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A B S T R A C T  

A number of more or less well-known, but quite complex, characterizations 
of stop-loss order are rewewed and proved m an elementary way. Two recent 
proofs of the stop-loss order preserwng property for the distortion pricing 
principle are invahdated through a simple counterexample A new proof is 
presented. It is based on the important Hardy-Littlewood transform, which 
~s known to characterize the stop-loss order by reductmn to the usual 
stochastic order, and the dangerousness characterization of stop-loss order 
under a fimte crossing condmon Finally, we complete and summarize the 
main properties of the distortmn pricing principle. 
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I . ]NTRODUCTION 

Since its introduction by Biahlmann (1970), the functional approach to 
premmm calculation in insurance has seen an lmpresswe development. A 
first general and rather elementary method to generate valuable prmlng 
principles consists of the class of quantlle premium calculation prmc,ples by 
Denneberg (1985/90/94) Several recent contributions around this theme 
have been made m actuarial science and finance, among others Hurhmann 
(1993), Wang (1995a/b/c, 1996a/b), Wang et al. (1997) and Chateauneuf et 
al. (1996). 

For a given set S of non-negative random variables X >_ 0 with finite 
means, defined on some probability space, and which represent random 
losses of insurance contracts, a pt tcmg principle is a non-negative real 
function P • S + R, which depends on the distribution F.,(x) of X, and 
whIch ~s interpreted as price of the Insurance risk From an axiomatic point 
of view, it ~s well accepted that a pricing principle should satisfy a certain 
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number of desirable properties. Without repeating all well-known inter- 
pretations, the following propertles are qmte reasonable: 

(PI) P[X] _> E[X], for all X E S 

(P2) P[X] _< sup[X], for all X E S 

(P3) P [ a X + b ] = a P [ X ] + b ,  for all a ,b ,  a > 0 ,  for a l I X E S  

(P4) P [ X +  Y] <_ P[X]+P[Y],  for all X, Y E S s u c h  that X +  Y E S  

(P5) P[.X] ~ P[ Y] If X ~sl Y and X, Y c S 

The last property says that the price functional preserves the stop-loss order, 
or equivalently the increasing convex order (see Kaas et al. (1994) and 
Shaked and Shanthikumar (1994) for fundamentals). Requiring that the 
price functional preserves the usual stochastm order <_~t only, is a less 
stringent property since stochastic order implies stop-loss order. Though the 
stop-loss ordering preserving property of the Swiss family of premmm 
calculation prmoples has been known since its actuarial consideration in 
Bfihlmann et al. (1977), the recognmon of _<s/ as a sound ordering of risk 
seems more recent. For example, the order preserving axiom (P5) Js 
considered in Hmlmann (1987) but without mention of a specific and 
accepted pamal order, which could be used as selected ordering of risk. 
Furthermore, the absolute deviation pnnciple and the Gin1 principle, 
introduced by Denneberg (1985/90), and which satisfy propemes (PI)-(P4), 
and the weaker stochastic order preserwng property, also satisfy (P5), 
(consequence of our main result m Section 3.2). Previously two qmte similar 
but different proofs of (P5) have been proposed by Wang (1996a/b), but 
both contain an error (see Secnon 3.1). 

In view of the above discussion, It seems useful to present a short 
chronological rewew of some mare non-mvml pricing functmns, which 
preserve _<s/, and respect whether the remaining axioms (PI)-(P4) are 
satisfied. 

The Swiss family is positively homogeneous if, and only if, ~t is the net 
principle (see Schmldt (1989), simpler proof by Hurhmann (1997), Example 4.1 
(connnued), p. 9). The first genuine pricing prinoples, which satisfy (PI)-(P5), 
are the absolute devlauon prlnople P[X] = E[X] + O. E[tX - mx]], 0 < 0 < 1 
(Denneberg (1985/90)) and the a im pnnc.ple P[XI=E[X]+O aim[X], 
0 < 0 < 1 (Denneberg (1990)). These functlonals are special cases of the 
class of distortion pricing principles. 

/0 /0' /0' P[X] = g(~'x(x))dx = F~'(I  - u)dg(u) = gxl(u)d3,(u), (1 1) 

where g(x) is an increasing concave function such that g(0) = 0, g(l)  = 1, 
F x ( x ) =  l - F x ( x )  is the survival function, 7 ( v ) = l - g ( l - x )  is the 
&stortion of probabilities in Denneberg's setting, and Fx I (u) is a quantlle 
function of X. The second equahty ~s obtained through partial integration, 
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and shown by elementary calculus in case g(x) is differentlable. The right- 
hand side representation has been introduced by Denneberg (1990) and 
ItS equivalence with the first integral (up to an alternative appropriate 
definition of the inverse) has been used by Wang (1996a) (see also Wang 
et al. (1997)). 

