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A BSTRACT 

In the present paper the author gwes net premium formulae for a generahzed 
largest clmms reinsurance cover If the clmm sizes are mutually independent and 
idenhcally 3-parametric Pareto distributed and the number of clmms has a 
Polsson, binomial or negaUve binomial dlstnbuuon, formulae are gwen from 
which numerical values can easily be obtained The results are based on identities 
for compounded order stat~sucs. 
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] I N T R O D U C T I O N  

An expression for the pure premmm for the largest clmm reinsurance cover was 
already introduced by AMMETER (1964a) and for the p largest claims reinsurance 
cover by AMMETER (1964b) Simple formulae were presented under the 
assumpUons that the ckum sizes obeyed a one parametric Pareto dlstnbuUon 
and the number of clmms was Poisson dmtr~buted For the same clmm s~ze 
distribution KUPPER (1971) gave a formula for the largest clmm reinsurance when 
the number of clamas was geometrically dlstnbuted and CIMINELLI (1976) 
considered a negauve binomial d~stnbut~on BERLINGER (1972) extended the 
results by AMMETER and deduced the varmncc for the p largest claims reinsurance 
cover Net premmm for a general clmm size and clmm number d~stnbuuon was 
gwen by KREMER (1985) and for some generahzed clmm number distributions 
and a gcncral clmm size distribution by KREMER (1988a). The results m the latter 
were, however, not so prachcal for a specific clmm size d~stnbut~on. The author of 
thIs paper gwcs net premium formulae for a gcnerahzed largest clmms reinsurance 
cover, assuming that the clmm s~zes are mutually independent and ~dent~cally 
3-parametric Pareto distributed and when the number of clmms has a Polsson, 
binomial or negauve bmomml dlstrlbuuon The formulae presented m this paper 
are simple and easily calculated. 
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2 PRELIMINARIES 

From now on, let X i ,  X2 ,  , X N  denote non-negative, mutually independent and 
identically distributed claim sizes, which are independent of  the number of  claims 
N that occur m a Dven time period. Denote by 

XN I ~-- XN 2 ~ ~ XN N 

the clmms ordered in a decreasing size. The t-th largest claim is called the t-th 
ordered claim or more generally the t-th compounded order statistic Let 

f, [0, ~ )  ~ [0, ~ )  

(I _> 1) be measurable functmns, that satisfy 

f,(o) = O~i~d li(y,) ~ O, y, 
t=l t:l 3 

for all 0 < 34, <_ <_.I'2 <_ ) ' t  This representanon was first made by KREMER 
(1982) and the following main definitmn by KREMER (1984)' 

Definition. The reinsurance treaty defined by 

N 

RN(XN I, XN 2, , XN N) = RN = Z £(XN 1), 
i-I 

N 
whmh determlns the reinsurers share of  the total Joss Z X, ,  is called a r e i n s u r a n c e  

treaty based on ordered claims ,=1 
We are especially interested m the case 

f ( x )  = a, x, 

where a,, t >  1, are real constants. This reinsurance treaty is defined as the 
generalized largest clamas cover (KREMER 1988b) We get for 

a l = a 2 =  = a p = l , a , = O V t > p  

the so called LCR(p) treaty covering the p largest claims and for 

al  = a2 = = at,_ I = 1, ap = 1 - p ,  el, = 0 V t > p 

the so called ECOMOR(p)  treaty covering all claims in excess of  the p-th largest 
claim 

We will subsequently use some special functions. The incomplete gamma 
funcnon is defined as 

F(a. v) = / e - "  u " - l  du  , a > O, ~x > 0 

0 
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and the complete gamma function as }12,~F(a, x ) =  r ( a )  
funcUon is defined as 

/ / B(a, b, x) = u a - l ( [  - u ) b - l d u  = t t a - I ( l  -Jr- tt) -(a+b) tht 

0 o 

The incomplete beta 

,a ,b>O,O<x<l  

and the complete beta funcuon as lim B(a,b,x)= B(a,b). The complete beta 
~ l  

funcuon and the complete gamma funcUon are related by 

r(a)r(b) 
B ( a ,  b)  - -  I"(a + b) 

