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ABSTRACT

This article presents an explicit formula for the value of a withdrawal benefit
when the times of death and withdrawal are dependent. The derivation 1s
based on an actuarial equivalence principle. As a special case, we show that
in the fully continuous case, the withdrawal benefit is the reserve when the
decrements are independent We also present a defimition of antiselection
and prove that the withdrawal benefit will be smaller under antiselection.
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1. INTRODUCTION

In some markets, like the United States, life insurance products have a
withdrawal benefit when the policy 1s terminated. This article will examine
the mmplications of dependent probabilities of withdrawal and dcath on
withdrawal benefits for hife insurance in discrete time. Specifically, we will
give an explicit expression of the withdrawal benefit under a dependent
decrement model thus allowing us to characterize the withdrawal benefit
under antiselection

In the book, Actuanal Mathematics (1986), the authors state that “if the
withdrawal benefit in a double decrement model whole life insurance, fully
continuous payment basis, 1s the reserve under the single decrement model
whole life insurance, the premium and reserves under the double decrement
model are equal to the premium and reserves under the single decrement
model ”” This incredible result 1s not always true. The reason that the reserve
18 not always equal to the withdrawal benefit was given by D.R. Schuette
(reported by Nesbitt (1964)), who found the withdrawal benefit 1s not the
reserve in the discrete model because ““the probabulity of withdrawal depends
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on the force of mortality.” Thus, this article delves into the issue of
dependent mortahty and withdrawal in a discretc model For an introduc-
tion to the mathematics of dependent decrement theory, consult Carriere
(1994).

2. THE SINGLE-DECREMENT MODEL

In this section, we present the classical single-decrement model for lfe
msurance pricing and reserving Let Ty denote the time and death for some
life aged x. Next, let

S = Pr(Ty > 1),1 >0, (1)

be the survival function of T,;. Throughout the discussion we will assume
that this survival function 1s absolutely continuous with a density denoted as
f4(t) and a force of mortality equal to u/(r)=s(1)/S%1t). Thus
Sty = cxp{— fé wd () d:}. Now consider the probability that the hfe
survived to time ¢ + s given that 1t survived to time ¢. This survival function
15 denoted as ;p¢ and it 1s equal to.

d 1+
P=Pr(Ty>1458Ty>1) = S—(,,LQ = exp{—/ u‘l(z)dz}. (2)
S4(1) '
It will be convenient to define T,(r) as the random vanable induced by
S so that pf = Pr(T,(1) >s) Note that T, = T,(0) and pf = S7(1).
Moreover, if T; >t then Ty(t) = Ty — ¢, otherwise T,(r) 1s undefined. It 1s
instructive to note that if the expectation E[g(T,(1))] exists for some function
g(s), then

Elg(Tu(n)] = Elg(Ta — O[Ty > 1. (3)

This last fact will be used repeatedly.

Usually we will assume that premiums and death benefits are paid at the
discrete times ¢ = k/m where k& = 0, 1, 2, ... and m > 0 Therefore, it 1s
conventent to define the discrete random variable

w_ 1mTa)
d m (4)
where |.] is the floor function In other words, |v] is the integer part of y.
Thus, 1f y >0 then |y| =k 1f and only if Kk <y < k+1 Note that T, is
simply equal to KJ' when m =oco and so any discussion about the
continuous model 1s subsumed within the discrcte model.

In this article, we assume that the life insurance has a varying death
benefit equal to b(r), if death occurs at time ¢. Typically, h(r} =1 for all 1
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u(t) = exp{— /Olé:dz} (5)

denote the interest discount function Traditionally, actuaries have assumed
that §; = & 1s constant thus implying that v(¢) = e~ Using the equivalence
principle and the functions v(r) and b(r), we define the net single premium at
time ¢ for the future benefits from the life insurance as

(1) = E[b(KG + 1 /m)u(K7 + 1/m) [u(0)| Ty > 1]
= E[b(|mTy + 1| /m)o(|mTy + 1]/m)/v()|T, > {] (6)
= E[b(m(Ty(r) + 1) + 1| fmyo(m(Ta(t) + 1) + 1| fm) fo(0)]
Note that the last equality in equation (6) follows from equation (3). Now,
let us focus on the valuation of the premium payments. Assume that
payments of 1/m are made at the times ¢+ = 0, 1/m, 2/m, . Then the present

value at time 1 = 0 of all the payments made in the period [r,s) will be
denoted as a[r,s) and calculated as

Next, let

o0

alr,s) = %Zv(k/m)l(r < (k/m) < s) (7)

A=0

In this definition, I(e) 1s an indicator function that s equal to | if the event ¢
1s true and 0, otherwise. It 1s instructive, to verify that a[r,s) = a[0,s) — «[0,r)
Using this annuity-certain formula and the equivalence principle, we find
that the net single premium for the future payments from the life annuity at
time  1s.

ay(t) = Ela[t, Kj + 1/m)/v(0)| Ty > 1]
= Elalt,(mTy4+ 1|/m)/uv(6)|Tq > 1] (8)
= Ela[t, m(Ty(r) + 1)+ 1|/m/u(1)].