Another attractive special case of (1.1) is the PH-transform principle 
studied by Wang (1995a/95b/96a/96b). Previously to the last example had 
appeared the Dutch principle (see van Heerwaarden (1991), van Heerwaar- 
den and Kaas (1992), Kaas et al. (1994) and a shght generahzatmn of it (see 
Hurhmann (1994/95a/95b)). A pricing principle from the Dutch family 
satisfies (Pi)-(P5) if, and only if, It is of the form 

P[X]=E[X]+O E[(X-E[X])+] , 0 < 0 <  1. (1.2) 

The Dutch family is a special case of the class of  so-called "quasHnean value 
principles" considered recently by the author. However, only sporadic 
members of this class define feasible price functlonals satisfying (P1)-(P5), of 
which one may mention the interesting Example 11 1 in Htirlimann (1997a) 

A generahzatlon of  the class of  d~stortlon pricing principles is the class of  
Choquet pricing principles in Chateauneuf et al. (1996), which is based on 
the theory of capacltmS and non-ad&tive measures (exposed in Denneberg 
(1994)), and breaks with the traditional probabilistic foundations of  
actuarml science and finance. Finally, let us mentmn that one misses still 
feasible price functmnals along the economic approach lnitmted by 
Buhlmann (1980/84) (see the critical cornments by Lemmre (1988)). 

In the present paper, we invalidate Wang's proofs of the property (P5) for 
the dxstortion pricing principle through a simple counterexample, and focus 
on a new proof  of  this important property. Using a two-stage hmmng 
argument (dominated convergence theorem and continuity property of the 
distortion pricing functmnal), it ~s possible to restrict the attention to risks, 
whmh belong to the following large set 

S consists of  all non-negative random variables with 
fimte means, such that the distribution functions of any 
two of them cross finitely many times (finite crossing conchtton) (1.3) 

For completeness, we show also that (1 1) satisfies the other properties 
(PI)-(P4), where our expos~ is intended to be essentially accessible from an 
elementary perspective. 

The paper is organized as follows In Section 2, a number of more or less 
well-known, but quite complex, characterizations of  stop-loss order are 
reviewed and proved in an elementary way. Since no such proofs have been 
found m the original and other papers (and books) consulted by the author, 
the present supplement to the existing hterature will hopefully be helpful for 
future workers m this area (as It has been to the author). Section 3 is devoted 
to a derivation of the main propemes of  the distortion pricing principle. In 
Section 3.1 two recent proofs by Wang of the stop-loss order preserving 
property for the distortion pricing principle are mvahdated through a sample 
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counterexample A new proof  is presented in Section 3.2 It IS based on the 
important Hardy-Littlewood transform, which is known to characterize the 
stop-loss order by reduction to the usual stochastic order (Theorem 2.3), and 
the dangerousness characterization of stop-loss order under the finite 
crossing condmon (I .3) (Theorem 2.2) Finally, we complete and summarize 
the main properues of  the distortion pricing principle m Section 3.3. 

2. SOME EQUIVALENT CHARACTERIZATIONS OF STOP-LOSS ORDER 

Capital letters X, Y, ... denote random variables with dlstnbutlon functions 
Fx(x), Fr(x),  ... and finite means #x, /.tv . . . .  The survival functions are 
denoted by F x ( x ) =  l - F x ( x )  . . . . .  The stop-loss transform of a random 
variable X is defined by 

f 7rx(x) := E[(X - x)+] = Fx(t)dt, x in the support of X (2 1) 

The random variable X is said to precede Y in stochasttc order or stochasttc 
dominance o/first order, a relation written as X _<st Y, if Fx(x) _< Fr(x) for 
all x In the common support of  X and Y. The random variables X and Y 
satisfy the ,stop-loss order, or equivalently the increasing convex order, written 
as X _<~/ Y (or X < , ,  Y), if 71"X(X) < 71"y(X) for all x. A suffioent condition 
for a stop-loss order relation is the dangerousness order relation, written as 
X _<O Y, defined by the once-crossing condition 

Fx(x) <_ Fr(x)  for all x < c, 
(2.2) 

Fx(v) > Fr(x) for all x _> c, 

where c is some real number, and the requirement ~tx _< # r  (Lemma 2.1). By 
equal means #x = #v,  the ordering relations _<~t and _</2 are precised by 
writing _<,/.= and _<o,-. The partial stop-loss order by equal means is also 
called convex order and denoted by _<~,. The probablhstlc attractweness of 
the partial order relations _<~t and _<s/~s corroborated by several mvarmnce 
properties (e.g. Kaas et al. (1994), chap 11.2 and III.2, or Shaked and 
Shanthlkumar (1994)). For example, both of _<st and _<,/ are closed under 
convolution and compounding, and _<s/is additionally closed under mixing 
and conditional compound Polsson summing 

In apphcaUons, to establish stop-loss order comparison properties, one 
reqmres some fundamental facts and equivalent characterizations. First of 
all, the following well-known elementary equivalent statements hold: 

(SL1) X _<~/ Y 

(SL2) E[~(X)] _< E[~( Y)] for all increasing convex functions ~o(x) 

(SL3) E[max(x, X)] _< E[max(x, Y)] uniformly for all x E R 
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A famous and widely known sufficient condit ion for stop-loss order is 
summarized m the following property. 

Lemma 2.1. ( Karlin-Novikoff (1963) once-crossing condttion, Lemma o f  Ohlht 
(1969)). Let X and Y be random variables with dlstr ibunons Fx(x), Fy(x) 
and suppose that X _<D Y, as defined xn (2.2). Then the stop-loss order 
relahon X _<~/ Y is satisfied 

Proof. By assumpnon,  one has the mequahnes  

max(x ,X)  _< max(x, Y), x > c, 

min(x ,X)  _> rain(x, Y), x _< c. 

