with respect to their stop-loss premiums. In 
particular, some comparison results for portfohos with two-point dlstribu- 
tmns are obtained The analysis ~s based on the concept of the so-called 
supermodular ordering. We also give some numerical results whmh indicate 
that dependencies m risk portfohos can have a severe impact on the stop-loss 
premmm. In fact, we show that the effect of dependencies can grow beyond 
any gwen bound. 
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1. I N T R O D U C T I O N  

In traditional risk theory for means of tractability, indwMual risks are 
usually assumed to be independent. Recent research has shown, however, 
that a positive dependence between risks leads to underestimatmn of the 
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stop-loss premium for the aggregated loss. To the best of our knowledge, 
Hellmann (1986) and Hfirhmann (1993) have been the first authors, who 
demonstrated the impact of dependencies on stop-loss premiums More 
recently, Dhaene and Goovaerts (1996) investigated the effect of blvarlate 
dependencies on the related stop-loss premium and gave an upper bound by 
determining the riskiest portfolio Dhaene and Goovaerts (1997) made a first 
attempt to treat multivariate dependencies They considered a special life 
insurance portfolio with two-point distributions. Their results were general- 
lzed by M011er (1997) who characterized the mskiest portfoho under all 
portfolios with equal marginals for arbitrary distributions. Wang (1997) 
suggested a set of tools for concrete modeling of dependencies in rusk 
portfohos using the information g~ven by the correlation coefficients. 

In this paper we now propose some natural models for multivariate risk 
portfohos with d~fferent degree of dependence and same marginal 
d~stmbutxons The assumption about equal margmals is crucial here since 
our focus lies on comparing dependencies only The results can of course be 
extended to unequal margmals by adding stochastic dominance. The models 
are defined m such a way that it is possible to compare two portfohos from 
the same class of models with respect to their stop-loss premiums. More 
precisely, we consider the classical indiwdual model from risk theory, where 
the aggregate claim amount of a portfoho in a period is given by 

S =  ~ X , ,  
I=1 

where X~ is the random claim amount caused by policy i, t = 1 . . . .  n 
Throughout the paper we assume that the random vamables X, are non- 
negative with finite expectation. In a first model (model 3 1 m section 3) we 
assume that the rusks can be divided into several groups, where each risk of a 
group is influenced by a global rusk factor, a group specific risk factor and an 
individual risk factor. We show how the group structure of the portfolio 
affects the stop-loss premium and determine the safest and riskiest portfoho 
m this model class. On that occasion, we use the notion of majorlzatlon m 
order to compare the group structures 

In a second model (model 3.2 in section 3) we compare two portfohos, 
where both are subject to the same economic/physical enwronment, but the 
second portfoho contains an additional global risk factor which influences 
the risks of this portfolio in the same direction. Again, the marginal 
distributions are assumed to be equal for both portfolios. | t  can be proved 
that the stop-loss premium m the second scenario ~s greater than m the first 
one. This result is used later on to construct a portfolio, where the rusks have 
two-point distributions and the portfolio can be characterized by a 
dependence parameter p E [0, 11. The construction Is such that increasing 
p leads to a higher correlation in the portfolio and the two extreme cases 
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p = 0 and p = I correspond to independence and comonotomcity respec- 
uvely. We show that the stop-loss premium ~s increasing m the dependence 
parameter p. 

In another model we compare portfolios which are given by exchangeable 
Bernoulh random variables Here it can be shown that stop-loss order of the 
imxing distribution implies more riskiness for the aggregate claims. 
Moreover, m this setting, we prove that the ratio of the stop-loss premium 
in the riskiest scenario divided by the stop-loss premium of an arbitrary 
portfolio is increasing in the retention level. 

Our models are very general and cover most of the specific parametric 
models considered by Wang (1997) There is one main difference between 
Wang's paper and thJs one We mainly lnvesugate, how dependencies affect 
the riskiness of portfohos, whereas Wang focuses on algorxthms for 
s~mulauon and efficient computation of concrete parametric models for 
correlated risks. Thus the two papers are complementary m so far as his 
algorithms for smaulat~on can be easily adapted to our models. 

Most of the comparison results we provide m this paper are based on the 
so-called supermodular order, rig. This concept has recently proven to be 
valuable for comparing dependencies in random vectors in a wide range of 
applied probabdJty models For detmls see Bauerle (1997a), Shaked and 
Shanthlkumar (1997) and the references thereto. 

At the end of the paper we give a numerical example for model 3.1, which 
shows that dependencies can have a severe effect on the stop-loss premmm. 
In particular we demonstrate that whenever the retention level exceeds the 
expected aggregate clmm amount, the effect of dependence can be arbitrary 
w o r s e  

The paper is orgamzed as follows section 2 contains some basic 
definitions and results about stochastic ordermgs and dependence which we 
will use in the sequel. SecUon 3 covers model 3.1 and 3.2 and section 4 is 
dedicated to the specml case of risks with two-point dlsmbutlons. The 
numerical results are snmmanzed in secUon 5. 

