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A B S T R A C T  

This artmle presents an exphcit formula for the value of a withdrawal benefit 
when the times of death and withdrawal are dependent. The denvauon is 
based on an actuarml eqmvalence principle. As a specml case, we show that 
m the fully continuous case, the withdrawal benefit is the reserve when the 
decrements are independent We also present a definmon of ant,selecUon 
and prove that the withdrawal benefit will be smaller under antxselection. 
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1. INTRODUCTION 

In some markets, hke the Umted States, life insurance products have a 
withdrawal benefit when the policy is terminated. This artmle will examine 
the lmphcatmns of dependent probaNhtles of withdrawal and death on 
withdrawal benefits for hfe insurance m discrete time. Specifically, we will 
give an exphcit expression of the w~thdrawal benefit under a dependent 
decrement model thus allowing us to characterize the withdrawal benefit 
under anUselectmn 

In the book, Actuarml Mathemaucs (1986), the authors state that 'qf  the 
withdrawal benefit in a double decrement model whole hfe insurance, fully 
continuous payment basis, is the reserve under the single decrement model 
whole hfe insurance, the premium and reserves under the double decrement 
model are equal to the premmm and reserves under the single decrement 
model " This incredible result is not always true. The reason that the reserve 
~s not always equal to the w~thdrawal benefit was given by D.R. Schuette 
(reported by Nesbnt (1964)), who found the withdrawal benefit is not the 
reserve m the discrete model because "the probability of withdrawal depends 
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on the force of  mor tah ty . "  Thus,  th~s article delves into the issue o f  
dependent  mor tah ty  and withdrawal m a discrete model For  an mtroduc-  
non to the mathematms of  dependent  decrement  theory,  consult C a m e r e  
(1994). 

2. THE SINGLE-DECREMENT MODEL 

In this section, we present the classmal single-decrement model for hfe 
insurance pricing and reserving Let Ta denote  the hme and death for some 
hfe aged x. Next,  let 

Sa(l) = Pr(Tg > l),t >_ 0, ( l )  

be the surwval function of  T~. Th roughou t  the discussion we will assume 
that this survival functxon is absolutely cont inuous  with a density denoted as 

fa ( t )  and a force of  mor tah ty  equal to jttd(t)=J'I(t)/S~I(I). Thus 
S " ( t ) = e x p { - . f ~ t g ' ( . : ) d z } .  Now cons,der the probab ,h ty  that the hfe 
survived to time t + s Dven that it surwved to time t. This survwal function 
~s denoted as , p ' / and  it is equal to. 

, p r = P r ( T d > t + s , T , , > t )  S " ( t + s )  { / ' + ~  } - Sa(t ) - exp - a ,  #a(z)dz . (2) 

It wall be convement  to define T,/(t) as the r andom variable induced by 
.,p'/ so that sp~ I = P , ( T , t ( t ) > s )  Note  that Td = T,i(O) and ,p0 d = S' l(t) .  
Moreover ,  if Td > t then Ta(l) = Ta - I, otherwise Ta(t) as undefined. It is 
instructwe to note that ff the expectatmn E[g(T,t(I))] exasts for some functmn 
g(s), then 

E[g(Ta(t))] = E [ g ( T a -  t)lTa > t]. (3) 

This last fact wall be used repeatedly. 
Usually we will assume that p remmms and death benefits are paid at the 

discrete times t = k/m where k = 0, 1, 2 . . . .  and m > 0 Therefore ,  it is 
convenient  to define the discrete random vartable 

K 2 - L'"T"-----J-, (4) 
m 

where L-J is the floor functaon In other  words, LyJ is the integer part  of  r. 
Thus,  a f y > 0  then [yJ = k  if and only f f k < y < k +  1 Note  that T,i is 
smaply equal to K'~' when m = oo and so any discussion about  the 
cont inuous  model is subsumed within the discrete model. 

In thas amcle ,  we assume that the life insurance has a varying death 
benefit equal to b(/), ff death occurs at time t. Typacally, b(t) = 1 for all t 
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Next, let 

(5) 

denote the interest discount functmn Tradit ionally,  actuaries have assumed 
that ~: = ~5 is constant  thus implying that v(t) = e -~t Using the equivalence 
prmmple and the funcUons v(t) and b(t), we define the net single prelmum at 
tmae I for the future benefits from the hfe insurance as 

A;~'(t) = E[b(K,':' + l/m)v(K:}' + 1/m)/v( t ) lTa > t] 

= E[b(LmZ.  ÷ IJ/m)..(Lmr. + ]3/m)/~(t)lZ. > t] (6) 

-- E[b(Lm(ra(t ) + t) ÷ l J /m)v(Lm( T,l(t ) + t) + I ] /m) /v( t )]  