In parhcular,  one obtmns E[max(x, X)] < E[ma~-<(x, Y)], x > c By (SL3) 
above, it remains to show the last inequahty for x _< c. This follows 
immedmtely from the identity 

max(x ,  x )  = x + x - mi, (x, x )  

using the assumpnons.  [] 

A generahzed versmn of  the Karhn-Nov~koff once-crossing conditions 
yxelds the following sign-change characterization of  the stop-loss order. 
Without  proof, one finds the relevant condmons  m Taylor  (1983), which 
attributes them to Stoyan (1977) However, the previous result by Taylor  has 
not been formulated as a full charac tenzanon of  stop-loss order 

Theorem 2.1. (Karlm-NovikoJ-J-Stoyan-Taylor crossmg conditions for stop- 
loss order). Let X, Y E S be random variables with means #x, #Y, 
distributions Fx(x), Fr(x)  and stop-loss transforms 7rx(x), Try(x). Suppose 
the distributions cross n > 1 tmaes m the crossing points t~ < t2 < • < in. 

Then one has X _<,/ Y if, and only if, one of  the following is fulfilled: 

Case 1 The first sign change of  the difference F).(x) - Fx(x) occurs from - 
to +,  there ~s an even number  of  crossing points n = 2m, and one has the 
mequahnes 

7rx(t2j-l) ~ 7 I ' y ( t 2 j - I ) ,  j = 1, ,m (2.3) 

Case 2 The first s,gn change of  the difference Fr(x) - Fx(x) occurs from + 
to - ,  there ~s an odd number of  crossing points n = 2m + 1, and one has the 
mequahties 

#X ~ FLY, 71"x(t2j) ~ 7rr(12j), J = 1,.. . ,m (2.4) 



1 2 4  WERNER HURLIMANN 

Proof. Two cases must be distinguished. 

Case 1 The first sign change occurs from - to + 

If  X_<s/ Y, the last sign change occurs from + to - (otherwise 
7rx(x) > lrv(x) for some x > t,,), hence n = 2m is even Consider random 
variables Z0 = Y, Z,,,+l = X, and Z j , j  = I, . . ,m with distribution functions 

= J" Fx(X), X < 12y_l, F~(x) (2 5) 
t Fy  (X), X > 123-[ 

F o r j  = 1, ,m, the Karhn-Novlkoff  once-crossing condition between Zj+~ 
and Z/ is fulfilled with crossing point tzj. A partial integration shows the 
following mean formulas: 

# j : = E [ Z j ] = # x - T r x ( t 2 / _ . ) + T r y ( t 2 j _ l ) ,  a = l ,  ,m (2.6) 

Now, by Karhn-Novlkoff ,  one has Zj+l <_D Z / , J  = 1,.. ,m, af, and only if, 
the inequalities #j+l _< #j are fulfilled, that is 

¢cx(t2j- i)-  7ry(t2/_~)_< 7rx(tzj+j)-lry(t2j+l),  j =  l , . . . , m -  1, and 

~x(t2,,,-I)--'n'y(t2,,,-I) _<0, (2 7) 

which as eqmvalent to (2.3). Since obvaously Zi _<~t Y, one obtains the 
ordered sequence 

x = Z,,,+~ <D Z,,, <D < o  Z~ <,,  Z0 = Y, (2.8) 

which as vahd under (2.3) and imphes the result. 

Case 2 The first sagn change occurs from + to - 

If  X _<~/ Y, then the last sign change occurs from + to - ,  hence n = 2m + 1 
is odd. Smaflarly to Case I, consader random variables Z0 = Y, Z,,,+i = X, 
and Z j , j  = 1, , m ,  with distribution functIons 

Fx(x ) ,  x < t2j, 
F 6 (x )  = Fa,(x), ~,- > t2j. (2.9) 

,m, the once-crossing condition between Zj+l and Zj is For  j = 0, 1, 
fulfilled with crossing point t2j+j. Using the mean formulas 

#/ = E[Z/] = / tx  - Trx(tzj) + Try(t2j), j =  [ , . . . ,m,  (2.10) 
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the condit ions for Zs+l _<D Zs, that is ~j+~ < Izs,J = O, 1, ...,m, are therefore 

- , Y  _< - 

rrx(t2j) - rcr(tzs) <_ rrx(t2j+z) - rr},(t2j+2), j = 1, .. ,m - 1, and (2, 11) 

7rX(t2m) -- 7ry(/2m) ~ 0, 

which is eqmvalent  to (2 4). One obtains the ordered sequence 

X = Zm+ I ~ O  Zm _~D • -~D ZI -<,9 Z0 = Y, (2.12) 

which is valid under (2.4) and imphes the result. []  

It is instructive to relate this result with another  (apparent ly simpler) known 
crossing charactenzatmn.  Instead of  crossing points, which describe the sign 
change properties of  the distr ibution functions, consider slightly more  
general crossover points, which are defined as follows A pair {~, u} of  real 
numbers  is a cros'sover point of  the pair {&(x),F2(x)} of  distribution 
functions if for i C j  E {1,2} one has 

F,(~-) < Fj(~-)  < ~(~)  < F,(~) and u = Fj({), 

or equivalently 

F,-'(u) < FZ ' (u  ) _< FT' (u+) _< F,-' (u +) and ~ = Fj-' (u). 

