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ABSTRACT

A number of more or less well-known, but quite complex, characterizations
of stop-loss order are reviewed and proved in an elementary way. Two recent
proofs of the stop-loss order preserving property for the distortion pricing
principle arc invalidated through a simple counterexample A new proof is
presented. It 1s based on the important Hardy-Littlewood transform, which
1s known to characterize the stop-loss order by reduction to the usual
stochastic order, and the dangerousness characterization of stop-loss order
under a finite crossing condition Finally, we complete and summarize the
main properties of the distortion pricing principle.
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. INTRODUCTION

Since 1ts introduction by Buthimann (1970), the functional approach to
premium calculation in insurance has seen an impressive development. A
first general and rather elementary method to generate valuable pricing
principles consists of the class of quantile premium calculation principles by
Denneberg (1985/90/94) Several recent contributions around this theme
have been made n actuarial science and finance, among others Hurlimann
(1993), Wang (1995a/b/c, 1996a/b), Wang et al. (1997) and Chateauneuf et
al. (1996).

For a given set S of non-ncgative random variables X > 0 with finite
means, defined on some probability space, and which represent random
losses of msurance contracts, a pricing principle 1s a non-negative real
function P-.S — R, which depends on the distribution F\(x) of X, and
which 1s interpreted as price of the insurance risk From an axiomatic point
of view, 1t 15 well accepted that a pricing principle should satisfy a certain
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number of desirable properties. Without repeating all well-known inter-
pretations, the following properties are quite reasonable:

(P1) PX] > E[X], forall X € S

(P2) PlX] <suplX], forall X € S

(P3) PlaX + bl =aP[X]|+b, forall a,b, a>0, forall X € §

(P4)  PlX+ Y] < P[X]+ P[Y], forall X,Y € Ssuchthat X + Y € §
(PS) PX]<PlY]fX<ygYand X, Y €S

The last property says that the price functional preserves the stop-loss order,
or equivalently the increasing convex order (see Kaas et al. (1994) and
Shaked and Shanthikumar (1994) for fundamentals). Requiring that the
price functional preserves the usual stochastic order <, only, is a less
stringent property since stochastic order implies stop-loss order. Though the
stop-loss ordering preserving property of the Swiss family of premium
calculation principles has been known since its actuarial consideration in
Bithimann et al. (1977), the recognition of <y as a sound ordering of risk
seems more recent. For example, the order preserving axiom (PS) 1s
considered in Heillmann (1987) but without mention of a specific and
accepted partial order, which could be used as selected ordering of risk.
Furthermore, the absolute deviation principle and the Gint principle,
introduced by Denneberg (1985/90), and which satisfy properties (P1)-(P4),
and the weaker stochastic order preserving property, also satisfy (P35),
(consequence of our main result in Section 3.2). Previously two quite simtlar
but different proofs of (P5) have been proposed by Wang (1996a/b), but
both contain an error (see Section 3.1).

In view of the above discussion, 1t seems useful to present a short
chronological review of some main non-trivial pricing functions, which
preserve <y, and inspect whether the remaining axioms (Pl)-(P4) are
satisfied.

The Swiss family 1s positively homogeneous if, and only if, 1t 1s the net
principle (see Schmidt (1989), simpler proof by Hurlimann (1997), Example 4.1
(continued), p. 9). The first genuine pricing principles, which satisfy (P1)-(P5),
are the absolute deviation principle P[X] = E[X]+ 0 - E[|X —my|[,0<6< 1
(Denneberg (1985/90)) and the G principle P[X])= E[X]+6 Gmi[X],
0 <8 <1 (Denneberg (1990)). These functionals are special cases of the
class of distortion pricing principles.

oc 1 1
PlX] =/0 g(FX(x))dxzfo F;'(l —u)dg(u)z/o F;l(u)a"y(u), (11)

where g(x) 1s an increasing concave function such that g(0) =0, g(1) =1,
Fy(x) =1 — Fy(x) 1s the survival function, y(x)=1-g(l —x) 1s the
distortion of probabilities in Denneberg’s setting, and Fy'(u) 1s a quantile
function of X. The second equality 1s obtained through partial integration,
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and shown by elementary calculus in case g(x) 1s differentiable. The right-
hand side representation has been introduced by Denneberg (1990) and
its equivalence with the first integral (up to an alternative appropriate
definition of the inverse) has been used by Wang (1996a) (see also Wang
et al. (1997)).