Under the single decrement model, the net level premium for the hfe
insurance 1s denoted as P’ and 1t is equal to.

Pi = A3(0)/ag (0), (%)
under the equivalence principle. Thus, we can define the /ink function as.
L(r,s) = b(s) v(s)/v(r) — Pjalr,s)/v(r), (10)

This link function will be useful when the withdrawal benefit 1s derived for
the double-decrement model 1n the next section. This ink function can also
be used to define the prospective loss at time ¢, which 1s

L"(1) = L(, K + 1 /m) (1)
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Note that E[L"(0)] = 0. Finally, we find that the prospective reserve at any
time 7 is:

V() = E[L™(1 |Td>r]=E[.C | mTy +1]/m)|Tq > ]
—E[E(,L (Ta(t) + 1) + 1] /m)] = A7 (1) = Pjag(1)

Note that the random variable |_m(T,,(t) + 1)+ lj/m has a central role. Thus
it will be convenient to define

K1) = \m(T(r) + 1) + 1) /. (13)
With this notation, we can write
A (1) = E[b{KG (1)v(Kg (1) /v(1)],
ag( f) = Ela(t, g () /v(1); (14)
Vﬂl E[E "1 ))]
Let S¢(s|7,m) denote the survival function of K’/(¢). Let us derive this
function. Consider the fact that if y > 0 and x > 0, then |y] +1 > x1f and

only if y > |x]. Using this result we find that KJ(¢) > s 1f and only 1f
T4(1) = (ms]/m) — 1. Therefore,

S%(s|t,m) = exp{ — e £)dz 15
,m) = CXp pi(z)dz g (15)
{

(12)

3 THe DouBLE-DECREMENT MODEL

In this section, we present the probabilistic structure for a dependent double-
decrement model. This will allow us to derive an expression for the
withdrawal benefit, Wi (1), that represents the benefit that s returned to the
policyholder at time Lml + 1]/m when withdrawal occurs at time ¢

Let 7,, denote the time at withdrawal from a life insurance contract fora
life aged x, where /" (1) 1s the density, S"(r) = [ f*(z)dz 1s the survival
function and " (¢) = f"(1)/S"(7) 15 the force We will ﬁnd 1t useful to define

the discrete random variable

|mT, |

m __
Ku‘ -
n

(16)
Generally, we assume that T, and T, are not stochastically independent
Therefore, let us consider the conditional density of T, given that T, =1,
which 1s denoted as /1" (14]1). Also, let S (14t) = [ £ (z]r) d= denote the
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conditional survival function of T, given that T,. = t. Hence, the conditional
force of mortality 1s

f(llw(fd“)

dl"([,['[) A L LV
S (14]0)

(17)

Thus S7"( t/|t) = expi [" e (z)dz}. In the case of independence, we get
S (24]0) S (140) = SUta), and p"(14)t) = p4(t4). 1t 18 1tmpor-
tant to note that the ensuing discussion and results assume that we know the
density £ (14]t). However, estimating this density is not a trivial exercise
because we can only observe the mintimum of the random variables T; and T,,.

Now consider the probability that the life survived to time ¢ + s given
that 1t survived to time ¢ and withdrawal occurred at time r This survival
function is denoted as (" and it 1s equal to.

Pr(Ty>1+5,Ty> 1T, =1)
Pr(T; > 4T, =1)

Sdl“([ +S|[) . d|w
ZWZCXP{__/I ﬂ,l (Zlf)dZ}. (18)
d|w

It will be convement to define T,.(1) as the random variable induced by ,p;
so that " = Pr(Ty(1) >5). Note that pf=35"(10). We let
T4 (0) = Ty, It is instructive to note that 1if the expectation E[g(T..(1))]
exists for some function g(s), then

Elg(Ty(1)] = Ele(Ty = )| Ta > 1, T, = 1] (19)

P = PHTy > 1+95|Ty>1,Ty=1) =

This last fact will be used repeatedly In the definition of the withdrawal
benefit, the random variable |m(T,(¢) +¢) + 1] /m has a central role Thus
1t will be convenient to define

;;]w(’) = |_’n(71(/|u'(1) + t) + ]J/’TI. (20>
With this notation, we can write

aw (1) = E[b{UC, (1) u(Kg,(0) [u(D)],

v 21
a3(1) = Elalr, K2 (1)/0(0)] 2

Let SY"(s|t,m) denote the survival function of K,
if and only 1f Ty,(¢) > [ms}/m — 1. Therefore,

Lms]/m
S (s, m) = exD{— / /L"""(z)dz}- (22)
'

We are now ready to state our first theorem.