2. STOCHASTIC ORDERINGS AND DEPENDENCE 

Let us first fix the notauon. A portfoho of risks is a random vector 
X = ( X i ,  . . ,  Xn) ofn  individual risks, where an indwidual risk X,, 1 < t < n 
is a non-negative (univanate) random variable with a finite mean. For 
arbitrary unlvarlate random varxables Y we denote the distribution function 
by F r ( t )  = P ( Y  <_ t), t E IR and F y ( t ) : = P ( Y >  t) = I - F v ( t )  shall be 
the corresponding survival function. We will also frequently use the stop-loss 
transform try(t) .= E( Y - t) + = J t  P ' v ( x ) d x ,  t E IR. For a random vector 
X = (Xi, ., X,,) we similarly define the distribution function 

F x ( t )  = P ( X  <_ t) = P ( X i  <_ t , ,  ..., X,, <_ t,,), t =  (tt, ., t,,) C /R" 
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and the survwal function 

i x ( t )  .= P ( X  > t) = P(X~ > t l ,  ., iv,  > t, ,) ,  t = ( t~,  , t , )  E ~ "  

Note  that for mul twar la te  distributions m general f 'x( t )  :~ I - Fx(t). I f  two 
random yanables  or vectors X" and Y have the same dis t r ibuhon,  we will 
write X ~ Y. X ~, F should be read as: X has the distribution F. 

Now we will introduce some stochastic order  relations, which are well- 
known concepts  for c o m p a n n g  risks. 

Definition 2.1 Let X, Y be real random vat'tables wtth fimte means 
a) We say that X precedes Y m stochastic order, wrttten X_<st Y, t f  

Fx(t) > Fv(t) [or all t E IR. 
b) X precedes Y m stop-loss order, wrttten X _<~1 Y, t f  Trs(t) < Try(t)for all 

t E E .  

Remarks 
a) If X _< Y, where ~ may be any stochastic order  relanon,  then we will also 

write Fx -< Fy whenever  it is convenient.  
b) If  we have a family Fo, 0 E (9 C /R of  dls tr lbunons,  then we say that Fo is 

stochastically increasing in 0, if Fo <_,t Fe for 0 < 0'. 
c) Stop-loss order  means, that the stop-loss reinsurance p remmm for the 

risk Y Is hJgher than that for  X for any retention t. 
Now we collect some impor tan t  propert ies of  these ordermgs,  which we 

will use frequently.  They can be found e.g. in Shaked and Shanth lkumar  
(1994) or Goovaer t s  et al. (1990) 

Theorem 2.2 
a) The following condmons are eqmvalent. 

1. X<_~.t Y, 
2. E',f( X )_< E~J ( Y ) fior all non-decreasing f u n .  q ,ons  f ,  
3. There at e random vat'tables }( ~ X and ~" & Y such that )( < f" ahnost 

St l l 'e .  

b) The following condtttons are equtvalent 
1. X < , i Y ,  
2. E f (X)  < E f ( Y )  Jar all non-decreasing con vex functions f ,  

- -  ~ d ~ d - ~ 

3. There are random vartables X =  X and Y - -  Y such that E[ YIX] > 5( 
ahnost sure. 

As stated before, the mare topic of  this paper  is the compar ison of  the 
riskiness o f  portfohos.  In order  to do so we need notions of  s tochasnc order  
relations for random vectors. We say that a portfol io X = (X1, ..., X,,) ~s 
less risky than a portfol io  Y = (Yl, , Y,,), if the corresponding aggregate 
clamls S = ~ , ~ t  X, and S' = Y]~,~i Y, are stop-loss ordered,  i.e S _<~/S'. It 
will turn out  that a sufficient condit ion for this Is given by the so-called 
supermodular ordering or the symmetric supermodular ordering These 
stochastic order  relations have recently been considered m apphed 
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probability by Bauerle (1997a, b), Bfiuerle and Rleder (1997), Shaked and 
Shanthikulnar (1997) and others. In the actuarml literature the super- 
modular ordering has been introduced by Moiler (1997) It is based on the 
comparison of  integrals of (symmetric) supermodular functions, which are 
defined as follows 

Definition 2.3 
a) A f imc t ton  f IR" ---+ IR ts satd  to be supermodular, (/ 

f ( x l , . . ,  x , + e ,  .., .~)+6, , x , , ) - f ( x l ,  , x , + e ,  . . ,  .~3, . . ,  x,,) 

_> f ( x l ,  . , x, ,  ..., a) + 6 ,  ..., x , , ) - J ( x l ,  . , x, ,  . , x:, . ,  x,,) 

holds f o r  all x E IR", 1 _< i < j _< n and all e, 6 > 0 
b) A f imc t i on  )c. IR" ---+ 1t? is called symmetric, 

permuta t tons  I-Ix o f  x .  

( l) 

,f  f ( x )  =f( l - lx)  f o r  all 

An mtumve explanation of  the notion of  supermodularlty can be given as 
follows: Let rl, , ,c, be the individual claim anaounts o f n  policy holders 
and l e t / (x j ,  ..., x,,) be the loss for the insurance company caused by these 
clanns Then supermodularlty of the function [ means that the consequences 
of an increase of a single claim are the worse, the higher the other claims are. 

Symmetric functions do not depend on the order of the varmbles. This 
means m our context that the pohcy holders are indistinguishable 

The following properties of  supermodular ftmctions are well-known. 

Theorem 2.4 
a) I f  f ts twtce dtf ferentiable,  then J is super modular  t f  and  only i f  

02 
Ox, Or j J  (x)  >_ O f o r  all x E IR", I < t < j < n 

b) l f  gl ,  ..., g,, 9~ ---, 97 are tncreasmgJunc t ions  and f ts supermodular ,  then 
f ( g l ( ' ) ,  .., g,,( ')) ts also supermodular .  