Another attractive special case of (1.1) is the PH-transform principle
studied by Wang (1995a/95b/96a/96b). Previously to the last example had
appeared the Dutch principle (see van Heerwaarden (1991), van Heerwaar-
den and Kaas (1992), Kaas et al. (1994) and a shight generahization of 1t (see
Hurlimann (1994/954/95b)). A pricing principle from the Dutch family
satisfies (P1)-(P5) 1if, and only tf, it 15 of the form

PIX]=EX]+6 E[(X-E[X])),], 0<4<1. (1.2)

The Dutch family 1s a special case of the class of so-called ‘‘quasi-mean value
principles” considered recently by the author. However, only sporadic
members of this class define feasible price functionals satisfying (P1)-(PS5), of
which one may mention the interesting Example 11 1 in Hurlimann (1997a)

A generahzation of the class of distortion pricing principles 1s the class of
Choquet pricing principles in Chateauneuf et al. (1996), which 1s based on
the theory of capacities and non-additive measures (exposed in Denneberg
(1994)), and breaks with the traditional probabilistic foundations of
actuarial science and finance. Finally, let us mention that one misses still
feasible price functionals along the economic approach initiated by
Buhlmann (1980/84) (see the critical comments by Lemaire (1988)).

In the present paper, we invalidate Wang’s proofs of the property (PS5) for
the distortion pricing principle through a simple counterexample, and focus
on a new proof of this important property. Using a two-stage himiting
argument (dominated convergence theorem and continuity property of the
distortion pricing functional), 1t 1s possible to restrict the attention to risks,
which belong to the following large set

S consists of all non-negative random variables with
finite means, such that the distribution functions of any
two of them cross finitely many times (finite crossing condition) (1.3)

For completeness, we show also that (1 1) satisfies the other properties
(P1)-(P4), where our exposé is intended to be essentially accessible from an
elementary perspective.

The paper 1s organized as follows In Section 2, a number of more or less
well-known, but quite complex, characterizations of stop-loss order are
reviewed and proved in an elementary way. Since no such proofs have been
found 1n the original and other papers (and books) consulted by the author,
the present supplement to the existing hiterature will hopefully be helpful for
future workers in this area (as 1t has been to the author). Section 3 1s devoted
to a derivation of the main properties of the distortion pricing principle. In
Section 3.1 two recent proofs by Wang of the stop-loss order preserving
property for the distortion pricing principle are invalidated through a simple




122 WERNER HURLIMANN

counterexample A new proof 1s presented in Section 3.2 It 1s based on the
tmportant Hardy-Littlewood transform, which 1s known to characterize the
stop-loss order by reduction to the usual stochastic order (Theorem 2.3), and
the dangerousness characterization of stop-loss order under the finite
crossing condition (1.3) (Theorem 2.2) Finally, we complete and summarize
the main properties of the distortion pricing principle i Section 3.3.

