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l O V E R V I E W  

Any market practtttoner who sells derivatives on his own account will say that 
hedging is the key to pricing If a contract is not hedged, one can sell it at any 
price, even the right one, and still lose money. The price of the contract rnust be 
the cost of  the hedge, plus margin, and the profit/loss of the deal wdl depend 
crucially on the hedge being effective 

From the earliest days of  the rigorous hterature, such as Harrison and Phska 
(1981), hedging has been used to derive prices m the absence of arbitrage. Text 
books for practmoners, such as Chapter 14 of Hull (1997) and Baxter and Renme 
(1996) stress the centrahty of  hedging to securmes trading The essence of the case 
being that hedging allows the derwatwe writer to mmlm~se his exposure to market 
risk without reducing hts profit, thus allowing hma, in the words of  one banker, 
' to quote a price with a view of making a profit through h~s intermedlat~on rather 
than by taking a directional view" (Bogm, 1997). 

Hedging may be performed on a wide variety of  markets for arbitrary 
denvauve products. In simple cases, an option ~s hedged by trading m the 
underlying security (stock, currency or bond), but It Is equally possible to 
construct a hedge for a denvatwe m terms of simpler dertvatwes, such as forwards 
and calls Duplre (1993) has doric interesting work m developing this area of  
option-hedging, which we will study m section 5 

On the other hand, it might be attractwe to work with a model in which it is 
not possible to hedge. Such incomplete markets can appear  retractable, but, 
following work by El Karom et al (1996) are now amenable to the tool of  

This  p a p e r  was  dehvered  al  a mee t ing  on  "F inanc ia l  M a t h e m a t i c s  a n d  D e r w a t w e s '  at  the 
In t e rna t t ona l  Cen t r e  for  M a t h e m a t i c a l  Sciences in E d i n b u r g h  on  21 J a n u a r y  1997 
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superhedgmg.  This techmque produces  a s t rategy that  domina te s  the opt ion  
payof f  Tha t  is, the hedge will p roduce  at least as much as the cont rac t  requires, 
and may  p roduce  a surplus  E h m m a t m g  down-s ide  marke t  risk (in theory at least) 
is achieved at  the expense of  the loss of  two-way pricing Final ly ,  the 
supe rhedgmg of  der ivat ives  using o ther  op t ions  gives even bet ter  results, and 
creates an elegant  dual i ty  between the o p u o n - h e d g m g  and the superhedgmg 
approaches  

2 STATIC HEDGING 

We begin with the simplest  case 
Cons ide r  the con t rac t  to forward  purchase  at  tmle T o n e  unit o f  a stock S for 

a pre-set price k. Imagine  that  interest rates are cons tan t  at  a (cont inuously  
c o m p o u n d e d )  rate r and there are no t ransac t ion  costs payab le  nor  dividends due 
from the stock At  what  price k should we sell the forward  contract'~ 

At  time T, the cont rac t  has the (now certain)  value o f  

X = S r - k ,  

so we might  expect  its t ime-zero d iscounted  worth  to be 

E(e  rT x )  = e - r rE(ST)  - ke -fT. 

and then the price k required to give the con t rac t  nil net present  value would be 
k = E(ST) More  generally,  we might  d iscount  equities at a different rate, u, than 
the cash d iscount  rate r. In that  case, the a p p r o p r i a t e  forward  price would be 
k = e-(U-r)TE(ST). Either  way. this seems to make  some sense if S r  is expected to 
be large, the forward  price should be cor responding ly  large Paradoxica l ly  
however,  this price is wrong 

The  actual  fo rward  price, m this model ,  is k = erTSo That  Is, the price is jus t  
the current  s tock price So scaled up by the time value of  money over  the per iod 
The price does not  depend  at all on whether  ST IS expected to be high o r  low The 
reason for this is a hedge The cont rac t  X can be hedged if we. 
• buy one unit o f  stock for price So, and 
• bo r row ke -rT units o f  cash 

This has initial cost  So - ke - 'T By time T, the stock has evolved to be worth  
ST and the debt  has grown to - k ,  giving exactly the same net wor th  as the 
forward  X. So the initial wor th  of  X is the initial cost  of  the hedge, which is zero 
only If k = e~'rSo 