H o w  are the crossing points related to the crossover points? Clearly, every 
crossing point  is a crossover point. Addmonal ly ,  there are two crossover 
points, associated to the end points o f  the supports  of  Fi (x), Fz(x), where no 
actual sign change between the distributions occurs Let (a,,b,), 
- o o  < a ,  < b ,  _< oo, be the open suppor t  o f  F,(x), l =  1,2, and set 
a = mm{al ,a2} ,  b = max{bl ,b2}.  Then (a,D) is the open support  of  the 
pair {F. (x), F2(x)}, and {c_t, 0}, {/~, I} are the remaining crossover points. 
The following characterization has been used by Kertz and Rosier (1992), 
again without  proof. 

Corollary 2.1 (Crossot,er point characterization of the stop-loss order) For  
t = 1,2, let X, E S be random variables with finite means #,, distr ibutions 
F,(x), and stop-loss t ransforms rr,(x). Then one has Xi <_~1 )(2 If, and only if, 
for all crossover points {~,u) of  the pair {Fl(x),Fz(x)}, the inequality 
71" I ({) ~ 71"2({) IS fulfilled. 

Proof. It suffices to show that the condit ions are su/JJctent. One needs the 
following addit ional criteria' 

( b )  _<  2(6) _< 62, 
(2.13) 

_< ,, _< m. 
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The first one follows immediately from the integral representation 
rr,(x) = f ~  F,(t)dt.  For  the second one, we dastingmsh between two cases. 
If  a_ > - o o ,  then the equivalence follows from the fact that rc,(c_t) = #, - _a, 
t = 1 , 2 .  If c_t = - o o ,  the inequahty 

/o /_o /o O /_o ct~l ~- El (x)dx - F, (x)dx ~ F2(x)ax -- F2(x)dx = I<2 
OO , CX2 

can be rearranged to the mequahty  

F /5 = ( x ) J x  <_  2(a) =  2(x)dx, 
O o  O o  

and vice versa. Since the set C of  crossover points equals 

C = {crossing points} U {_a, O} U {b, 1 }, 

the mequahtms lrl (~) _< ~r2(() for all {(, u} E C imply by the above cnterm 
that the mequahties (2.3) and (2.4) required m Case 1 and Case 2 of  the 
Theorem 2.1 are fulfilled. []  

The simpler but less precise characterization by crossover points is often 
sufficient from the theoretacal point of  view (an example as Theorem 2 3 
below) From a practical point o f  vmw, Theorem 2.1, together with the 
ordered sequences (2.8) and (2.12), yields the maximum amount  of  available 
reformation for a stop-loss order relation. In thas respect, a detailed 
apphcatmn of  this result shows that Xi _<~l X2 if, and only if, the set C of  
crossover points is given as follows: 

Case 1" n = 2m 

C = {{a1,0}, {tt, Fi (tl)}, {tz ,Fz( t2)} ,  {t3, FI (t3)},..., {tzm, F2 (t2,,,)}, {b2, 1}}, 

Case 2. n = 2 m  + l 

C =  { {a2,0}, {11, F2 (/i)}, { 12,Fi (t2)}, {13,F2(13)},..., { t2m+ i, F2 (12,,,+ i )}, {b2, 1}}. 

Some applicatmns, whmh use the explicit characterization Theorem 2.1, are 
given in Hfirhmann (1998a). 

The once-crossing condit ion of  dangerousness order formulated m 
Lemma 2.1 as not a transatlve relation Though not a proper  partml order, 
it as an important  and main tool used to establish stop-loss order between 
two random variables In fact, the trana#tn,e (stop-loss)-closure of  the 
order _<o, denoted by _<o., which as defined as the smallest partial order 
containing all pairs (X, Y) with X _<o Y as a subset, identifies wath the stop- 
loss order. To be precase, X precedes Y an the t ransmve (stop-loss-)closure of  
dangerousness,  written as X <_o" Y, if there is a sequence of  random 
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v a r i a b l e s  Z i ,  Z2 ,  Z3 ,  , such that X = Zi, Z, <_o Z,+l, and Zt ~ Y m stop- 
loss convergence (equivalent to convergence m d~str~bution plus convergence 
of the mean). The equivalence of  _<D" and _<~t IS described in detail by Mtiller 
(1996) (see also Kaas and Heerwaarden (1992)). In case there are finitely 
many sign changes between the distributions, the stated result s~mplifies as 
follows. 

Theorem 2.2. (Dangerousness characterzzatton of stop-loss order) Let 
X, Y E S be random variables with finite means such that X <_,t Y. Then 
there exists a fimte sequence of random variables Z~, Z2 . . . . .  Z,, such that 
X = Zi, Y = Z,, and Z, ___o Z~+l for all i = 1,...,n - 1 

Proof. This is Kaas et al. (1994), Theorem Ili.1.3 Alternatively, the ordered 
sequences (2.8) and (2 12) yield a more detailed constructive proof  of  this 
result. [] 

Other characterizations of the stop-loss order can be obtained by 
transformmg the random variables, which must be compared A simple 
such result reduces a (degree one) stop-loss order comparison to a degree 
zero stop-loss order or usual stochastic order comparison by means of the 
Hardy-Llttlewood maximal distribution. For any random variable X with 
finite mean and quantlle function Fx l(u), the Hardy-Littlewood trans/orm 
X tt of X is defined by its quantlle function on [0,1] through the formula 

(Fff) - ' (u)  = T Z u .  F~ l(v)dv, u < 1, (2 14) 