2. SOME EQUIVALENT CHARACTERIZATIONS OF STOP-LOSS ORDER

Capital letters X, Y, ... denote random variables with distnibution functions
Fy(x), Fy{x), ... and finite means uy, py, ... The survival functions are
denoted by Fy(x) =1 — Fy(x), ... . The stop-loss transform of a random
vartable X 1s defined by

mx(x) 1= E[(X — _\‘)+] =/ Fx(0)dt, x in the support of X 21

The random vanable X 1s said to precede Y in stochastic order or stochastic
domunance of first order, a relation written as X < Y, if Fx(x) < Fy(x) for
all x 1n the common support of X and Y. The random varniables X and Y
satisfy the stop-foss order, or equivalently the increasing convex order, written
as X <y Y (or X <\ Y), if wy(x) < wy(x) for all x. A sufficient condition
for a stop-loss order relation is the dangerousness order relation, written as
X <p Y, defined by the once-crossing condition

Fy(x) < Fy(x) for all x < ¢,

2.2
Fyx(x) 2 Fy(x) for all x > ¢, (2:2)

where ¢ is some real number, and the requirement 1y < py (Lemma 2.1). By
equal means py = py, the ordering relations <y and <p are precised by
writing <y — and <p_. The partial stop-loss order by equal means 1s also
called convex order and denoted by <... The probabilistic attractiveness of
the partial order relations <y and <y 1s corroborated by several invariance
properties (e.g. Kaas et al. (1994), chap 1L.2 and III.2, or Shaked and
Shanthikumar (1994)). For example, both of <; and <,; are closed under
convolution and compounding, and < 15 additionally closed under mixing
and conditional compound Poisson summing

In applications, to establish stop-loss order comparison properties, one
requires some fundamental facts and equivalent characterizations. First of
all, the following well-known elementary equivalent statements hold:

(SL2) E[p(X)] < E[p(Y))] for all increasing convex functions ¢(x)
(SL3) E[max(x, X)] < E[max(x, Y)] uniformly for all x € R
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A famous and widely known sufficient condition for stop-loss order 1s
summarized 1n the following property.

Lemma 2.1, ( Karlin-Novikoff (1963) once-crossing condition, Lemma of Ohlin
(1969)). Let X and Y be random variables with distributions Fy(x), Fy(x)
and suppose that X <p Y, as defined in (2.2). Then the stop-loss order
relation X <y Y 1s satisfied

Proof. By assumption, one has the inequalities

max(x, X) < max{(x,Y), x>,
min(xy, X) > min(x, Y), x<ec.

In particular, one obtains Efmax(x, X)] < E[max(x, Y)], x > ¢ By (SL3)
above, 1t remains to show the last inequalty for x < c¢. This follows
immediately from the identity

max(x, X) = X + x — min(x, X)

using the assumptions. O

A generalized version of the Karlin-Novikoff once-crossing conditions
yields the following sign-change characterization of the stop-loss order.
Without proof, one finds the relevant conditions in Taylor (1983), which
attributes them to Stoyan (1977) However, the previous result by Taylor has
not becn formulated as a full characterization of stop-loss order

Theorem 2.1. ( Karlin-Novikoff-Stoyan-Taylor crossing conditions for stop-
loss order). Let X, Y € § be random variables with means puy. py,
distributions Fy(x), Fy(x) and stop-loss transforms 7y (x), 7y(x). Suppose
the distributions cross n > 1 times 1n the crossing pomnts 1) < fH < . < 1,
Then one has X <,; Y if, and only 1f, one of the following is fulfilled:

Case | The first sign change of the difference Fy(x) — Fy(x) occurs from —
to +, there 1s an even number of crossing points # = 2m, and one has the
inequalities

x(ly-1) <my(ty—1), j=1, ,m (2.3)

Case 2 The first sign change of the difference Fy(x) — Fy(x) occurs from +
to —, there 1s an odd number of crossing points # = 2m + 1, and one has the
mequalities

pxy <py, wx(ty) <wylty), J=1,.,m (2.4)
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Proof. Two cases must be distinguished.