A proof  of this theorem and many examples can be found m Marshall 
and Olkm (1979, p. 146ff). Now we will introduce the supermodular 
stochastic order relation. 

Definition 2.5 
a) A random vector X = (Xi, , X,,) ts s a m  to be smal ler  than the random 

vector Y = ( Yi ,  ., Y , )  m the supermodular ordering, wrtt ten X <~,,, Y ,  i f  
EJ ( X )  < EJ ( Y )  Jot" all supermodular  Junct fons  f such that the expec ta t ions  
e¢ist.  

b) A random vector X = (X i ,  , Xn) ts 9ald to be smal ler  than the random 
vector Y = ( Yt ,  ..., Y , )  m the symmetric supermodular ordering, wrtt ten 
X <¢~,,,,~,,, Y ,  t f  E f ( X )  < E f ( Y )  f o r  all s y m m e t r t c  s u p e r m o d u l a r f i m c t t o n s f  
such that the e.x'pectattons extst .  
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Supermodular ordering is a useful tool for comparing dependence 
structures of random vectors. Since any function f . / R "  ~ / R  that depends 
only on one variable (i.e. f ( x l ,  ..., Xn) = g(x,) for some g .  ~ --~ /R and 
some z C {1, , n}) is supermodular, it follows immediately from the 
definition that only d~stnbutlons with the same margmals can be compared 
by supermodular ordering Moreover, all functions f ( x ) =  x,.x/, i # j  are 
supermodular. Hence X <~,,, Y imphes Corr(X~, Xj) _< Corr( Y~, Yj), t # j .  

The usefulness of these concepts in our setting ~s shown clearly in the next 
result. 

Theorem 2.6 Let X = (Xi,  ..., X, )  and Y = ( Y I ,  . . . ,  Y,) be random vectors 
with X <_,,,, Y ( X  <_~.,,,~,,, Y )  and let 

S=~X, and S'=~Y, 
t -I i=l 

Then S _<,1 S'. 

Proof" For the supermodular ordering thas has been shown m Mfiller (1997, 
Th. 3.1). The case of symmetric supermodular ordering can be shown along 
the same lines, as the function x --, ~ x, ts obwously symmetric. [] 

The Theorem says that stronger dependence in the sense of supermodular 
ordering leads to more risky portfolios. Next we will construct a specm] 
random vector w~th gwen marginals, which exhibits a very strong form of 
dependence. Let U be a random variable uniformly distributed on [0,1] and 
let Fi, .., F,, be n marginal distributions. Define X = (X1, .., X , , ) =  
(F~-I(U), , F , / I (U)) .  Using the well-known fact in simulation that 
F - I ( U )  ,~F ,  we see that X in fact has the marginal dlstnbuuons 
Fi, ..., F,,. Since F~ -I is increasing for all i it follows that X,(wl) < X,(w2) 
implies Xj(oJi) _< Xj(w2) for all j # t. Schmeidler (1986) and Yaarl (1987) 
Introduced the notion comonotonieity for this property. An easy calculation 
shows that the distribution function of X is gwen by Fx(t )  = mini'__ I F~(t,). 
Summing up, we can give four equivalent definmons of comonotonlc~ty. 

Definition 2.7 The distribution F with marginal distributions Fi , ..., F, ts called 
comonotontc, t f  one o f  the following four  equivalent conditions ts Jul~lled 

I I  

1. F(t)  = mm F,(t,), t E #T', 
t=[ 

2. The random vector X =  (F,-I (U),  , F~-t(U)), where V is umformb; 
distributed on [0,1], has the distribution F, 

3 There ts a untvarmte random variable Z and there are mcreasmgfimction.s 
f , ,  ., f , ,  such that X = ( f l ( Z ) ,  ., f , ( Z ) )  has the distribution F. 

4. There Js a random vector X ~  F, such that X~(wt)< X~(w2) tmphes 
Xj(Ca)l) ~ )0(k)2)  J~gr all s ¢ t .  
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The c o m o n o t o m c  d l smbut ion  F is also called upper Fr&het  bound, s i n c e  

Fr~chet has shown that for any distribution function G with marginals 
Fi, . , F,, we have G < F. An even stronger result is the so-called Lorentz-  
inequality. It can be found e.g. as Theorem 5 in Tchen (1980) and can be 
stated as follows. 

Theorem 2.8 Let X be an arbitrary random vector and let Y be the 
comonotomc random vector with the same margmals as X. Then X <_,,,, Y. 

This means that comonoton lc l ty  is the strongest possible dependence 
structure and hence by Theorem 2.6 the corresponding por t foho  is the 
riskiest one under  all portfol ios with the same marglnals. 

3. T H E  M O D E L S  

In this section we consider several posslbdltes of  modehng  dependencies in 
risky portfolios.  In our  first model we assume that the portfol io  consists of  
different groups,  such that there is a strong dependence between the 
members  of  one group,  but much less dependence between members  of  
different groups.  As a typical example where this is very reahstm imagine a 
ca tas t rophe risk like ear thquakes  or hurricanes, where the groups are 
specified by geographic regions. There  is certainly a strong dependency 
between the expected losses of  people from the same region, but the losses 
will be nearly independent  for people who hve far from each other  For  such 
situations we suggest the following model.  It was introduced by Tong  (1989) 
and was further  considered by Bz-iuerle (1997a). 