F ; ' ( 1 ) ,  u = l 

Its name stems from the Hardy-Llttlewood (1930) maximal function The 
random variable X H ~s the least majorant with respect to _<~t among all 
random variables Y _<st X (eg. Meflljson and Nfidas (1979)). Its great 
importance in applied probability and related fields has been noticed by 
several further authors, among others Blackwell and Dubms (1963), Dubins 
and Gflat (1978), Riischendorf (1991), and Kertz and Rosier (1990/92). A 
recent actuarial use has been proposed by the author (1998b) 

Theorem 2.3. (Reduction of stop-loss order to .stochastzc order) For i = 1,2, 
let X, C S be random variables with fimte means #,, distributions F,(X), and 
stop-loss transforms 7r,(x). Then one has Xi _<s/X~_ if, and only if, one has 
x," _<s, 

Proof. (Kertz and Rosier (1992), Lemma 1 8) The basic Idea rehes on the 
following geometric property. For each crossover point {~, u}, the identity 

{F, (t) - Fz(t)}dt = {Fz-I (v) - F~-I(v)}dv 
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expresses the fact that the area between Fi and Fz to the right of, ,  c equals the 
area between Fl -~ and F2 -t to the right o f u .  From this and the Corollary 2.1 
one obtains the result by means of  the following equivalences: 

Xl _<~/::2 

~ 71"1 (~)  = El (t)dt <_ F2(t)dt = 7r2(~) for all crossover points {~, u} 

{f t ( t )  - F2(t)}dt  > 0 for all crossover points {~,u} 

fl 
~ {F~'(v)  - F~-I(v)}dv _> 0 for all crossover points {~,u} 

~=~ (FI t ) - '  (u) _< (F~') -t (u) for all u E [0, 1] 

x," <,, [] 

By existence of  a common mean #~ --//,2, the resulting characterization of  
the convex order Xl <,~ X2 '~  X~ 1 _<~, X~ 4 is found in equivalent form in 
van der Vecht (1986), p. 69, which attributes the result to D. Gllat In this 
situation, there exists also the well-known higher degree stop-loss order 
reduction property of  the Integrated tall t ransform considered by van 
Heerwaarden (1991), p. 69, whose importance lies in actuarial ruin models 
(see e.g. Embrechts et al (1997)). For  completeness, one may mention a 
further characterization of  the convex order by means of  Markov kernels, 
which goes back to Blackwell (1953), and still another  one by means of  
fusions for probability measures as studied by Elton and Hill (1992). For  
this, the interested reader is referred to Szekli (1995). 

3. P R O P E R T I E S  OF THE DISTORTION PRICING PRINCIPLE 

First, we invalidate S. Wang's  proofs of  the stop-loss order preserving 
property (P5) for the distortion pricing principle through a simple 
counterexample Then we focus on a new proof  of  this important  property. 
For  completeness and convenience of  the reader, elementary proofs of  the 
other properties (P1)-(P4) are also provided, where reference is made to 
related results in the literature. 

3.1. A diatomic counterexample 

For real numbers 0 < a2 < al < bl < b2 and for i = l, 2 let Xz be a diatomlc 
random variable with support {az, b,} and probabilities {p,, 1 - p,}, 0 < p, < 1, 
and mean/L~ = a, + (I - p~)(b, - a,). Assume tzl <-- /tz and P2 < Pl Then the 
dangerousness order relation X~ _<o )(2 (a sufficient condition for <~/) holds 
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because #l _< #2 and the survival functions sansfy the Karlin-Novikoff once- 
crossing condmon (known as Ohhn's Lemma in actuarial science). 

~', (x) > tt2(x), x < c, 
(3 1) 

k, (x) _< k2(x),  .," _> e, 

I 

with c = al. Set g(x) = xa, p >_ 1, in (1) to get the PH-transform principle 

f0 
0 0  ~ I 

Ilo[X ] = F(x)?dx. In the notation of Wang, one has 

1 RHS(p) = Fz(x)~- ~'l (x)~ d x = ( l  -p2)~(b2' - a l ) -  (1 -p,)a(b,  - a,) 

Wang (1996b), proof of Theorem I, stptes that RHS(p) > F2(al ),~-I RHS(I ), 
J--I - - 1  

or equivalently (1 --P2)" > (1 --Pl)" This is not c~rec t  because x~-" is 
decreasing over ( 0 , ~ )  for p > l  and ( I - p z ) > ( l - p l )  by assumption. 
S,mllarly, Wand (1996a), proof of Theorem | ,  >st(altes tJaat 
RHS(p)>[:z(al)~ -I RHS(1), or equivalently ( 1 - p 2 ) ;  -I - p l ) ~ - ,  
whmh Is false for the same reason DesDte this, one has 

YIp[X,] al + (I p,)~(b, a,) < a2 + (1 ' _, = - -  - -  _ - -  p 2 ) 7 ( b 2  - 6 1 1 )  = I . £ p [ X - ~ ]  

and therefore a correct proof of (P5) must be given. 

3.2. An elementary proof of the stop-loss order preserving property 

In a first step we suppose that X, Y E S. The idea of the proof is simple. For 
each X > 0, let Xg be the dtstortion transform with survwal function 
P~(x) = g(Fx(x)) By Theorem 2.2 it suffices to show that X _<D Y imphes 
Xg <_~1 Yg, whmh m turns implies that P[X] = E[xg] < E[ Ygl = P[ Y], hence 
(P5). Furthermore, by Theorem 2.3 it suffices to show that X _<D Y imphes 
(xg) u <_~t (yg)n. (Note that the distrlbunons of (xg) It and (xH) g differ m 
general ) 

Suppose that X _<o Y, that is E[X] <_ ElY] and there exists q E (0, 1) 
such that 

g x ~ ( . )  _> F ; ' (~ , ) ,  0 < ,, < q, 
(3 2) 

Fxl(U) <_ F~l(u), q < u < 1. 