The hedge is essential ly to buy one unit  o f  the stock and walt,  so that  it ~s 
ready to be handed  over  at t ime T We are unconcerned whether  the s tock price 
rises or  falls, or  indeed whether  it is valued ' cor rec t ly '  at ei ther t ime 0 or  tmae T. It 
is enough for us to have it, because we are now unexposed to marke t  risk, in the 
form of  stock price movements  

This  example  demons t ra t e s  a stat ic hedge, which can be put  on at the s tar t  of  
the con t rac t  and left unchanged till the end 
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E x a m p l e :  f o r w a r d  b o r r o w i n g  The interest-rate  marke t  can be descr ibed 
through the behav lour  o f  ze ro-coupon  discount  bonds  The  T-bond pays one 
unit o f  cash at t~me T, and at time t before then has a value ( typical ly)  less than 1, 
wri t t en  P(i, 7) This al lows us to lend £ 1 to a cus tomer  from time zero to time T 
by selhng P-I(O. 7") units o f  the T-bond Into the marke t  now for a price o f £  1, 
which we loan to the cus tomer  At  time T, tile cus tomer  pays  us back  p - I  (0, 7") 
which we use to meet our  ma tu r ing  T-bond hablh ty  We could also accept  term 
deposi ts  from the cus tomer ,  by changing  all the s~gns and buying T-bonds  
instead. 

Our  cus tomer  may  wish instead to bo r row later  (from tlme S to time T), but  
agree on the price now, at t ime zero Suppose  he wants  to bo r row £ I at  tune S 
How much should we demand  back at t ime 7v 

The answer  is, we should get back P(0, S)/P(O,T) and here is the hedge 
* sell P(0, S)/P(0,7) units o f  T-bond,  and receive P(0, S) now, and 
• buy one unit o f  S -bond ,  for cost  P(0, S) now. 

These mmal  t ransac t ions  have zero net cost  At  hme S, we receive £ 1 from 
our  S -bond  which we can loan to the cus tomer  as agreed.  At  time T, we recewe 
P(O, S)/P(O,T) from the cus tomer  which exact ly cancels our  ma tu r ing  T-bond 
I labdlty 

In o ther  words,  the forward  price to sell the T-bond at tn-ne S is 

F -  P(0, T) 
P(0, s) 

Away  from the specml case of  forwards ,  statm hedging can still be beneficml, 
even ~f ~t is not  pcrfect. Fo r  mstancc,  a static hedge to approxmaate  a clama X can 
be made by holding ¢ units of  s tock and ~; umts of  the cash bond  Thc expectcd 
square er ror  o f  thxs hedge (to choose  a s imple loss function),  is 

We can mlnimlse this, to begin with, ovcr  the cash holding,  with the op t imal  
choice of  ~ being ~b=e-rTE(x-~S.r), and the minimal  value being 
E(¢)  = Var (X  - ¢ST) This itself can now be mmlmlsed  over  ¢ at the value 

Coy(X,  ST) 
Var(ST) 

with value E(¢)  = V a r ( X ) ( l  - p2), where p is the cor re la t ion  between X and S t .  

E x a m p l e  In the par t icu la r  case where ST is normal ly  d is t r ibuted  as a N(# ,  o2) 
and  X is the call payoff  X = (ST -- #)+,  then the optmaal  ¢ = ½, and 

7 r - - 2  
E(¢)  - 2~r - 2 E(0), 

a reduct ion m the er ror  var iance  o f  over  73% 
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3. SIMPLE HEDGING 

In a sense, fo rwards  are a special case and their hedge has been known for a long 
ume.  In fact, any payoff  which is a hnear  function of  the s tock price has an exact 
static hedge. The hedge for the claim X = aSr + b, where a and b are constants ,  is 
to hold a units o f  s tock and e-rrb units of  cash, with initial value aSo + e-rTb. 

This exact  answer  for simple clauns m general  marke t s  also holds for general  
c la ims in s imple marke ts  Fo r  instance, take the s ingle-period marke t  with zero 
interest  rates (so there is a cons tan t  cash bond  B~ = I) and one risky asset St. The 
s tock evolves as shown m figure I 

B=I 

X=!  