Model 3.1 
Consider  a portfol io  X = (Xi, ..., X,,), consisting of  t7 risks Xt, ..., X,,. We 
assume that the risks can be divided into r_< n groups according to an 
n-dimensional vector k = (kl, ..., kr, 0, .. , 0), k,, E ~N, }--~',,=l kv = n, where 
r lskX,  l s t n g r o u p v i f a n d o n l y l f k l +  ... +k , . - i  < t _ < k l +  .. + k , . . E a c h  
o f  the risks m the portfol io  is influenced by three risk factors which will be 
modeled as Independent random variables V, G,. and Z, 
1 an overall risk factor V which is due to global environmenta l  changes and 

concerns all o f  the risks in the portfol io m the same fashion, 
2. a group specific risk factor  G,, which influences only the risks in group v, 

1 < v < r and has no effect on other  risks in the portfol io,  
3. an lndwidual risk factor Z, which reflects the individual share of  risk X,, 

I < i < n  
Moreover ,  we assume that there exists a function g :/R 3 -+ /R such that 

the i-th risk is given by X, = g( V, G,,, Z,) whenever t is in group v. Since we 
associate higher outcomes of  a risk factor  with higher risk in the por t foho,  
we suppose that g is increasing. This situation Is typical for a lot o f  insurance 
portfol ios  In private health insurance for example,  the risk caused by an 
individual person depends on an overall risk factor  which collects 
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environmental  aspects (e g pollution,  greenhouse effect, epldemms), on a 
group specific factor like profession and on an individual risk factor which 
summarizes health condmons .  In car insurance, the group risk factor could 
be interpreted as the local area of  the pohcy holder• Assuming this kind o f  
dependence within a por t foho  ~t ~s now interesting to investigate the effect, 
the constel lat ion of  group sizes has on the aggregate claim of  the por t foho,  
since it is well-known that positive correlat ions in a risk portfol io increase 
the payable  amoun t  of  the insurance company ,  see e.g. Dhaene  and 
Goovaer t s  (1996, 1997) or Mtiller (1997)• Obviously it Is qmte hard to 
compare  two risky portfol ios when for example the number  and sizes of  the 
groups change. However, m some cases this is possible as we will show m the 
next theorem In order to state ~t, let k and k' be two n-dimensional vectors with 

k = ( k , , . ,  kr ,  . . . ,  O, .., 0 ) ,  k I = (ktl , , kll, O, ..., O) 

l_<r, I_<n, k, ,k' ,E iN for all / and 2 ' , ' : , k , : E ' , ~ , k ' , = n .  
n-&mensmnal  risky portfol ios X and Y be given by 

Let two 

X I = g ( Z [ ,  G i ,  V) YI = g(Ul ,  GI, V) 

Xk. = g(Za-,, G], V) 

X&+i = g(Z/,.+l, G2, V) 

Xk.+k, = g(Zk.+k,, G2, V) 

r< = g( U<, G,, v) 

Yk',+l = g(Ukq+l ,  GI ,  V) 

v< = g(U< +<, <,, v) 

X n : g ( g n ,  Gr, V )  r,, = g(U,,, 6/, v) 

where the individual risk factors Zl ,  , Z,,, U t , . ,  U,, are i.i.d, r andom 
variables, the group specific risk factors G1, ..., G.n,~{rj} are I.I.d random 
variables and the environmental  risk factor V is a random variable 
independent  of  {Z,}, {U,} and {G,.}. g . / R  3 ---, /R is an increasing function. 
Denote  S = ~','=l X, and S' = ~,~1 Y, respectwely. 

Moreover ,  we need an appropr ia te  order  relatmn for vectors to compare  
the group structures k and k'. It turns out  that the notion of  majorlzat lon is 
best suited for this purpose.  The defimtlon is as follows. 

Definition 3.1 Let x , y  E IV~ and denote hy X[ll _> --- _> x[,,] the decreasing 
rearrangement of \', analogously Tot" y. We say that y majorlzes x (x -4 y) tJ 
and only if 

x[~] < Y[~I' r = 1, . . ,  n -  1, and x[,] = y[t]. 
I=l t - I  l=l z=l 
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A host o f  results and applications of  this order  relation can be found m 
Marshall  and Olkm (1979) Intuitively speaking k-< k' means that m k' 
the groups are larger and /o r  more unequal.  Some examples are given m 
section 5 Now we are able to state the mare result for  this model 

Theorem 3.2 I f  k --< k', we obtain under the assumpttons o f  model 3.1 
a) X <_~v,,,~,,, Y, 
b) S <,1 S'. 

Proof  A complete  p roo f  of  s tatement  a) can be found in Bauerle (1997a). 
The  mare ideas are as follows' in a first step we show that  for a sequence 
{G~,} of  1.1 d random variables and 

X = (Gi, , Gi, G2, . . ,  G2, , G,, ..., G~) 

Y = (Gi, . . . ,Gi, G2, .., G2, ..., G/, .., G/) 

where the block of  G,'s m X(Y)  has length k, (k',), the relation k -..< k' implies 
that X _<~,,,,,~,,, Y. Applying p r o p e m e s  o f  symmetric  supermodular  functmns 
we obtain a) Part  b) then follows from Theorem 2.6. [] 

In this setting ~t ~s easy to determine the riskiest and the safest portfol io  
with respect to the stop-loss order ing of  aggregate clmms. In order  to do so 
we only need to determine the minimum and m a x m m m  with respect to 
majonza t lon  under  all vectors k with ~ k ,  = n It is nearly obvmus that the 
minimum is given by k s = (1, 1, .., 1) and the maximum is given by 
k' = (n, 0, , 0). This yields the following result. 