For simplicity, assume that g(x) (resp. "7(x)) is dlfferenhable and has an 
inverse g-I  (x) (resp. "7-1 (x)). Then the distortion transform X g has quantlle 

g - 1  - I  - function (F~c) : ('70 Fx) , and using (2.14) one obtains for the Hardy- 
I 1  Lttlewood distortion transform (Xg) the relationships 

g,H-I _ _  1 l 1 I 
(FOx) ( u ) - ~ _ u f  ('7oFx)-l(v)dV=l_uf_,(,)Fx'(v)d'7(v),O<_u<l (3.3) 
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Similar expressions hold with X replaced by Y One must show that 
~,1t -I H)-[ (F~v)  (u) <_ (F~. (u) for all u E [0, 1], or equivalently 

f ' {F-~l(v)-Fx'(v)}dT(v)>_OforallwE[O,l] .  (34)  
J 

If iv_> q this is trivial by the second inequality in (3.2) Let now 
0 _< iv < q < 1 Since 7(x) is convex, the derivative 7'(x) is increasing, in 
particular -),'(iv) _< 7'(q) -< -'/'(1). The affirmation follows from the following 
chain of  equalities and inequalities 

f,,,I {F~'(v)  - Fxl(v)}dT(v) 

/ I  ~0 1 -> 7'(q) • {F,~' (v) - Fxl(v)}dv > 7'(q) " {F~'(v)  - F~t(v)}dv 

= 7'(q) {ELY] - E[X]} _> 0 

(3 5) 

This achieves the proof  of  the stop-loss order preserving property for the 
distortion pricing principle in case the finite crossing condition (I.3) holds. 

In case X <~/ Y and there are infinitely many crossing points, the 
equivalence of  <s/ and _<D' shows that there is a sequence of  random 
varmbles Zl,  Z2, Z3 .. . . .  such that X = Zl,  Z, <_D Z,+t, and Z, ~ Y m stop- 
loss convergence For each n _> 1 one has X _<~/Z,, by Theorem 2.2 From the 
preceding first step, one obtains that P[X] <_ P[Z,,]. On the other side, the 
relation Zl <--D Z,+l Imphes ram(Z,,  d) --<D min(Z,+l,  d) for all d, from which 
one deduces by the first step that P[mm(Zm, d)] _< P[min(Z,, ,  d)] for all d, all 
m > n. Using this, the result follows from the inequality 

P[Z,,]= lim P[mm(Z,,,d]< lira ~f hm P[min(Z,,,,d)] "~= lira P[mm( Y,d)]=P[ Y] 
d--* oc - - d ~ k m ~ c c  J d----~ oo 

The first and third equality is a continuity property satisfied by the Choquet  
integral, and a fortiori by the distortion pricing principle, which is a special 
case of  it (see Denneberg (1994), or Axiom 4, Theorem 1 to 3 in Wang et al. 
(1997)). The second equality is an application of  the dominated convergence 
theorem, which is allowed for risks with finite support  
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3.3. Other properties of the distortion pricing principle 

It Js now poss,ble to complete and summarize the main properties of the 
distortion pricing principle Up to (P5) an advanced proof of this is in 
Denneberg (1994), pp. 64 and 71. 

Theorem 3.1. (Mare properties oJ the distortion pricing principle) Let X 
be a non-negative random variable with surwval function f',(x), and 
quantde function Fx I(u). Let g(.Q be a different,able increasing concave 
function on [0,1] such tpat g ( 0 ) = 0 ,  g ( l ) = l .  Then the functional 

P~eX] ~o ~ r  ti gJP~xl)]dx ; f°5 F x l ( u ) d T ( u ) w i t h ' / ( x ) = l - g ( l - x ) ' s a t ' s f i e s  
p p ( ) - (  ) 

Proof. (PI)-(P3) are easdy shown as follows (see also Denneberg (1990)). 

(PI) Since g(x) is increasing concave on [0,1] and g(0) = 0, g(1) = 1, one has 

g(v) >_ x and therefore P[X] _> F(x)dx = E[X] 

(P2) One first shows that P[X] preserves _<,t, which is obvious because 
X_<,r g is equivalent with F~l(u) <_ F~l(u) for all u E (0,1) Since 
X _<~r Y '= sup[X], the property follows. 
(P3) This property follows from the facts F~_h(u ) = F~l(u)+b and 
F~;,l,(u ) = a F~;'(u) for a > 0. 
(P4) That this holds when 7(x) has a bounded density is mentioned by 
Denneberg (1990). Using Wang (1995a), Appendix, one relaxes this 
condit,on as follows, where differentiabihty of g(x) is here not assumed 
(The idea of proof is attributed to O. Hesselager). A simple property of 
concave functions is required. 

Lemma 3.1. Let 0 < a < b and suppose g(x) is concave for x _> 0. Then for 
any x _> 0 one has the lnequahty g(x + b) - g(x + a) <_ g(b) - g(a). 