Case 1 The first sign change occurs from — to +

If X <yY, the last sign change occurs from + to — (otherwise

wy(x) > my(x) for some x> 1,), hence n = 2m 1s even Consider random

variables Zo =Y, Z, = X, and Z,,; = 1, .., m with distribution functions
N Fx(x), x<nyo,

R = {fri xS @25)

Fory=1. ,m, the Karlin-Novikoff once-crossing condition between Z,.,
and Z, is fulfilled with crossing point 1. A partial integration shows the
following mean formulas:

Ly = E[Zj] =y — 7TX(12',_|) +71'y([21_|), Jj=1 ,m (26)

Now, by Karlin-Novikoff, one has Z,;; <p Z,,y=1,.. ,m, if, and only Iif,
the inequalities p,4; < g, are fulfilled, that is

Tx(ty—1) —my(ty_1) <ax{tya) —7y(ty+1), j=1,...,m—1, and

27
7T/\’(’2m—|)""71-)’([2'”—1) SO) ( )

which 15 equivalent to (2.3). Since obviously Z, <, Y, one obtains the
ordered sequence

X=Zu<pZn<p <pZi<,Zy=Y, (2.8)
which 1s valid under (2.3) and implies the result.
Case 2 The first sign change occurs from + to —
If X <,; Y, then the last sign change occurs from 4 to —, hence n = 2m + |

is odd. Similarly to Case I, consider random variables Zo, = VY, Z,,,.1 = X,
and Z,,j =1, ,m, with distribution functions

FX(x)a X S [217

Fx) = {Fy(x), X > 1. (29)

For y=0,1, ,m, the once-crossing condition between Z,,| and Z, 1s
fulfilled with crossing point 15,4. Using the mean formulas

w =E[Z]=py —mx(ty) +my(ry), Jj=1,...m, (2.10)
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the conditions for Z,y <p Z,, that is p4y <y, f = 0,1,...,m, are therefore

px — jir < wx(t2) — wy (),
mx(ty) — my(ty) < mx(tys2) —my(ty42), J=1,..,m—1,and (2,11)
7I-X(IZIH) - 71')’(’2111) S 01

which 1s equivalent to (2 4). One obtains the ordered sequence
X=2Zw1<pZn<p. Z<pZiipZy=Y, (2.12)

which 1s valid under (2.4) and implies the result. |

It 1s instructive to relate this result with another (apparently simpler) known
crossing characterization. Instead of crossing points, which describe the sign
change properties of the distribution functions, consider slightly mare
general crossover points, which are defined as follows A pair {£, u} of real
numbers 18 a crossover point of the parr {F(x), Fa(x)} of distribution
functions 1f for i # j € {1,2} one has

F(§7) < F(§7) < £(8) < Fi(§) and u = F(§),
or equivalently

Frw) < ') < F7 () < PV ut) and € = F ()
How are the crossing points related to the crossover points? Clearly, every
crossing point 1s a crossover point. Additionally, there are two crossover
points, associated to the end points of the supports of F)(x), F>(x), where no
actual sign change between the distributions occurs Let (a,,b,),
—o00 <4, <b <oco, be the open support of F(x), r=1,2, and set
a =mm{ay,as}, b =max{by,h}. Then (g,b) is the open support of the

pair {F|(x), F>(x)}, and {@,0}, {h, 1} are the remaining crossover pornts.
The following characterization has been used by Kertz and Rosler (1992),
again without proof.

Corollary 2.1 (Crossover point characterization of the stop-loss order) For
1=1,2, let X, € § be random variables with finite means p,, distributions
F(\) and stop-loss transforms m,(x). Then one has X, <y X5 1f, and only 1f,
for all crossover points {£ u} of the pair {F\(x),Fa(x)}, the inequality
W[(f) < 7!'2(5) 1s fulfilled.