Corollary 3.3 Let U = (n, 0, . , 0) and k -~ = (1, ..., 1) be two n-dimensional 
vectors and denote by S r and S ~ the aggregate clatms of  the correspondmg rtsk 
portfolios as m model 3.1 Then we obtain for arbitrary k C ~N~ wtth 
~','=1 k, = n and respecttve aggregate claim S 

S' <~l S <~1 S'.  

Hence the rlskmst portfol io  is given, when there is only one group and the 
safest portfol io  is obtained,  when each individual forms his/her own group. 

Our  model 3.1 is strongly related to the componen t  models Introduced in 
chapter  9 of  Wang (1997). As another  impor tan t  class of  models he considers 
common mtxture models, whmh we will investigate now. 

Model 3.2 
The intuition behind this model ~s as follows The  model for X as well as the 
model for Y is a so called common  mixture model This means that there are 
some external mechanisms, described by random variables, which have 
influence on all the risks Given these environmental  parameters ,  the 
individual risks are independent.  The parameters  can be some state o f  nature 
(weather condit ions,  ear thquakes,  ...) as well as economic  or legal 
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envi ronments  (inflation, cour t  rules etc ) which have a c o m m o n  impact  on all 
risks. In cont ras t  to model  3.1 we will now compare  the portfol ios  with 
respect to the nu m ber  of  external mechanisms  which affect them. 

The  following model  for this s~tuatlon has been considered by Bauerle 
(1997a) (cf. also Shaked and Tong  (1985))  Suppose  there are two n- 
dimensional  r a n d o m  vectors  X and Y with the s tructure 

..., x , , )  = w), .., g,,(z,,, w)) (2) 

( ) ' , , . ,  Y,,) = v,  w ) ,  , D,,(m,,, v,  w ) )  (3) 

where Zi ,  ..., Z,, are l.i.d, r a n d o m  variables,  Ui, ..., U,, are i.l.d r andom 
variables  and (V, W) is a r a n d o m  vector  independent  o f  Z, and U,. 
Moreover ,  the funct ions g, /R z ~ / R  and D, : /R 3 ---, /R are such that  for 
every fixed w and all i = 1 . . . .  , n we have 

g, (Z,, w) a= ~,, ( U,, V, w), (4) 

i.e. they have the same d)stribut~on. 
We will show now, that  the por t foho  Y = (Yi, ..., Y,,) is more  risky than 

the po r t foho  X = (Xl, ..., X,,), if the functions ~, are increasing in the 
second argument .  In fact, let S = ~2,','. X, and S' ' =  ~ ' , ' ,  Y,. Then the 
following holds. 

Theorem 3.4 I f  the functions ~,, are increasing m the second argument, then 
aJ X <s,,, Y, 
b) S <,: S'. 

Proof  a) can be found as T h e o r e m  3 1 in Bauerle (1997a). Part  b) then 
follows immedia te ly  f rom a) by T h e o r e m  2.6. [] 

The  model  for Y contains  an addi t ional  envi ronmenta l  variable V, which has 
an influence on Yi, . . ,  Y,, in the same direction. Hence there is more  
dependence  in Y than m X, since the external mechamsm~ which has a 
c o m m o n  influence on all risk, is more  impor t an t  in Y. This will become more  
explicit m the special case we will t reat  now. 

Let us assume that  W is cons tant  Hence  Y, = ,~,(U,, V) and X, = g,(Z,). 
This means  that YI, , Y,, are condi t ional ly  independent  given V = v and 
the monotonlc~ty o f  ~, in the second a rgumen t  means  that  the condIt ional  
dis t r ibut ion o f  Y, glven V = v IS stochastically increasing in v for all t = 
1 . . . .  n. Moreover ,  Xl, . . ,  X,, are independent  r a n d o m  variables,  which by 
(4) have the same marginal  dis t r ibut ions as Yl, ..., Y,,. Summing  up, we get 
the following corol lary  o f  T h e o r e m  3.4. 

Corol lary 3.5 Let V be any random vartable and let Y = YI, , Y,, be a 
random vector such that Yt, ..., Y,, are condittonally independent gtven V = v 
and such that the condittonal dtstributtons P( Y, E "1V = v) are stochasttcally 
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increasing m v for  all i = I . . . . .  n Moreover, let X = (-~1, . ,  X,)  be a vector 
o f  independent random vartables with the same marginal distributions as Y. 
Then 

X <_,,, Y and S = Z x ,  <,l S' = Y,. 
I~ ]  I= l  

Another  application of  Theorem 3.4 will be given in the next section. Man y  
more  examples can be found m chapter  7 of  Wang (1997) 

4. RISKS WITH TWO-POINT DISTRIBUTIONS 

Now we consider the impor tan t  specml case o f  portfol ios consisting of  risks 
X~ having a two-point  distr ibution in 0 and a, with P(X~ = O) =p~. This 
occurs e.g. in the individual life model.  Dhaene  and Goovaer t s  (1997) 
determined the riskiest portfol io  with given margmals for this case and 
especially considered por t fohos  w~th dependencies only between couples. 