X--0 

B=I 

FIGURE I Stogie-period securities market 

The stock price ei ther  doubles  or  halves, and cash stays cons tan t  at 1 A call 
op t ion  on Si ,  s t ruck at £ I, with time 1 value o f X =  (Si - I) +, will pay  o f f £  1 if 
the stock goes tip and noth ing  If It goes down.  The pauci ty  o f  possible values for 
S~ enables  us to write X as 

2 I 
X =  ~ S i  3 

Tha t  is, X has the same payoff  as a forward  to buy 2/3 units o f  s tock at the price 
of  £0  50 per unit App ly ing  our  methods  o f  section 2, we see that  the tmlc zero 
price for X is 

V = -2 I _ 1 
3 S° 3 3 

So the price o f  X is ac tual ly  1/3 and the hedge Is to 
• buy 2/3 units of  s tock for cost  2/3 
• bo r row an addi t iona l  1/3 units o f c a s h ,  
which has initial cost o f  I/3 and terminal  value of  X 

We could have per formed this ca lcula t ion for any claim X which paid  xu after  
an up- jump and x,/after a d o w n - j u m p  Such a claim would be worth 

I 2 
V ~ "~X u-]- '~X d 
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This has the form of the expected value of X under a probability measure whmh 
asstgns I/3 chance to an up-jump and 2/3 chance to a down-jump• Thts hedging 
measure  (q, I - q )  is given by thc formula 

So - Sd e' ~'So - Sd 
q - - - - , o l  q - -  t f r  ¢ O, 

A u - -  3 d S u  - -  S d 

where Si takes the value s,, after an up-jump, and sa after a down-jump• To see 
why this actually is an expectatmn, see Chapter 2 of Baxter and Renme (1996) 

Although the model is very simple, Jt can be used as a basra building block of 
more complex models We can combine many mdw~dual branches into a tree 
(figure 2). 

It just takes 10 layers In tlus tree to produce a final layer containing over 1000 
nodes Optmns can still be priced by working back recurslvely through the tree 
from the final layer• See, for example, Chapter 15 of Hull (1997) or Chapter 2 of 
Baxter and Renme (1996). 

FIGURE 2 B m o m m l  b e e  

4. BLACK-SCHOLES 

The simplest continuous-time rnodel for a stock price is the Black-Scholcs model, 

St = S0 exp(o-W, + #t) ,  

where W, ~s a Browman motmn, and cr and # are constants In this model, 
log(S f fSo)  is normally distributed with variance oat and mean/~,, The wmable cr 
Is called the vola td t ty  of the process 

We can also see S as the hm~t of discrete trees, as m section 3, with current 
value So evolving to 

So exp(crv/~7 + t ,&) ,f up-jump, 
S~t = So e x p ( - o x / &  + p,6t) If down-jump 
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The time uncrement 6t over one step of  the tree ~s going to get ever smaller.  Then 
log(St~So) is equal  to I t t+ crx,~X(t/~St), where X,, is a smaple symmetr ic  randorn 
walk,  with X,, dis t r ibuted  as a function o f  a b inomial ,  2 Bin(n, 1/2) - n, with zero 
mean and var iance  n. By the Centra l  Limit  theorem,  the dls tNbut lon o f  log(St/So) 
converges  to that  o f  the Black-Scholes,  namely N(#t ,  a2t) 

Choos ing  q to be the hedging measure  

q - e,,./~7+j,,~ , _ e-,../~7-~,,~, "-' ~ ~ ' 

o-2,) then now Iog(S,/So),s  asympto t ica l ly  d ,s t r ,buted  as a normal  S ( ( r -  ~o--)t, 
The hedging price at t ime zero of  any clama X payab le  at tmle T will then be 
I~ (e -~rx ) ,  where the behav lour  o f  X u n d e r  Q is governed by the new asymptotuc 
normal  dustrlbutlon Evalua t ing  thus for the European  call claim X = ( S T -  k) + 
guves rise to the ce lebra ted  Black and Scholes (1973) call optuon pricing formula  

V 0 = e-rT<F+(l°g(- t -½ cy2 
2 

where F us the forward  price F = Soe ~r, and ,-I, us the normal  dustrlbutuon functuon 
Again  we do not  use this price because it Js an expected value o f  the claim, but 

because this is the value whuch lets us hedge In thus case the hedge we need at tume 
av  Fo r  a general  optuon X we can also price and hedge m the same way 0us-ug 

In fact the Black-Scholes  formula  ns not  jus t  true for the Black-Scholes  model .  
It is enough that  the s tock S r  and cash bond  Br are jo in t ly  log-normal ly  
dustnbuted under  the hedging measure  Q. The formula  wull then still hold wuth 
~ T  replaced by Var(log(S.r/So)), e ,r  replaced by IE~(B~I), and the forward  
price F equal  to F = So/IE~(Br I ) 