3 FORMULAE FOR TI4E NET PREMIUM 

The two most common risk loaded premium principles, the variance principle and 
the standard devlauon principle, are based on the expectation and the varmnce of 
a certain risk For a generahzed largest clamas reinsurance cover the expectation ts 
gwen by 

E[RN] = £ a, E[XN ,] 

and the variance by 

= a, E[XTv ,1 + 2 a,ajE[Xu ,XN j] - a,E[XN ,] 
t=l g=2 t=l k i=1 

The following theorem is due to CIMINELU (1976) and KREMER (1985), where 

¢(s) = £ P(N = n).C 
n=O 

denotes the probabdlty generating funcuon of N, whmh is assumed to have 
derivatives ¢(')on (0,1) of  each ordcr t > / 

Theorem ! If the claim sizes Xz, X2,  , XN have a continuous distribution 
function F the density funcUon of tile t-th ordered claim ~s given by 

1 
P ( X N , = X ) = ; z - 7 - T J ( x ) [ I - F ( x ) I ' - Z ~ ( ' ) ( F ( x ) ) -  " - - - -  

J - t l )  

and the joint density function of the t-th and j-th ordered claims (0 < t < j )  is 
gwen by 

1 [ / -  F(x,)] '  ' [ F ( x , )  - F(a))]J-'-/+O)(F(a)))f{x,)f(r,) P(XN, = x , ,  X N ,  = : t ) )  - z )  
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Theorem 2 If the claim sizes X/, X2, ., XN have a cont inuous distribution 
function F the k-th moment  a round  the origin of  the i-th ordered claim is given by 

/ ' /  E[2G,] = ~ F- '( ,1)k[: - , ,] ' - '~O~(, , )d.  

0 

and the expectatmn of  the cross product  of  the t-th and j-th ordered claims 
(0 < l < j )  Is given by 

E[XN ,XN j] = 
I 1 

1 

0 0 

Proof  The first part of  the statement follows from theorem I after the 
substitution u=F(x) For  the second part we have for O < l < j  and 
0_<X,v:<_X,v, that 

E[XN ,XN j] = 
O 0  

C - - / :  .v, a ) [ l -  F(x,)]'-'[g(x,)- F(A))] j-'-/qbc')(F(.vJ))f(.x',)j(.x)) dx, dxj, 
, 1 "  ,J 

0 xj 

where 

1 
C =  

r ( , )PO - ,) 

and v = F(xl) we obtain After substituting u = I-F(,,) 

E[Xu  , XN :] = 
I I 

C /  f F - I ( l - u ( ] -  v ) ) F - I ( v ) l t ' - I [ l - v y - l [ l - u y - ' - l f b ( l ) ( v ) d u d v  = 

o o 
I I 

c f F '(v)I1 - ,,~ ,~o~(,,) f F-'(~ - . ( :  - ,,)).'-'[: -.y-'-'~:.d,, 
0 0 

[ ]  

From now on we will focus on the case where the ctmm sizes are d~stnbuted 
according to the 3-parametric Pareto distribution 

F(x) = 1 - \ ~ - ~ - ~ j  x >__ d > O, (3 I) 
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where the parameters c~, ¢3 and d satisfy e~ > 0 and b > - d  The distribution (3 I) 
is the most used claim size distribution, especially if there is a poss~bflity o f  large 
claims In the hterature the 3-parametric Pareto distribution is sometimes also 
called the "shif ted" Pareto distribution (RYTGAARD 1990) or the complete Pareto 
distribution (DAYKIN et al 1994). Since 

F - ' ( x ) =  U+/~ /~ 
( I  - x )  z 

the expectations of  theorem 2 becomes after binomial expansion and slmphfica- 
tlons 

/ 

1 ~ (k)(d+fl)~-h(-/3)/'i(I-u)'-k,,"-h-tq3(O(u)du 
e[x~v ,l = ~ ,,:o I, 

0 

and f o r c ~ >  t I 

1 
E[)(N tXN Jl - -  r(I) 

Ei i i A~ (1 - v)s-~-%o)(v)dv- A2 ( / -  ,,)J-~-%O)(v)</,, + A3 (s - v)'-%('/(,,)a~, 
0 0 

where 

, r ( ,  - ~) 
A, = ( a +  n ) - ~ =  ~) 

rF(,) ~(,- ~] 
A;=~m+/J)L~-' to, ~)j 

A3 = ~2 r(~) 
r0)  