(r). Note that Ky (1) > s
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Theorem 3.1. Let L(t,s) be the link function If the equivalence principle holds,
then under a double-decrement model where the premiums are equal to P}, the
withdrawal benefit function is

d(1) = E[L(Ime+ 1] [m, K, (1))]
= E[L(Imt+ 1]/m, |m(Ty,(£) + 1) + 1] /m)]
= E[L(|mt+ 1|[/m,|mTy+ 1)/m)|Ty > 1, T, =1
=E[L{({mt+1|/m K} +1/m)|Ty > 1. T, = 1]

(23)

Proof. If Wi (1) 1s the withdrawal benefit, then under the equivalence
principle,

PYE[al0, K} +1/m) | (Ty < T,))+a0, K"+ 1/m)(Ta>T, )| =
Eb(KG+1/m)v(Kg +1/m) Ty < T, )+ Wy (T) oK)+ 1/m) 1 (Ty > T,,)].
Therefore,

Py E[al0, K"+ 1/m)]+

Py Ellal0, K+ 1/m) — al0, Kg' + 1/m)| (T4 > T.)] =

EbK) +1/m) v(K) + 1/m)]+

EQW(T,) o(KL: -+ 1/m) = (K + 1 /m) v(K} + | /m)] (T > T,)]
But

P} x Elal0, K} + 1/m)] = Eb(K] + 1/m) oK} + 1/m)].
For simphcty, let Y = 1(T; > T,) U(K,’{,’ + 1/m). Then

E[YWy (T\)] =

EYB(KS + 1/m) (K] + 1/m)[v(K] + 1/m)]—-

E[YP{ (a0, Ki + 1/m) — al0, K[! + 1/m)) Ju(K" + 1 /m)].

Note that [0, K} +1/m) —al0,K" + 1/m)=alK" + 1/m K} + 1/m),
hence the right-hand side of the last equation 1s equal to

E[YC(K'+1/m, K} +1/m)|=E[YE[L(K'+1/m,K]'+1/m)|Ty>T,,T,]]=
E(YE[L mat+1) /m Ky 41 /m)| Ty > 0. Tu =l _p. ) = EYW(T)

Hence, the result is proved d

Now, let us compare the withdrawal bencfit W} (1), as defined in
equation (23), with the reserve formula V"' (t), shown in equation (12).
Clearly, they are different, even when T, and T, are stochastically
independent. In the case of independence, Ty(z) and Ty,(t) are 1dentically
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distributed Let W}'(1) denote the withdrawal benefit under the independent
decrement model, then

a (1) = E[L(Lmt+1]/m, K (1))]. (24)
Thus
hm V(1) = Lim Wy (1) = E[L(1, T4(1) +1))].

In other words, the withdrawal benefit 1s equal to the reserve in the
continuous model, thus confirming a well-known fact

4. WITHDRAWAL BENEFITS UNDER ANTISELECTION

In this section, we give a defintion of antiselection and we show that the
withdrawal benefit under antiselection 1s smaller than the benefit under the
single-decrement model, as expected. We are now rcady to give a definition
of antiselection We say that life msurance 1s subject to anuselection at
withdrawal, if

1M (tqltw) < 1l (td) Vi > .. (25)

If we reverse this inequality, then we have antiselection for life annuities.
Using our definition of antiselection, we immediately find that

S (s|r,my > S9(s|t, m) (26)

for alls s > 0.

First. we discuss the implications of antiselection to the valuation of the
life 1nsurance. Assume that g(s) = bh(s)v(s) 1s an absolutely continuous
function with g’(s) <0 so that

g =20 + [ g)a:

Actually, this1s a weak assumption because the assumption 1s obviously true
when b(s) = 1 and u(s) = exp(—§ s)

Lemma 4.1. Suppose that g(s) = b(s) v(s) for s > 0 1s absolutely contrnuous
and g'(s) <0 If g(s) 1s mntegrable with respect to the cumulative distribution
Sunctions 1 — SN (s|t,m) and 1 = SU(s|t,m), then under the antiselection
condition " (t4)0,) < 1 (14) and the equivalence principle. we get

(1) < 4300
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Proof. First, note that

(1) A (1) = E[b(K} (1) v(K ()]
B / g(s)d(1 = 59(slt,m))
J{0 oc)

= [ s+ [ =] a1 = "Glr,m)
[0,50)

/ L (z) — S9(s|t,m)) dz

= g(0) +/0 gz )Sd( |t,m) dz

Next, under antiselection SU¥(z|¢, m) > S9(z|t,m) and so g'(z)S" (z]t,m) <
g (2)S%(z|t,m). Integrating both sides of the inequality yields the resuit. [J

Next, we present a lemma on the implications of antiselection to the
valuation of life annutties.

Lemma 4.2. Under the equivalence principle and the antiselection condition
¥ (tyly) < 1 (ty), we get

digpye(1) 2 af (1).
Proof. First, note that
v(1)dly (1) = Elalt, Kj(1))]

xX

= E[%Zv(k/m)l(i <k/m< /C:}'(f))]

A=0

— EZ vlk/m)1{(t < k/m)E[1(k/m < KJ(1))]

oC

1 w(k/m)1(1 < k/m)S? (k/m|t, m).

But under antiselection S/ (5|7, m) > S9(s|t,m). Summing both sides of the
inequahty yields the result. O

Applying Lemma 41 and 4.2, we immediately find that under
antiselection the withdrawal benefit under the classical independent
decrement model 1s too large We summarize this result with the following
theorem.
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Theorem 4.3. Under the conditions in Lemma 4.1 and 4.2, we get

i (D) < WG(1). (27)
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