The riskiest por t fol io  has the proper ty  that if a policy holder with a low 
morta l i ty  dIes, then all policy holder with higher mor tah ty  also die with 
probabdi ty  1 We think that this is very unreahstic. It would be desirable 
to have a parametr ic  model with a dependence parameter  p, which 
cont inuously  varies between independence and maximal dependence as 
described above. 

We investigate here two such models, one for the case o f ind i s tmgmshable  
indwiduals and one for the case that the probabdl ty  for no clmm differs 
between the individuals. 

Indistinguishable individuals 
We say that the individuals in a portfol io  are indistinguishable, if tile joint  
distr ibution of  the random vector o f  their risks is not affected by 
permutat ions  o f  the risks In probabdt ty  theory a sequence of  such random 
variables is said to be exchangeable (or interchangeable),  see e.g. Feller 
(1966, p. 228ff)  or Chow and Telcher  (1978) Of  course this implies that all 
risks have the same marginal distribution,  I e. there is a p E (0, l) and some 

> 0 s u c h t h a t P ( X ~ = 0 ) = p =  1 - P ( X , - - c ~ )  for a l l t  -- l, . , n  Without  
loss of  generality we can assume c~ = l, so that the r andom variables 
Xi, X2, . form a sequence of  exchangeable Bernoulh variables. 

Therefore  let us assume that S,, is the total clama amoun t  of  a portfol io  o f  
n risks, which stem from a sequence o f  exchangeable Bernoulli variables. A 
well-known theorem of  de Fmetti  (see e.g Feller (1966, p 228)) states that in 
this case S,, is a mixture o f  binomml distributions,  i.e. 

P(S ,  = k) = '0k(l - zg)"-k'F(dO) 
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for some mixing &stnbut lons  F. Thus, the &strlbutlon of  S,, is completely 
determined by the m~xmg distribution F In fact, it ~s completely determined 
by the first n moments  of  F. For  a survey on exchangeable Bernoulh 
varmbles, including many examples and methods for eshmatmg their 
parameters we refer to Madsen (1993). 

Now we want to show, how the m~xmg &stributlon F affects the riskiness 
of  the port foho S,, We have the following result. 

Theorem 4.1 Let S,  (S~,) be the total elatm amount o f  a portfoho of  n rtsks, 
whtch stem from a sequence oJ exchangeable Bernoulh vat'tables wtth mtxmg 
dtstrtbution F (F'). Then F <st F' tmphes S~ <_~1 S~. 

Proof  This follows directly from Corollary 3.7 in Lef6vre and Utev 
(1996). [] 

Remark: From Theorem 4.1 it follows easily that the least risky portfoho of  
exchangeable Bernoulh variables with g~ven marglnals ~s the one that 
consists of  independent risks and the riskiest portfolio is the one with mixing 
distribution concentrated on {0, I}, which means that the risks are 
comonotonlc  In fact, this means that the portfolio consists of  ~dentlcal 
risks X = (Xi, Xi, . , Xi) and the dlstr ibuhon of  the total claim amount  
S,, -- n Xl is a two-point &stnbut ion  with P(S ,  = O) = p = 1 - P(S,, = n). 
If  we compare the stop-loss premiums of  this portfoho with an arbitrary 
other portfolio of  bi(I, p)-distributed risks, then we can strengthen Theorem 
4 1 to the following result. 

Theorem 4.2 Let X = (Xi, .., Xn) be a portfoho of  bl(l, p)-dtstributed rt6ks 
wuh an arbitrary dependence structure and let Y = ( YI , ..., Y1) be a portJolio 
o f  tdenttcal rusks with the same dtstrlbutlon. Let 7rx(t) "= E ( ~  X~ - t) + be the 
net stop-loss reinsurance premtum of  portfolio X and define Try(t) simdarly. 
Then the ratto 7rv(t)/Trx(t) is increasing on its range [0, n) 

Proof. Since ~ Y, = n Yl is a two-point distribution on {0, n}, the function 
try is affine hnear. Since any stop-loss transform is decreasing and convex 
(see e.g. Muller (1996)) thls implies that g(x):=TrxOTryl(X)  is a convex 
function. Differentiation y~elds that 

Cx o (x) 
g ' ( x )  - o ( x )  

is increasing, and hence ~ x ( x ) / ~ r ( x )  Is decreasing, since 7r T) Is decreasing. 
This can be written equwalently as 

>_ for  llt < s 
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and hence 

~ is increasing 

[] 

Remark. Computa t iona l  results indicate that Theorem 4.2 may be true for 
arbi t rary  distributions. We are, however,  not yet able to give a p roo f  for this 
conjecture.  

Distinguishable individuals. 
N ow  we propose a model where the individuals in the portfol io  may 
have different probabil iues for claims and different claim amounts .  We 
want to construct  a por t fol io  of  risks X, with P(X,--O) =p, and 
P(X, = c~,) = q, = 1 - p ,  where 0 < p, < 1 and c~, > 0 are arbi trary.  More-  
over we want to introduce a dependence parameter  p E [0, 1] such that p = 0 
corresponds  to independence and p = 1 corresponds  to comonotonlc i ty .  A 
very simple model with this proper ty  would be to take some mixture o f  the 
independent  and the c o m o n o t o n e  case. We think, however,  that this is not 
very reahstlc. We propose some sort of  an additive damage model,  which is 
well known in reliablhty theory.  Assume that there are two sources, that 
cause some normally distributed dainage. One source influences all 
individuals m the same manner,  whereas the other  source depends on the 
lndtvldual behavior  o f  each individual. A claim of  amoun t  cx, occurs, if the 
sum of  these two damages exceeds SOlne level z,. 