F o r  a good untroductlon to Black-Scholes  from the actuarml  point  o f  vuew. see 
the comprehcnswe  review paper  by K e m p  (1996) 

Also H o b s o n  (1996a) reviews the extensions possible from the constant  
vola t lh ty  assumptuons o f  the basuc Black-Scholes  model  Tha t  paper  describes 
hedging m a stochastuc vola t lh ty  f ramework ,  as well as consudermg duscrete-tume 
A R C H  and G A R C H  models,  and provudes a good  in t roduc t ion  to the more  
advanced  techmques  

5. OPTION-H EDGING 

The above  formula  does depends  crucnally on some aspects  of  the Black-Scholes  
model ,  namely that  
• volatnhty IS cons tan t  (or at least determlmStUC) 
• the marke t  genera ted  by the asset us comple te  

In practice,  these can not  be relied upon One solut ,on is to recogmse that,  say, 
vanil la call op t ions  arc so frequently t raded as to be hqtlJd assets m theur own 
Nght As such. they are not priced per re by the Black-Scholes  formula ,  but they 
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can themselves be used m hedges to price more comphcated  products  This ts, to 
corn a phrase, opt ion-hedging using ophons  as a hedge for other  derivatives, as 
opposed to the classical hedging of  options 

As an example, suppose we have a traded stock S, and traded call options, 
where C,(T, y) is the time t price of  a call on ST struck at y. For  smlphclty, take 
interest rates to be zero, so that 

C , ( T ,  :,) = ~:Q((ST -- : ' )+1-~, )  

A particular case, originally due to Breeden and Litzenberger (1978), is that o f  
a terminal value payoff  X = / ( S r ) ,  for some twme-dlfferentlable funcuon f. A 
simple varmnt o f  Taylor ' s  theorem says that 

/7 ~x)  = f (O)  + x['(O) + ( x -  y)+f"O,)dy, for al x >_ O, 

whmh can be proved by integrating by parts. Subsutut lng S r  for x and taking 
expectauons under Q gives the tmle t value o f  the optmn,  Vt, as 

V, = f ( 0 )  + &J'(O) + C¢(T, y)J"(y)dy 

We have calculated not only the pr,ce for X, but also a statm hedge which is 
• hold J(0) umts of  cash, 
• hold f ' (0)  umts of  stock, and 
• h o l d / " ( v ) d y  umts o f  the call struck at t~. 
(In practme, some approximat ion to the cont inuous  density J"(y)dy will be 
required ) We have already seen how I,near terms can be statmally hedged hke a 
forward Now we see the convex terms being hedged with optmns.  

If  interest rates were non-zero,  the formula still holds wflh the single change 
that we hold e-'r/(O) umts of  the cash bond, wh,ch is worth e-~(r- ')f(0) at time t. 

Note that this does not prme all opUons, such as lookbacks or  exot,cs (For  
example, a put at the maxmaum price attained by the stock, X = suPt<TS ~ --St ,  
or an down-and-out  call whmh only pays off tf the stock never went below a pre- 
set threshold, X = (St - k)+l(mf,<r & > c).) 

The formula 's  advantages are not only that ~t Is a statm hedge, but also that it 
~s completely model independent we make no assumptmns about  how S, or 
C,(T, k) evolve, or even whether the market  is complete But we can still hedge 

This example is actually evidence of  a deeper idea o f  Dup~re (1993) Given the 
opUon prices 

ct(r,  y) = I~((ST - -  Y ) + l  .-~t). 

thmr partm] derivative with respect to y ts 

O C,(T, y) = - Q ( S r  > Yl ~-,), 
Oy 
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and dlfferentmtlng once more Dyes 

0 2 
0 v ---2 C,(T, y)dy = Q(ST ~ dyl :G), 

which ,s the marginal density o f  ST given .T', Then the time t value of  any claim 
X = f(Sr)  wdl be 

/0 /0 Q(ST ~ dy I .T , ) f (y )  = --02 C,(T, y ) f ( y ) d y .  
Oy 2 

Integrat ion by parts t ransforms this into the Breeden and Litzenberger formula 

C o n v e x  payo f f s  

There is a special case of  terminal-value options with a convex payoff, which is 
particularly interesting. For  instance, we can use Jensen's mequahty (see, for 
example, 6 6 o f  Wdllams, 1991) to show that 

Vo = E~(e-rr / ( sr ) )  >_ e-r'f(F~, 

where F is a forward price F = e r r S o  = Ea~(ST). We can also use the convexity of  
f o n c e  more to show that 

Vo >_ e - ~ F )  >_f(Sol - (~ - ~ rW)f~OI. 