Proof. It is well-known that g(x) is concave if, and only if, one has 

g ( y ) - g ( x ) _ > g ( z ) - g ( y )  for all0_< v < y < z .  
y - x z - y  

Two successive applications of this criterion to a < b _< x + a < x + b, 
respectxvely a < x + a < b < x + b, yields the desired inequality. [] 

It suffices to show (P4) for arbitrary Y and a discrete X taking values in 
{0, ,n}. Indeed, applying (P3), the result holds then for X E {k, ,n + k} 
and X E {kh, . . , (n+k)h},  k E N+, h > 0 arbitrary. Since any random 
variable can be approximated closely by a discrete random variable with 
small enough h, the property will hold for arbitrary X. One uses 
mathematical reduction. For n = 0 the affirmation is obvious. To show 
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the induction step n + n + 1 for (X, Y) with X E {0, ..,n + 1}, let (X', Y') 
be dlstr .buted as (X, YIX > 0) Since X' E { l , . . . , n +  1} the induction 
hypothesis  states that P[X' + Y'] < P[X'] + P[ Y']. With e = P r ( X  = 0) and 
/~Vl0(X) = P r ( Y  > x I U = 0) one has for x > 0: 

[:x(x) = (1 - e)F):,(x), 

iCy(x) = c/7),10(x ) + (1 - e)F'y,(X), 

v(x) = cFvlo(X) + (1 - E)f'x,+v,(x). 

According to Lemma 3 1, one obtains for x > 0 that 

g([Cx+r(x)) -g(~'x(x))g(Fv(x)) < g((1 - e)~'x,+r,(x)) - g ( ( l  - e)/~'x,(x)) 

- g ( ( 1  - e)P'r,(x)). 

Observe now that k(x) g((1 - e)x) ' -  g(1 - e) Is mcreas ingconcave  on [0,1]such that 

k(0) = 0, k ( l )  = 1. Integrate on both sides of  the last lnequahty and use the 

reduct ion assumption for the function k(x) to see that 

P[X + Y] - P[X] - P[ Y] 

{ 

This shows (P4) 
Since the proper ty  (P5) has been shown m Section 3.2, the p ro o f  Is complete 

[] 

Note added in proof. At the time this paper  has been accepted for 
publication,  the au thor  has received a related paper  by Dhaene  et al. 
(1997). These authors  present in part icular  an alternative p ro o f  of  the stop- 
loss order  preserving proper ty  o f  the distort ion functional,  whose Idea is due 
to A. Mfiller Moreover ,  their Theorem 3 characterizes stop-loss order  using 
the dis tor t ion functional  in a way dual to the classical character izat ion 
(SLI)-(SL3) based on the expected value functional.  Finally, the au thor  is 
grateful to A. Miiller for pointing out an error  m the elementary p ro o f  of  
Section 3.2. 

REFERENCES 

BLACKWF.LL, D (1953) Eqmvalent compamsons of expeKmlents Annals of Mathematlc,tl 
Stat,st~cs 24, 265-272 

BLACKWVLL, D and L E DUBINS (1963) A converse to the dominated convergence theorem 
[Ihnols Journal of Mathem,mcs 7, 508-514 

BUm.MANN. H (1970) Mathernaucal Methods in Risk Theory Sprmger-Verlag 
BUHLMANN, H (1980) An economic premmm principle ASTIN Bulletin 11, 52-60 
BUHLMANN, H (1984) The general economic premmm principle ASTIN Bulletin 14, 13-21 



ON STOP-LOSS ORDER AND THE DISTORTION PRICING PRINCIPLE 133 

BUHLMANN, H .  GAGLIARI)I. B,  GERBER, H U and E STRAUB (1977) Some lnequaht~es for 
stop-loss prermums ASTIN Bulletin 9. 75-83 

CHATEAUNEUF, A ,  KAST. R and A LAPIEJ) (1996) Choquet pricing for linancial markets with 
factions Mathematical Finance 6(3), 323-30 

DENNEBERG, D (1985) Valuation of first moment risk for decision purposes in Finance and 
Insurance In Goppel, H . Henn, R (cd)  3 Tagung Geld, Banken und Velslcherungen, 
Karlsruhe, 855-869 Verlag Verslcherungswlrtschaft, Karlsruhe 

DI2NNEBERG. D (1990) Premmm calculation why standard dewatJon should be replaced by 
absolutedcwat~on ASTIN Bullctm 20. 181-190 

DENNERERG. D (1994) Non-Addltwe Measure and Integral Theory and Decision Library, 
Selles B, vol 27 Kluwer Academic Pubhshers 

DHAENE, J . WANG. S , YOUNG. V and M J GOOVAERTS (1997) Comonotoniclty and rnaxmlal 
stop-loss premmms Submitted 

DUBINS. L E and D GILAT (1978) On the dlstnbutlon of the maxnlm of martingales 
Transactions of the American Mathematical Soclety 68, 337-38 

EL'ION, J and T P HiLL (1992) Fusions of a probability distribution The Annals of 
Probabdlty 20( 1 ). 421-54 

EMBRECHTS. P ,  KLUPPELBI]RG, C and Th MIKOSCH (1997) Modelhng Extremal Events for 
Insurance and Finance Applications ot Mathematics -- Stochastic Modelhng and Apphed 
Probabdtty, vol 33 

HARDY, G H and J E LI'v-r'LEWOOD (1930) A maximal theorem with function-theoretic 
apphcatlons Acta Mathemat~ca 54, 81-116 