The  formal construct ion will be based on model 3.2 with distributions 
and functions, which assume only two values• We denote  by N(# ,  o2) the 
unlvarlate normal  distribution with mean /L and variance o-2 > 0 For  
convenience we extend the def inmon to the case o2 = 0, where N(FL, O) 
denotes the one-point  distr ibution m /_L. The p-quantl le o f  the s tandard 
normal distr ibution will be denoted by z ,  I.e if X ~ N(0,  1), then 
P(X _< zp) = p. Now assume that 0 _< o2 < ~-~< 1 and consider model 3.2 
with W ~  N(O, cr2), V,,~ N(O,r 2 - ~ ) ,  Z, ,-~ N(0,  1 - o 2 )  and U, ~ N(O, 1--T 2) 
All random variables shall be independent  We define 

g,(z,w)=~,.l{z+W>Ze,}_ ={c~,,0, z+w>_ZP,else 

and 
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Recall that X, = g , ( Z , ,  W) and Y, =~ , (U , ,  V, W) for i = 1 . . . . .  n. Since 
U, + V ~ Z ,  ~ N(0, 1 - o66), condition (4) is fulfilled. Moreover,  
Z ,+  W ~ U , +  V+ W,,~N(O, 1), so that P(X,=c~, )=P(Z,+ W>zp,)=q, and 
P ( X , = 0 )  = P ( Z , +  W<zp,)=p, .  Similarly P ( Y , = O ) = p , =  1 -P (Y ,=c~ , ) .  By 
Theorem 3.4 X <~,,, Y and hence X ~s less risky than Y. 

Now let us write X ( a ) =  (Xl(a), ., Xn(cr)) for the above defined 
portfoh 9 X to make the dependency on o- exphclt The definition of  Y imphes 
that Y "- X('r 2) which can be seen by interchanging the roles of  Z, and U, as 
well as the one of  W and V + W. Hence we obtain the following result. 

Theorem 4.3 L e t 0 _ < p < p ' _ <  1 Then X(p) <_ .... X(p') and hence 

n 

x, lp) Z z,l#). 
i=1 ~-I  

It ~s easy to see that X(0) is a port foho of  independent risks and X(I) is a 
portfolio of  comonotomc risks, which is the r~sklest portfolio under all 
portfolios with given margmals,  as has been shown by Muller (1997) for 
general dlstr~butlons and m Dhaene and Goovaerts  (1997) for the case of  
two-point distributions as considered here Now we will show that we can 
get any positive dependence structure by varying p continuously between 
these two extreme cases. In fact, we have the following result. 

Theorem 4.4 The function p---~ Corr(X~(p), Xl(p) ) is non-negattve and 
contmuously increasing for all l, j = 1, , n, i C j. 

Proof: The marginal distribution of  X,(p) and hence also the variance of  
X,(p) is independent o f p  for t = 1 , . . ,  n Thus we only have to examine the 
covarmnce. A straightforward calculation shows that 

Cov(X,(p), Xj(p)) = c~,% (P(X,(p) = c~,, Xj(p) = crj) - q,qj). 

Hence ~t ~s sufficient to consider the expression 

P(X,(p) = e~,, Xj(p) = %) = P(Z, + W > Zp,,Zj + W >_ zpj) =: Fp(zp,,Zp,) 

where Pt, is the survival function of  a blvarlate normal distribution with 
s tandard normal margmals and correlation coefficient p. It follows from 
Sleplan's mequahty  and its p roof  as given e.g. m Tong (1980, p. 8if)  that 
p ~ / ~ p  is increasing and continuous.  Hence p ~ Corr(X~(p), Xj(p)) ~s also 
increasing and continuous.  Non-negativity then follows from the fact that 
X(0) Is a vector of  independent random variables [] 
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5. NUMERICAL EXAMPLE 

Let us now illustrate the effect o f  dependencms m model  3.1 by a numerical  
example.  In order  to keep the c o m p u t a t i o n  simple, we have chosen g(v, y. z) 
= y. The  sequence of  r a n d o m  varmbles  {G,.} ~s m.d. with a two-poin t  
d l s t n b u t m n  on 0 and 4, where the value o f  4 occurs with probabi l i ty  0.06. 
The  por t fo l io  consists o f  20 risks. We have compu ted  the relative stop-loss 
p r e m m m s  for 8 different scenarios whmh are given by their g roup  structures  
k , , t  = 1 . . . . .  8 h s t e d i n t a b l e  I. 

T A B L E  I 

~cenario I k,  

(I, I, I, , I, I, I) 
(4, 3, 3, 2, 2, 1, 1, I, 1, I, 1) 

(8,2,2,2,2,2,2) 
(4.4, 4, 3, 3. 2) 
(15, 2, I, 1, I) 

(5, 5, 5, 5) 
(io, 5, 5) 

(20) 

Scenario I co r responds  to the safest po r t foho  with 20 independent  risks and 
scenario 8 is the riskiest por t fol io ,  where the same risk occurs 20 times. In the 
next table we summar ize  the order ing relatmns of  these vectors w~th respect 
to the m a j o n z a t l o n  ordering.  