Note that the last equality m equation (6) follows from equation (3). Now, 
let us focus on the valuation of  the premmm payments. Assume that 
payments  of  1/m are made at the tmaes t = 0, I/m, 2/m, .  Then the present 
value at time t = 0 of  all the payments  made m the period [r,s) will be 
denoted as a[r,s) and calculated as' 

oo 

air, s) = _1 Z ~:(k/m) l(r <_ (k /m)  < s) (7) 
I?T 

,~=0 

In this definition, l(e) is an indicator function that Is equal to I if the event e 
is true and 0, otherwise. It is mstrucuve, to verify that a[r,s)= a [ 0 , s ) -  a[0,r) 
Using this annmty-certain formttla and the eqmvalence principle, we find 
that the net single premmm for the future payments from the hfe annuity at 
t i m e  t is. 

a',7(r) = E[ . [ , ,  K:7 + 1/m)/v(t) lT.  > t] 
= E[a[e, LmZ, z ÷ l j /m) / v ( t ) lZd  > t] (8) 

= E[a[t, L,.(T.(t) + t) + l]/m/'.(t)]. 

Under  the single decrement model, the net level prem]um for the life 
insurance is denoted as pm and It is equal to. d 

l)l 111 P;'/= A a (O)/a,i (0), (9) 

under the eqtnvalence principle. Thus, we can define the hnk functmn as. 

£ ( , ,  s) = b(s) v(.~)/',(,-) - ~'a[, ' , . , ' ) /v(, ') ,  (10) 

This link function will be useful when the w~thdl'awal benefit is derived for 
the double-decrement model m the next secUon. This hnk funcUon can also 
be used to define the prospective loss at tmae t, whmh ~s 

L'"(t) = £(t,K~;' + l /m)  (11 
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Note  that  E[L"'(0)] = 0. Finally, we find that  the prospective reserve at any 
time t is: 

V'"(t) = f[Zm(t) lTd > t] = E[£(t ,  LmT,: + l j/m)tT,~ > t] (12) 
= E[£(t,  [m(Tj( t )  + t) + l ] /m) ]  = A',}'(t) - P~}'a',}'(t) 

Note  that  the r a n d o m  variable  Lm(Ta(t) + t) + I J im  has a central  role. Thus  
it will be convenient  to define 

E','/(t) = [m(r,l(t)  + t) + lJ /m.  (13) 

With this nota t ion,  we can write 

t H  /11 DI  A a (t) = E[b(/C a (t))v(/C a (t))/w(t)], 

a',}'(t) = E[a[t, IC',}'(t))/v(t)], (14) 

v"(t) = E[C(t, 
Let S'l(slt, m) denote  the survival function of  IC'j(t). Let us derive this 
function.  Consider  the fact that xf y > 0 and x > 0, then [yJ + 1 > x if and 
only if y > kxj. Using this result we find that  IC',~'(t) > s If and only if 
Ta(t) > ( [ m s J / m )  - t. Therefore ,  

Sd(slt, m) = e x p  - a t  i J ( z ) d z  . (15) 

3 THE DOUBLE-DECREMENT MODEL 

In this section, we present  the probabfl ls tm st ructure  for a dependent  double-  
decrement  model .  This will al low us to derive an expressmn for the 
wi thdrawal  benefit, W'~,' (t), that  represents the benefit that  is returned to the • ap~. 

pol icyholder  at t ime [mt + l J / m  when withdrawal  occurs at time t 
Let T,,, denote  the time at wi thdrawal  f rom a life insurance cont rac t  for a 

life aged x, where j " ( t )  is the density, S"( t )  ~ "' - - = fl f (_)dz is the survwal  
funct ion and tL" (t) = J "  (t)/S'"(t) Is the force We will find it useful to define 
the discrete r a n d o m  varmble  

K~[,' -- [m r,,,J (16) 
m 

General ly ,  we assume that  Ta and T,, are not stochastically independent  
Therefore ,  let us consider  the c o n d m o n a l  density o f  Ta given that  7",, = t, 
whmh is denoted asfalw(t,llt). Also, let Sal"'(ta[t) = ft,~ ff:l"'(z]t)dz denote  the 
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condit ional  survival function of  Ta given that T., = t. Hence,  the condit ional  
force o f  mor tah ty  ~s 

IlJl"'( t,llt) -- f 'llw( t'llt) (17) 
Sdl'"(t,tlO 

Thus sdl"'(t,, t) = e x p l  , -  fie l,'ll"'(z t )dz} .  In the case of  independence,  we get 
j a  " ( ta l l )=j ' l ( t , i ) ,  S'¢"(ta'[t)= Sa(ta), and #dlw(Ijlt ) = iLa(t,;). It is impor-  
tant to note that the ensuing &scusslon and results assume that we know the 
density falw(talt ). However ,  esnmating this density is not a trivial exercise 
because we can only observe the mimmum of  the random variables T,t and T,.. 