The restriction on the parameter  cv is needed to get a finite expression Assuming 
further that the number  of  claims N is Polsson distributed 

/V I P(N= n) = - - e  -~ A > 0, n > 0, (3 2) 
1l! 

negative blnomlally distributed 

( r, A > 0 ,  n > 0  (3 3) 
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or binomially distributed 

/m', q. 1 q) ...... P ( N = n ) =  ~n ) ( - O<_q< I , n = O , l ,  ,m, 

where m IS a non-negative integer, we have the following corollaries 

(3.4) 

Corollary 3. Assume that the claim sizes Xi,X2,  ., XN are Pareto distributed 
(3 1) and that the clatm number  N is Po~sson distributed (3 2) Then the k-th 
moment  a round the origin o f  the t-th ordered claim IS, for c~ > ~ gwen by 

t 

and the expectation of  the cross product  of  the t-th and j- th ordered claims 
(0 < t  < j ) , s ,  for ce > m,~x{-~,}}, given by 

1 [A,X~PO ' a -  - -  A,F(/ ,A)]  
< x N  v -g5  " " 

Proof  Since the j- th derivative o f  the probab,h ty  generating function ~b for a 
Poisson distributed random variable (3 2) is gwen by 

q3 O) (s) = A:e ~(s- t) 

we have, for 7 > O, that 

/ / 

. f  ( l -u) ' - :oO)(u)du  
0 0 

= A: . f ( l  - u)~'-Ie~("-/)du 

After the substitution t = A(1 - u) we obtain 

/ A 

/(]--lt) '~-IcsO)(u)du : AJ- 'Y/  t ~ le-tdl 

o o 

which gives the result. 

= r ( - r ,  

[] 

Corollary 4 Assume that the claim sizes X/, )(2 , XN are Pareto distributed (3.1) 
and that the claim number  N is negative binomially distributed (3 3). Then the 
k-th moment  a round the origin o f  the t-th ordered claim is, for ~ > ~ given by 

l" 
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E[X~ ,] B(,,r) ,,=0 h 

and the expectat ion of  the cross product  o f  the t-th and j-th ordered claims 
(0 < t < j )  is, for eL > mt~.'.: { 7'71 2}, given by 

1 r 0 )  
E[XN ,X~ ~] - BO, ,') r(,) 

[ 2 , .  , ~ ] A I A ] B O -  a, +~,7-4S) _ A2A~BO_ I_,,,r +-d,7~)1 A -F A3B(J;,,i--~) 

Proof Since the j - th  denvahve  of  the probabi l i ty  generat ing function ~ for a 
negatwe bmomlal ly  distributed r andom variable (3 3) is given by 

~Ul(s) r ( r  
- r ( r )  J) ~'[z - x(~ - 1)] -(r+~) 

+ 

wc have, for "t' > 0, that 

/ / 

0 0 

After the substi tution t = A(1 - u) we obtain 

/ A 

F(r  + j )  A2_ ~ . f  p _ l (  1 + t)_(r+1)d t (1 - F  (r---~-- 11) 7-  l ~(J) ( lg)dll 

0 0 

_ r ( r  + j )  Aj_~ B ( 7 ; ,  + j  - ,y, 7 ~ 0 ,  
r ( , )  

from which the result follows after smlphficatlon 
[ ]  

Corollary 5. Assume that  tile claml sizes Xi,  X2 , X N are Pareto distr ibuted (3.1) 
and that  the claun number  N Is bmomla l ly  distr ibuted (3.4) Then the k-th 
momen t  a round the o n g m  of  the t-th ordered claun is, for oe > ~ given by 

\ I / 11=0 h 

and the expectation of" the cross product of the t-th and J-th ordered claims 
(0 < I < j )  is, for ~ > m ~ {  7, ;} ,  given by 