HEERWAARDEN, VAN A E (1991) Ordering of asks theory and actuarial apphcatlons Ph D 
Thesis, Tmbergen Research Series no 20. Amsterdmn 

HEERWAARDEN, VAN A E and R KAAS (1992) The Dutch plenlium principle Insurance 
Mathematics and Economics I1, 129-133 

HEILMANN, W - R  (1987) Grundbegrlffe der Rislkotheorle Verlag Versichcrtmgswlrtschaft, 
Kallsruhe (English translation (1988) Fundamentals  of Risk Theory) 

HURLIMANN, W (1993) Optimal stop-loss limits under non-expected utility preferences In 
Operations Research '92, 550-552 Physlca-Verlag 

HI_JRLIMANN. W (1994) A note on experience rating, reinsurance and premmm principles 
Insulance Mathematxcsand Economics 14, 197-204 

HURLIMANN, W (1995a) Links between premmm principles and leinsurance International 
Congress of Actuaries, Brussels, vol 2, 141-167 

HURLIMANN, W (1995b) Tiausformmg, ordering and rating risks Bulletin of the Swiss 
Assocmtton of Actuaries, 213-236 

HURLIMANN, W (1997) On quast-nlean value principles Blatter der Deutscheu Gesellschaft fur 
Verslcherungsnl,tthematlk XXIl l ,  Heft l, 1-16 

HURLIMANN, W (1998a) Tluncat lon trtmsfolms, stochastic orders and laycr pricing 26-th 
International Congress of Actuarms, June 1998, Birmmglmm 

HURLIMANN. W (1998b) On distribution-free safe layer-additive pacing Appears m 
Insurance Mathematics and Economics 

KAAS, R and A E VAN HEERWAARDEN (1992) Stop-loss order, unequal means, and more 
dangerouadlstr tbuttons Insurance Mathematics and Economics I1, 71-77 

KAAS, R ,  HEERWARI)hN, VAN A E and M J GOOVAERTS (1994) Ordering of Actuarml Risks 
CAIRE Education Serlea I, Brussels 

KARLIN, S and A NOVIKOI-F (1963) Gener,illzed convex inequalities Pacific Journal of 
Mathematics 13, 1251-1279 

KER rz, R P and U ROSLER (1990) Martingales with gwen maxmla and tet-mmal distributions 
Israel Journal of Mathematics 69, 173-192 

KERTZ. R P and U ROSLER (1992) Stochastic and conve~ orders and lattices of probablhty 
measures, with a maitmgale mteipretation Israel Journal of Mathematics 77, 129-164 

L~MA~RE, J (1988) Actuarial challcngcs of reinsurance Proceedings of the 23-th Intel national 
Congress of Actuaries. Helsmk~ 

MEILIJSON, I and A NADAS (1979) Convex majorizat~on with an apphcat~on to the length of 
crmcal paths Journal of Apphed Probability 16, 671-77 



1 3 4  WERNER HURLIMANN 

MULLER, A (1996) Ordering of risks a comparatwe study wa loss-stop transforms Insurance 
Mathematics and Economics 17, 215-222 

OtlLIN, J (1969) On a class of measures of d~spers~on with apphcat~on to optmaal reinsurance 
ASTIN Bulletin 5, 249-66 

RUSCHENDORF, L (1991) On conditional stochasuc ordering of d~stmbutlons Advances m 
Apphed Probablhty 23, 46-63 

SHAKED, M ,  SHANTHIKUMAR, J G (1994) Stochastic orders and their apphcat~ons Academic 
Press, New York 

STOYAN, D (1977) Quahtatlve Elgenschaften und Abschatzungen Stochast~scher Modelle 
Akademle-Verlag, Berhn (Enghsh version (1983) Comparison Methods for Queues and 
Other Stochastic Models J Wdey. New York ) 

SZEKLI, R (1995) Stochasuc Ordering and Dependence m Apphed Probability Lecture Notes 
m Stausucs 97 Sprmger-Verlag 

TAYLOR, J M (1983) Comparisons of certain dlstnbuuon funcuons Math Operatlons- 
forschung und Stat~st~k, Ser Stat 14(3), 397-408 

VAN DER VFCHT, D P (1986) Inequahues for stopped Browman motion C W I Tracts 21, 
Mathemat~sch Centrum, Amsterdam 

WANG, S (1995a) Insurance pricing and increased hm~ts ratemakmg by proportional hazards 
transforms Insurance Mathematics and Economics 17, 43-54 

WANG, S (1995b) Insurance pmcmg and increased hm~ts ratemakmg by proportional hazards 
l~ansforms Proc XXV lnt Congress of Actuames Brussels, vol 2, 293-323 

WANG, S (1995c) RIks loads on hfe/non-hfe insurance a untried approach XXVI ASTIN 
Colloqumm, Leuven 

WANG, S (1996a) Premium calculauon by transforming the layer premmm density ASTIN 
Bulletin 26, 71-92 

WANG, S (1996b) Ordering of llsks under PH-transforms Insurance Mathematics and 
Economics 18, 109-114 

WANG, S,  V R YOUNG and H H PANJER (1997) Axtomatlc characterization of insurance 
prices Insurance Mathemattcsand Economtcs21, 173-183 

WERNER HURLIMANN 
Mathemattk KB L 
"Wmterthur" 
Paul~tr. 9 
CH-8401 Winterthur 
Switzerland 