So that i f / (0)  = 0, for perhaps a call option, the opt ,on value V0 is always worth 
at least as much as its current ,ntrinslc value /'(So), and smldarly V, > f(S,) 
American options, which Dve the right to the mtrlnsm va lue r (&)  at any tmae t up 
to maturi ty T, have no add, tmnal  worth for such convex payoffs null tit 0. 

We can also see how volatdity and convexity make prices higher The price o f  
a convex optmn ~s increasing in the volatlhty of  the asset. For  instance, ~f 

S'~ = gexp(o- Z - ½ o'2), 

where Z is a normal N(0, I) g l v l ngE (S~)  = F ,  then forc~ 2 < r  2, 

Yr = S~exp(e~2 - ½c~2)for 2, an independent N(0, 1), 

where ~2 = r 2 _ o..2 Then again by Jensen's mequahty  

E(; (s;.)) = E(E~ (S.~) [S~)) > ~(f(S~)) 

Call prices, for instance, increase with the volatlhty of  the asset (as per the Black- 
Scholes formula), but also m general models This fact, coupled with the Breeden 
and Litzenberger formula, shows how volatility and convexity work together to 
Dye value That  ~s, the opt ion 's  non-linear terms have worth 

.f~J0 C,(T, y)f"(.,,)dy, 
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which increases both with the volatility of  the asset (whmh increases all the call 
prices) and the convexity o f J  (whmh increases J") .  

Hobson (1996b) umtes exmtmg results, using couphng, to show that convex- 
option prices, even for d~ffusion models, increase with volauhty and that the 
optmn value is itself a convex function of the current asset price 

A new result generahses the Brecden and Lltzenberger formula to higher 
dmaenslons Suppose we have a vector of  assets St m R n, such that tSiI is square- 
integrable and that optmns on all fixed portfohos (hnear combinations) of  ST are 
traded That is, the call ((0, ST) -- y)+ is traded, for all vectors 0 m IR n and all real 
y, and has current price C,(T, O, y) 

Now for any f r o  C "+3, whmh satisfies the boundedness condmon that IW'+3Jl 
is mtegrable over ~ ,  then f has a Fourier transform ](0), 

= d.,-, 

wh,ch ,s bounded by ~0) [  _< clO1-1'' 3 , for some constant c We recall the Fourier 
reversion formula 

f(,-) = 

We can also use an adapted versmn of the existing one-dlmensmnal hedging 
representatmn apphed to the complex functmn d:, evaluated at the portfolio 
value z = <0, ST), thus. 

e,(0 s t ) =  1 +  t(0, S T ) -  /2 b'l(Y-' <0, S,r)- l)+e ' ' d). 

We can substnute this expression into the Fourier mverston formula above, to 
deduce that 

J(ST) = f ( 0 ) +  {Vf(0), ST) -- (2r~)-"~o ~ I:'l(y-'(o, ST>--,)+e"~o)ayao 

This expression can be re-expressed, by changing variables to @ = y 10, to gwe 

f(ST) = f ( 0 )  + (Vf(0), S7) + J~, ((~b, ST) - l)+Ff(qS) d~. 

where F . / {~ )=- (2 r r ) - "  Ref~.[y["+le"fCVqS)dy Thus the time I price of such a 
claun f(Sr) 2S 

V ,  = f ( 0 )  + (W(0),  St) + : C,(T, (b)Ff(qb)dq3, 
J~ n 

where C,(T, 6)= C,(T, qS, 1) And thus when our claim, X = ~ S - / ) ,  is the 
terminal-tune evaluation of a smooth function f ,  then the clam1 has a static hedge 
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of  cash, stocks, and generahsed calls. As such functmns are dense m the space o f  
all measurable functmns f, with f ( S r )  mtegrable, then all such clmms can be 
approximated with static hedges 

6. SUPERHEDGING 

In incomplete models, where we cannot  hedge, and we are pricing exotms 
(insusceptible to Breeden and Ltzenberger) ,  we must try something else Work by 
El Ka rom et al (1996) has brought  forward the concept  of  superhedgmg. 