Proof. It suffices to show that the conditions are sufficient. One needs the
following additional critenia-

7 (b) < ma(b) & by < by,
a) <

mi( m(a) & < pa. (2.13)
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The first one follows mmmediately from the integral representation
m(x) = [ F(t)dt. For the second one, we distinguish between two cases.
If @ > —co, then the equivalence follows from the fact that m,(¢) = p, — a,
1 =1,2. If « = —o0, the inequality

[y = /000 Fi(x)dx — /_(; Fi(x)dx < /000 Fs(x)dx — /_(; Fy(x)dx = jp

can be rearranged to the inequahity

™ (a) = /_ " Fi(x)dx < my(a) = /_ " B(x)dy,

0 oo

and vice versa. Since the set C of crossover points equals
C = {crossing ponts} U{a,0} U {b, 1},

the mequalhities 7 () < m(€) for all {§,u} € C imply by the above critena
that the inequahties (2.3) and (2.4) required 1in Case 1 and Case 2 of the
Theorem 2.1 are fulfilled. O

The simpler but less precise characterization by crossover points 1s often
sufficient from the theoretical point of view (an example 1s Theorem 2 3
below) From a practical point of view, Theorem 2.1, together with the
ordered sequences (2.8) and (2.12), yields the maximum amount of available
information for a stop-loss order relation. In this respect, a detailed
application of this result shows that X; <, X3 1f, and only if, the set C of
crossover points is given as follows:

Case 1 n=2m

:{{al70}’{tl1Fl([l)}’{ILFZ(IZ)}a{[:"Fl(13)} {[2maF7 fom } {b27]}}

Case 2. n=2m+ 1
C={{a,0} {r,,F2(1))} . {tr2, F1(2)} . {13, Fa(t3) }, -, { tams 1, Faltamsr ) } { b2, 1 } }

Some applications, which use the explicit characterization Theorem 2.1, are
given in Hiirhmann (1998a).

The once-crossing condition of dangerousness order formulated 1n
Lemma 2.1 1s not a transitive relation Though not a proper partial order,
it 1s an important and main tool used to establhish stop-loss order between
two random vanables In fact, the transitive (stop-loss)-closure of the
order <p, denoted by <p., which is defined as the smallest partial order
containing all pairs (X, ¥Y) with X <p Y as a subset, 1dentifies with the stop-
loss order. To be precise, X precedes Y in the transitive (stop-loss-)closure of
dangerousness, written as X <p. Y, 1if there is a sequence of random
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vaniables Z,, Z,, Z3, ,suchthat X =2,,Z, <p Z,41, and Z, — Y n stop-
loss convergence (equivalent to convergence 1n distribution plus convergence
of the mean). The equivalence of <p- and <, 1s described 1n detail by Muiller
(1996) (see also Kaas and Hcerwaarden (1992)). In case there are finitely
many sign changes between the distributions, the stated result simplifies as
follows.

Theorem 2.2. (Dangerousness characterization of stop-loss order) Let
X,Y € S be random varniables with finite means such that X <,; Y. Then
there exists a finite sequence of random variables Z,, Z,, ..., Z, such that
X=Z,Y=Z,and Z, <p Z, foralli=1,..,n-1

Proof. This 1s Kaas et al. (1994), Theorem I11.1.3 Alternatively, the ordered
sequences (2.8) and (2 12) yield a more detailed constructive proof of this
result. O

Other characterizations of the stop-loss order can be obtained by
transforming the random variables, which must be compared A simple
such result reduces a (degree one) stop-loss order comparison to a degree
zero stop-loss order or usual stochastic order comparison by means of the
Hardy-Littlewood maximal distribution. For any random variable X with
finite mean and quanule function Fy'(u), the Hardy-Littlewood transform
X' of X 1s defined by its quantile function on [0,1] through the formula

1 b
(FH)™ () = 1_1,/,, Fy' (v, u<l, (2 14)
F'(1), u=1

Its name stems from the Hardy-Littlewood (1930) maximal function The
random variable X 1s the least majorant with respect to <, among all
random varnables Y <y X (e g Maeilyson and Nadas (1979)). Its great
importance in applied probability and related fields has been noticed by
several further authors, among others Blackwell and Dubins (1963), Dubins
and Gilat (1978), Riischendorf (1991), and Kertz and Rosler (1990/92). A
recent actuanal use has been proposed by the author (1998b)

Theorem 2.3. ( Reduction of stop-loss order to stochastic order) For i = 1,2,
let X, € S be random variables with finite means g,, distributions F,(X), and
stop-loss transforms 7,(x). Then one has X| <y X5 if, and only if, one has
X<, xi.