E[XN ,~N j] - -(~') V(J+ I)" 2 B. ~, _ , , = ~ lAlq ~ (j _ 7  m - j  + 1, q) A2q~B(j - ~ ,,1 - j  + I; q) 

+ AsB(j; m - j  + 1, q)] 
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Proof 
bxnomlally distributed random variable (3 4) is gwen by 

Since the j-th derivative of the probability generating function 

Oc,)(~ ) _ r ( m  + l )  
F(m - j  + 1) ql[qs + 1 - q]'"-/ j _< m, 

we have, for 3' > 0, that 

1 

P ( m +  l) / ( 1  u) '~- ' (qu+ l q)m-Jdu 
l " ( m  - j  --t- l )  qJ .  - 

o 
. f ( l  - .y-~(~)(.)a. - 

After the substitution t = q( l  - u) we obtam 

1 q 

r ( , .+  J) q,-.f 
P(m - g  + 1) 

0 0 

r(m + / )  
~-~ B ( % m - j +  l ,q) ,  

F(m - j  + 1) 

from which the result follows after slmphficatlon 

~ f o r a  

[ ]  

I f0  < ~ < 1, which indicates a very heavy tailed distribution, we have according 
to the results above that the first moment around ongm of a certain number of 
the largest ordered claims does not exist We could therefore consider the number 
of ordered claims, for which the first moment around the orlgm does not exist, as 
a measure for how dangerous a Pareto distribution is Smce many computer 
programs have built-in routines for computmg the complete gamma, incomplete 
gamma and the incomplete beta function, the expectations m results above can be 
calculated easily 

If the claim sizes obey an exponential distribution 

F(x) = 1 - e -'~l'-'l fl > O, x > a, 

we cannot get useful expressions for the moments around the origin and the cross 
product by applymg theorem 2 Usmg well known results from order statistics for 
a determmlstlc number of clmms (DAVID 1970) and then the iteratwlty of the 
expectation operator, expression for the pure premium can be constructed. 
Exponentially distributed clama sizes have been studied by KUPPER (1971) and 
KREMER (1985 and 1986). 

4 A N U M E R I C A L  E X A M P L E  

Let the distribution for the claim sizes be Pareto distributed (3.1) with d = 0 For 
the insurance line under consideration the method of moments gives the following 
parameter estimates 6 = 2.3401 and /3 = 13692. Smce the most import claim 
number distributions are the Polsson and the negatwe binomial, we will restrict 
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the example to them. Using the same est~matmn method we have the following 
parameter estimates. Polsson ~ = 79667, negative bmomml ~ = 1 0865 and 

= 73 326 We have the following numerical results 

Expectatmn of LCR(p) and ECOMOR(p) treatms 

p Po~sson negatwe bmomml p Polsson negattve bmomml 

1 124 597 124 368 1 0 0 

2 190 099 189 738 2 59 095 58 997 

3 238 679 238 215 3 92 937 92 783 

4 278 390 277 837 4 119 548 119 350 

5 312 395 311 763 5 142 369 142 133 

LCR(p)-treaty ECOMOR (p)-treaty 

Standard deviation of LCR(p) and ECOMOR(p) trcatms 

p Polsson negauve bmomml p Potsson negative bmomml 

I 178 069 178 129 1 0 0 

2 191 632 191 860 2 134 587 134 549 

3 198 847 199 254 3 182 222 182 206 

4 203 797 204 389 4 188 799 188 815 

5 207 581 208 363 5 193 255 193 405 

LCR(p)-treaty ECOMOR (p)-treaty 

The difference between the numerical values for Potsson and the negatwe 
bmomml cases ts qmte small. If we assume that m the incomplete beta function b 
~s large and a ts bounded we have the foltowmg asymptouc representatmn 
(ABRAMOW~TZ and STEGUN 1972) 

_FkIa'X(2b+a-2~ 1)) 
B(a;b;x) 

+ O(b-2). 
B(a;b) C(a) 

This explains the s~mdanty m the numerical results above. This suggests, that the 
Polsson dtstnbutmn might be the right claim number model ff the parameter 
value r IS large and ~ is small m the negatwe bmomml distribution 
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