A clear treatment of  the El Karom results can be found m Hobson  (1996b), 
and Frey (1997) Is a good revmw of  the current hterature and developments in the 
superhedglng field 

Suppose as an example, a stock prme behaves under some martingale measure, 
as a martingale dlffusmn with volatility ~rt, 

dS, = ~7,StdW, 

Suppose further that a, is either dependent on a new source o f  randomness 
d~stmct from W, or simply uncertain - we.just do not have a rehable model for it. 

Given an upper bound OM on the volatlhty, that is o-, _< OM, we can bound the 
price o f  convex terminal value claims f (S r ) .  We can even allow am to be non- 
constant ,  as long as Om = aM(S,, t) only depends on tnne and the current stock 
price. If  we hedge as t f  the actual volatility is oM then, as the theorem below 
shows, our  hedge's final value will always be at least as large asff(Sv). The clam1 
has been superhedged. So the super-price of  the claim is the theoretmal price of  
J'(Si)  given the stock's  volatlhty ms cv,vt. Simdarly concave payoffs are superhedged 
by lower bounds on volatihty. 

T H E O R E M  (El Ka rom et al ) Let  Cr = C(S,,  t) be the worth oJ the convex clatm 
f ( S r )  assuming the volatthty ts ~TM, and let V, be the worth o f  the a t tempted  hedge 
Then C(.v. t) ts convex m x and the trackmg error el = VI - C~ ts gtven by the posl- 
ttve quanttty 

[' 2, ..2 02 C = ½ ( G  - 

In the special case where f (x )  is the call payoff  (x - k) +, then C, = C(St, t) is 
the Black-Scholes call price, assuming constant  volatfl,ty er,vt, where C = C(x, t) is 

, , 2 o g ~ - ~ t ( T - I )  
C(x, t ) = x ~  ° g ~ : + 2 r T M ( T - I ) .  - k O  

G -  r -7 " 

and the hedge ~, Is equal to 4~1 - oc i S t), where 
- -  0 2 ,  k t~ 

o c  = 

O x ¢ ' \  ~,v~ x /Y  -z- i 
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, !  

Then the worth of  the hedge at tmle t is Co + Jo cb,,dS,,. Crucially, C is convex m x 
so that the tracking error ~s always positive as aM as an upper bound for a, At 
tmae T, Vr is the worth of  the hedge and CT is the option worth ( S r -  k) +, so a 
positive tracking error means the option has been superhedged 

A pleasing synthesis between the opt ion-hedging of  section 5 and super- 
hedging has been achmved by Paras (1997), a description of  which we close wath 

Following Paras, we let P be the set of  all measures that might model the asset 
price. These measures might not be eqmvalent,  for instance they might 
correspond to all possible Markov  volatility processes o-t lying in a band 

O" m ~ O t ~ O-M: 

where Crm, O'M can be functaons o f  t.me and asset price Then the superhedge price 
o f  a claim X will be the (supermartmgale) process 

Vt = s u p E ~ ( X  I fi',), 
P e P  

where interest rates have been set to zero for smlphclty. The superhedgmg 
strategy will be to behave as if volauhty  as 

o'at when ~Yv > O, Iocallyconvex,  

o- = o-,,, when ~ > O, Iocal lyconcave 
OS" 

Suppose also that there are currently traded instruments, such as vamlla options, 
which pay offX,  at time T a n d  are currently worth C,(t). We might not be able to 
write X entirely m terms of  a combinat ion o f  the X,, but we could do the best we 
could. If  we used a hedge of  A, umts o f  X,, our  valuation for X would be 

As we are completely (super)-hedged for any choice o f  A, we could choose A to 
mmlmise Lt(A), and quote the sharpest price possible. As Lt(A) is the supremum 
of  linear functions o f  A, it is a convex function of  A, and so susceptable to 
opmmza t lon  techniques. 

Interestingly, thas problem Is the Lagranglan dual of  the constrained 
optmalzatlon problem which maxumses the expectation o f  X over measures 
whmh produce the market  price for every X, That  is the problem 

s u p E ~ ( X  I.T') ,  subJect to E?(X, II Y , )  = C(t) ,  ~ ~ 7~ 

This is really just affirms the intuitive observation that measures m P which do 
not reflect the current price o f  traded instruments cannot  be the measure we need 
to price So wc have a duahty  between the best superhedge of  the clam1 over all 
measures, allowing hedging with traded instruments, and the best superhedge 
over all measures wh,ch price the traded instruments to market 
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