Now consider the probabil i ty  that the life survived to time t + s given 
that ~t surwved to time t and w~thdrawal occurred at ttme t This survwal 
function is denoted as sp'/I"' and it is equal to. 

,p,/i,,,= p,.(T,t > t + s l T ,  l > t , T , , , = t )  = P,'(T,i > t - t -s ,T , i  > tlT,, = t )  
Pr(Td > t iT.  = t) 

s " ' " ( ,+s l l )  { f + '  } 
- Sdl,,.(tlt ) - exp -.,, t~+'(zlt)dz . (18) 

dill' It will be convenient  to define Tdlw(t) as the random variable reduced by sP, 
so that ,p ' / l ' "=Pr(T,  i i . , ( t )>s) .  Note  that ,p~=adl"'(tlO). We let 
Tab,,(O) = Tall .... It is instructive to note that if the expectat ion E[g(T,&,(t))] 
exists for some functmn g(s), then 

E[g(T,o~,,(t)) ] = E[g(T,i - t)lT, t > t, T.. = t] (19) 

This last fact will be used repeatedly In the definition of  the withdrawal 
benefit, the random variable [m(Tal,,.(t) + t) + l J / m  has a central role Thus  
it will be convenient  to define 

= L m ( r +  (,) + *) + (20) 

With this notat ion,  we can write 

A',',;,,(,) = E{b(lC,',i,,.(t)~,(/C',',i,,.(0)/~,(0], 
'/,L'(') = E[@,/c ' ,L( , ) ) /~( , ) ]  

(21) 

Let s'tl'"(slt, m) denote  the survival function of  K'~i,,(t ). Note  that K m tt'~ d]w',  J > S 
If and only If T,&,.(t) > Lmsl /m - t. Therefore ,  

{l } s'tlw(slt, m) = exp - a, i, 'llw(z) de . (22) 

We are now ready to state our  first theorem. 
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The o r em 3. I. Let £.(t,s) be the lmk functton I f  the equtvalence princtple holds, 
then under a double-decrement model where the premtums are equal to pm the 

t l  ' 

withdrawal benefit fimctton ts 

W~'l',,.(t ) = E[E(Lmt + lJ/m,/U'//], , (t))] 

= E[E(Umt + l J/m, [m(Talw(t) + t) + lJ /m)]  (23) 

= E[E([mt  ÷ I J /m,  [mTd -F lJ /m)lT, /> t, Tw = t] 

= E[C(Lmt + lJ/m, K:~'+ 1/m) l r ,  l > t. T,,, = t] 

Wm (t) Proof.  If .. alw~ J is the withdrawal  benefit, then under  the eqmvalence 
principle, 

U,,~' E[a[O, K:'~' + l / m ) l ( Va <_ 7,,.)+a[0,K//' + l / m ) l ( Ta > V,, )]-- 

E[b(K~'+ 1/m) 'o(K:" I + 1/m) 1 ( rd  <_ T, ) + W~'i, ,, ( 7,, ) v(K,','.' + 1/m) 1 (Td > T,,)]. 

Therefore,  

P~)'E{a[0, K:7' + l / m ) ] +  

I~'/E[[a[O,K,',',' + l /m) - a[O, Ki'j' + l /m)]l(Tn > T,,,)] = 

E{b(K;7'+ l / m )  v(K:'~' + l / m ) ] +  

E[[W~;[,,,(T,,) v(K(,'.' + l /m)  - b(K~' + I/m) ~2(K~' + l / m ) ] l ( T j  > rw)] 

But 

" ' "  E b '" 1 / m )  '" g', × E[a[0, K:t + l /m)]  = [(X:l + v(K,, + 

For  slmphc,ty,  let Y = l(Ta > T,,.) v(K,','.' + 1/m). Then 

E[YW m r T  +,,, ,,)] = 

E[Yb(K~' + l /m)  v(K:'~' + 1/m)/v(K;[' + l / m ) ] -  

E[ YP~'(a[O, K',~' + l /m) -a[0,  K,',:' + 1/m))/v(Km + 1/m)]. 