Proof. (Kertz and Rosler (1992), Lemma 1 8) The basic 1dea relies on the
following geometric property. For each crossover pomnt {£,u}, the identity

00 |
[0 =A@ = [ {F0) - 0}
E 1]
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expresses the fact that the area between F) and F; to the right of £ equals the
area between Fy' and Fy! to the right of u. From this and the Corollary 2.1
one obtains the result by means of the following equivalences:

X <y X2

< m(é) = /00 Fi()dt < /00 Fy(1)di = m(€) for all crossover points {&, u}
4 4

o {F\(t) = Fy(¢)}dr > 0 for all crossover points {£,u}

@ [ {F5'(v) = F7'(v) }dv > 0 for all crossover points {£,u}

& (FINY'(u) < (F)(u) for all u € [0, 1]
o X<, X O

By existence of a common mean g, = yy, the resulting characterization of
the convex order X] <.« X2 & X{! <y X3' 1s found m equivalent form in
van der Vecht (1986), p. 69, which attributes the result to D. Gilat In this
situation, there exists also the well-known higher degree stop-loss order
reduction property of the integrated tail transform considered by van
Heerwaarden (1991), p. 69, whose importance lies in actuarial ruin models
(see e.g. Embrechts et al (1997)). For completeness, one may mention a
further characterization of the convex order by means of Markov kernels,
which goes back to Blackwell (1953), and still another one by means of
fusions for probability measures as studied by Elton and Hill (1992). For

this, the interested reader is referred to Szekli (1995).

3. PROPERTIES OF THE DISTORTION PRICING PRINCIPLE

First, we invahdate S. Wang’s proofs of the stop-loss order preserving
property (P5) for the distortion pricing principle through a simple
counterexample Then we focus on a new proof of this important property.
For completeness and convenience of the reader, elementary proofs of the
other properties (P1)-(P4) are also provided, where reference 1s made to
related results in the literature.

3.1. A diatomic counterexample

For real numbers 0 < a; < a; < by < by and fori = 1,2 let X, be a diatomic
random variable with support {«,, b,} and probabilities {p,,1 — p,},0 < p, < 1,
and mean y, = a, -+ (1 = p,)(b, — a,). Assume p; < pip and p» < py Then the
dangerousness order relation X; <p X> (a sufficient condition for <y) holds
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because 1 <y and the survival functions satisfy the Karlin-Novikoff once-
crossing condition (known as Ohlin’s Lemma in actuarial science).

[—:I(-)>F-( )’ x <,

F,(,\); Fo(x), x>, B

with ¢ = a;. Set g(x) = ,\'IF, p>1,1in (1) to get the PH-transform principle
o0

II,[X] = / F(x)%dx. In the notation of Wang, one has
0

RHS(p)=/ {Fz( ) = Fi(x )}JX=(1—P2)7(bz—a1)—(l—pn)F(bl—dl)

Wang (1996b), proofoflTheoreml states that RHS(p)>F2(a|)'" RHSgl)
or equivalently (1 — p,)e™' > (1 — py)»" This is not correct because x5! 1s
decreasing over (0,00) for | p>1and (I —py) > (1 —p;) by assumption.
Similarly, Wang ~ (1996a), proof of Theorem , ~states  that
RHS(p) > Fy(a\)»~' RHS(1), or equwvalently (1 —p) ' > (1 —py)i,
which 1s false for the same reason Despite this, one has

M,(X\] = ai + (1 = p )by — ar) < az + (1 = pa)i(by — ay) I, [X2],

and therefore a correct proof of (P5) must be given.