T A B L E  2 

k l  

k2 
k, 
k4 
ks 
k6 
k7 

kl k2 k~ k4 ks k6 k7 ks 

--K --~ -.< 

.-< ~ ..< ..< 

7/( ..-< .-< 
..< 

• -< -R ~ -< 

-< -< 

The symbol  7~ indmatcs that  the vectors cannot  be c o m p a r e d  The  following 
table now conta ins  the relative s top-loss  p remiums  (divided by the 
independent  case t = 1) mul t iphed by 100 for several re tentmn levels. No te  
that  the expectat ion o f  the aggregate  claims equals 4 8 and the ou tcomes  
range between 0 and 80. 
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TABLE 3 

3cenarto 

re ten t ton  k I k2 IX3 k4 k5 Ix6 Ix7 ki4 

0 

I 

2 

3 

4 

6 

8 

10 

100 100 100 100 100 100 100 100 

100 105 109 II0 II I  112 113 116 

100 113 121 124 126 129 132 139 

100 124 140 145 150 155 161 173 

100 144 173 182 191 200 210 233 

100 174 210 229 272 272 295 347 

100 270 330 385 537 506 572 717 

100 327 478 480 830 700 834 1128 

Because of  Theo rem  3.2 we know that  given a re tennon level, the relative 
s top-loss  prernlum increases in k. Table  3 shows that the increase is modera te  
ff k, and k) are nl some sense nearby  as for example  k6 and k7. In the cases 
where we were not able to es tabhsh the compar i son  theoretically hke for 
example  for scenario 5 and 6, we find that  the order  can change when the 
retention level increases T h e o r e m  4 2 explains the monoton lc l ty  of  the 
relative stop-loss p remium with respect to the retention in scenario 8. The 
nulnerical data  suggest that this is also true for the other  scenarios.  This was 
a l ready observed by Dhaene  and G o o v a e r t s  (1996). To  our  knowledge this is 
still an open problem.  

A very impor t an t  conclusion that  we can draw from the COlnputatlon ~s 
that  the increase in the relative stop-loss p r e m m m  can be d r a m a u c  in the 
presence of  posi twe dependence  Even manor occurrence of  dependence  like 
m scenario 2 has a severe effect. Moreover ,  ff a por t fo l io  contains  posltlve 
dependence  between the risks, the s~tuahon deter iorates  m the number  of  
insured risks. 

Suppose  Y, X~, . . ,  X, are i i.d. r andom varmbles  (w.l o g we assume 
that  they are concent ra ted  on [0,1]) and we are interested in the stop-loss 
p r e m m m s  o f  the safest por t fo l io  rgJ:(t) = E(~ ' , '_  I X, - nt) + and the riskiest 
one 7r].(t) = E(n Y - nt) +, where t E (0, 1) gives the retention percentage.  In 
this setting we obtain  

Theorem 5.1 The ratto 7~{,(t)/~],(t) t.s increasing in the number  n o f  aggregate  
rtsks and the hmtt  is equal to E ( Y  - t ) ÷ / ( E Y  - t) ;/ t < E Y  and +oc  t~ 
t > E Y  

P r o o f  We obta in  that  

_ 

E(n  Y - ,71) + E( Y - t) + 

E(Z'; , x, - EC!  V - . . . .  , - I  X ,  t) + 
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Hence it suffices to prove that E( ,~ ' , '= i  X , -  t) + is decreasing in n. Since 
Xl, ..., X,, are H.d. it follows from Theorem 4 m Arnold  and Vfilasenor 
(1986) that 

1 .+ l 

n +  1 ~ X '  _<~/ 
I = l  

and the monotonic l ty  follows. 

I // 7,Zx, (s) 

Since the random variables Xi, X2 . . . .  are independent  and identically 
distr ibuted with a fimte mean, the assumptmns of  the strong law of  large 
numbers  are fulfilled Therefore  

hm X~ = EXi = EY (6) 

Hence the stated Illlllt follows. [] 

Remark '  Arnold and Vlllasenor (1986) have shown that for Equat ion  5 it is 
sufficmnt, that X~, X2, are exchangeable Hence the mono tomcl ty  part of  
Theorem 5.1 remains true for the more general case o f  exchangeable random 
variables, but in that case the hnm will be different. In fact, there is also a 
versmn of  the strong law of  large numbers  for sequences o f  exchangeable 
random variables. It states that m thin case 

I1 

n m  - x ,  = E [ X ,  le], 

where 0 is the random variable, whmh describes the mixing mechamsm m 
de FmettFs Theorem (cf. Feller (1966) and Chow and Temher  (1978) for 
more details) Hence m this case we get 

lira rd~,(t) _ E(  Y - t) + 
, ,~#jc( t )  E(E[YIO ] - t )  + 

F r o m  Theorem 5.1 we see that the relative stop-loss p remmm can be 
arbi t rary  high, when the retentmn exceeds the expected aggregate clama 
Altogether  we can conclude that the usual assumption of  independence m 
risky portfol ios leads to a dangerous  underest imat ion of  the risk Hence the 
adequate  naodehng of  dependent  risks will remain an impor tant  task for 
future research. 
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