Note  that  a[O, l (~ '+l /m)-a[O,K, ' , ' , '+l /m)=a[Kf[ '+l /m,K'" , /+ l /m) ,  
hence the r ight-hand side of  the last equanon  ~s equal to 

E[ YE(K[I' + 1/m, K~ '+  1/m)] = E[ YE[£(K,'~'+ 1/m, K~j' + 1/m)[Ta > T,,, 7",,,]] = 

E[ YE[£Lmt+ lJ /m ,Kj '+  l /m)[  T,i > t, 7",, = t]],_ r,,] = E [  .vWmdl,,,~. , t ' r  )] 

Hence,  the result is proved [] 

W m Now,  let us compare  the wxthdra al benefit W .  ,(t), as defined m 
equat ion  (23), w~th the reserve formula  V'"(t), s h o ~  in equat ,on (12). 
Clearly, they are different, even when Td and 7",,, are stochastically 
independent .  In the case of  independence,  Ta(t) and Tdl,,,(t) are ldenUcally 
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distributed Let W~':'(t) denote  the withdrawal benefit under  the independent  
decrement  model,  then 

Wj'(t)  = E[g(Lmt + l Jim,/c'//(t))]. (24) 

Thus  

tH lira V'"(t) = lira W:~lw(t ) = E[C(t, Td(t) + t)]. 

In o ther  words, the withdrawal benefit is equal to the reserve m the 
cont inuous  model,  thus confirming a well-known fact 

4. W I T H D R A W A L  BENEFIFS UNDER ANTISELECTION 

In this sectmn, we g~ve a def inmon of  ant~selectlon and we show that the 
w~thdrawal benefit under antlselect~on is smaller than the benefit under  the 
single-decrement model,  as expected. We are now ready to give a def inmon 
o f  anttselectton We say that hfe insurance is subject to antlselectmn at 
withdrawal,  if 

#dl"'(tdlt,,,) < #d(td) Vtcz ~ t.. (25) 

If  we reverse thls lnequahty,  then we have antlselectlon for hfe annuities. 
Using our  definition of  antlselectmn, we lmmedmtely find that 

s"l,, (sit, m) _> #(t i t , , , , )  (26) 

for alls s > 0. 
Rrst ,  we &scuss the maphcatlons of  ant~selectmn to the valuation of  the 

Ill~ insurance. Assume that g ( s ) =  b(s)v(s) is an absolutely cont inuous  
functmn with g'(s) _< 0 so that 

/o g(s) = g(O) + g ' (z )d:  

Actually, this is a weak assumptmn because the assumption is obviously true 
when b(s) = 1 and v(s) = c x p ( - 6  s) 

L e m m a  4.1. Suppose that g(s) = b(s) v(s) for s >_ 0 Is absolutely continuous 
and g'(a) < 0 lJ g(s) ts mtegrable wtth re.spec't to the cumulattve dtstrtbutton 
f lmcttons 1 - sdlw(slt, m) a , d  1 - Sd(sl t ,m),  then zmder the a,ttselectton 
condttton l~'ll"'(tdltw) < itd(ta) attd the equtvalence principle, we get 

A',;],,,(O _< <7(0 
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Proof First, note that 

D1 tH III ,,(OA,~ (,) = E{b(K:,~ (0)  ~,(1C,~ (0)1 

= .~o ee)g(s)d(1 - S't(slt, m)) 

£,ao) [g(O) +,fo'g'(z)dz] d( I - S'l(slt,m)) 

= g(O) + d ( l  - S '~(sl t ,m))  m 

= g(O) + g'(z)Sd(~l,, m) J_, 

Next, under antlselecuon SalW(zlt, m ) > S'l(zlt, m) and so g'(z)S al" (zlt, m ) 
J(z)sa(zlt, m). Integrating both sides of the mequahty yields the result. [] 

Next, we present a lemma on the lmphcatmns of anUselectmn to the 
valuation of hfe annumes. 

Lemma 4.2. Under the eqmvalence principle and the anttaelectton condttton 
~Jlw(6tltw) < Y(t,z), we get 

ProoJ. F~rst, note that 

~,(,)~,',~'(t) = E l < t i t ,  Ic',~'(t))] 

m Z  v(klm) l(t _< kl,n < / ~ ' ( t ) )  
I~-0 

= v(k/m)l(t  < k/re)Ell(kin, < ~',)'(t))] 
171 k-O 

± OC 

= ~ v ( k / m ) l ( t  < k/m)S~t(k/mlt, nT). 
1?1 k=O 

But under antiselectton sdl"'(slt, 177) > Sd(s]t,m). Summing both sides of the 
mequahty ymlds the result. [] 

Applying Lemma 41 and 4.2, we immediately find that under 
annselectmn the w~thdrawal benefit under the classical independent 
decrement model ~s too large We summarize this result with the following 
theorem. 
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Theorem 4.3. Under the conditions m Lemma 4.1 and 4.2, we get 

W;7[, , (t) < W~7'(t ). (27) 
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