3.2. An elementary proof of the stop-loss order preserving property

In a first step we suppose that X, Y € S. The idea of the proof s simple. For
each X >0, let X* be the distortion transform with survival function
Fé(x) = (F,\( c)) By Theorem 2.2 it suffices to show that X <p Y implies
X& <y Y& which in turns imphes that P[X] = E[X8) < E[Y¥] = P[Y], hence
(PS). Furthermore by Theorem 2.3 1t suffices to show thdt X <p Y imples
(x6)" <, (¥&)". (Note that the distributions of (X#)" and (X*)¢ differ in
general )

Suppose that X <p Y, that 1s E[X] < E[Y] and there exists g € (0, 1)
such that

Fol(w) > Fy'(w), 0<u<yg,

| | (32)

Fyi(u) <Fyi(u), g<u<l.
For snmp]icxty, assume that g(x) (resp. y(x)) 1s differentiable and has an
inverse g~ (x) (resp. v~'(x)). Then the distortion transform X% has quantile
function (Fg = (yo Fy)~ ' and ucmg (2.14) one obtains for the Hardy-
Littlewood distortion transform (x8)"" the relationships

e H\ -] 1 1 ] 1 —|
(F57)  (u)y=— ('yoFX) Yo)dv= —u/ “ Fyi(v)dvy(v),0<u<l  (3.3)

1—u/,
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Similar expressions hold with X replaced by ¥ One must show that
(FEY " w) < (FE")™'(w) for all u € [0, 1), or equivalently

/"] {Fy'(v) ~ Fg'(v)}dv(v) > 0 for all w € [0, 1]. (34)

If w>g¢g this 1s trivial by the second inequality in (3.2) Let now
0<w<g<1 Since y(x) 1s convex, the derivative 7/(x) is increasing, in
particular v'(w) < v'(g) < +/(1). The affirmation follows from the following
chain of equalities and 1nequalities

1
[ AF 0 - FE )
q |
=—[ {F;?‘(V)—F?'(v)}v’(v)dv+/ {F7'(v) = Fy' (D} (v)dv

>7() [ {F70) = F O 2 40) - [ (R 0= F7 )
=(@) (Y= EX)} 2 0
G3)

This achieves the proof of the stop-loss order preserving property for the
distortion pricing principle in case the finite crossing condition (1.3) holds.

In case X <y Y and there are infinitely many crossing points, the
equivalence of <y and <jp. shows that there 1s a sequence of random
vanables Z,, Z;, Z5, ....such that X = Z,, Z, <p Z,;1, and Z, — Y In stop-
loss convergence Foreachn > | one has X <y Z, by Theorem 2.2 From the
preceding first step, one obtains that P[X] < P[Z,]. On the other side, the
relation Z; <p Z,,i implies min(Z,,d) <p min(Z,4,,d) for all d, from which
one deduces by the first step that Plmin(Z,,, d)] < P[min(Z,,,d)] for all d, all
m > n. Using this, the result follows from the inequalty

P[Z,,]zlljm P[nnn(Z,,,d]S{}im {”%lﬁr’roloP[min(Z,,,,d)]}:(}im Plmin(Y d)}=P[Y]
The first and third equality is a continuity property satisfied by the Choquet
integral, and a fortiori by the distortion pricing principle, which 1s a special
case of it (see Denneberg (1994), or Axiom 4, Theorem 1 to 3 in Wang et al.
(1997)). The second equality is an application of the dominated convergence
theorem, which is allowed for risks with finite support
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3.3. Other properties of the distortion pricing principle

It 1s now possible to complete and summanze the main properties of the
distortion pricing principle Up to (P5) an advanced proof of this 1s 1n
Denneberg (1994), pp. 64 and 71.

Theorem 3.1. (Main properties of the distortion pricing principle) Let X
be a non-negative random variable with survival function F,(x), and
quantile function Fj'(u). Let g(x) be a differentiable increasing concave

function on [0.1] such lpat g(0)=0, g(1)y=1. Then the functional
Pix]= [ g[F(x)ds = / F2 (w)dy(u) with 7(x) = 1 - g(1 — x), satisfies
the propeortles (P1) — (PS)O

Proof. (P1)-(P3) are easily shown as follows (see also Denneberg (1990)).
(P1) Since g(x) 1s increasing concaye on [0,17and g(0) =0, g(1) = 1, one has
g(¥) > x and therefore P[X] > / F(x)dx = E[X]

Jo
(P2) One first shows that P[X] preserves <,, which 1s obvious because
X <, Y 1s equvalent with Fyl(u) < Fy'(u) for all we (0,1) Since
X < Y ‘=sup[X], the property follows.

(P3) This property follows from the facts F;_:_h(u):F;'(u)+b and
F7L(w)=a Fz'(u) for a>0.

(P4) That this holds when ~(x) has a bounded density is mentioned by
Denneberg (1990). Using Wang (1995a), Appendix. one relaxes this
condition as follows, where differentiabihity of g(x) 1s here not assumed
(The 1dea of proof 1s attributed to O. Hesselager). A simple property of
concave functions 1s required.

Lemma 3.1. Let 0 < @ < b and suppose g(x) 1s concave for x > 0. Then for
any x > 0 one has the inequahty g(x + b) — g(x -+ a) < g(b) — g(a).

Proof. 1t 1s well-known that g(x) 1s concave if, and only if, one has

g(y) — g(x) > g(z) —gly)

forall0 < v<y<z.

y—x
Two successive applications of this criterion to a <b < x+a< x+ b,
respectively ¢ < x +a < b < x + b, yields the desired 1nequality. O

It suffices to show (P4) for arbitrary Y and a discrete X taking values 1n
{0, ,n}. Indeed, applying (P3), the result holds then for X € {k, ,n+k}
and X € {kh, ..,(n+k)h}, k€ Ny, h >0 arbitrary. Since any random
variable can be approximated closely by a discrete random variable with
small enough /4, the property will hold for arbitrary X. One uses
mathematical induction. For n =0 the affirmation is obvious. To show
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the induction step n — n + 1 for (X, Y) with X € {0, ..,n+ 1}, let (X', Y')
be distributed as (X, Y|X >0) Since X' e {l,..,n+ 1} the induction
hypothesis states that P[X" + Y'] < P[X’] + P[Y’]. With € = Pr(X =0) and
Fyp(x) =Pr(Y > x|U = 0) one has for x > 0:

Fy(x) = (1 —€)Fy(x),

Fy(x) = eFyjo(x) + (1 — ) Fy(v),

Fyiy(x) = eFyjp(x) + (1 = €)Fxrpyr ().
According to Lemma 3 1, one obtains for x > 0 that

g(Fyxsy(x) — g(Fy(x)g(Fr(x)) < g((1 — &) Fypy (x)) — g((1 = €)Fy(x))
—&((1 = &)Fy(x)).
Observe now that k(x) := gl —e)x)
—€
k(0) =0, k(1) = 1. Integrate on both sides of the last inequality and use the

1s increasing concave on [0, 1] such that

mduction assumption for the function k(x) to see that

P[X + Y]— P[X]~P[Y]
<ti-e) { [ kFonnts= [k [T k() <o

This shows (P4)
Since the property (P5) has been shown 1 Section 3.2, the proof s complete
O

Note added in proof. At the time this paper has been accepted for
publication, the author has received a related paper by Dhaene ct al.
(1997). These authors present in particular an alternative proof of the stop-
loss order preserving property of the distortion functional, whose 1dea 1s due
to A. Milller Moreover, their Theorem 3 characterizes stop-loss order using
the distortion functional 1n a way dual to the classical characterization
(SL1)-(SL3) based on the expected value functional. Finally, the author is
grateful to A. Miiller for pointing out an error 1n the elementary proof of
Section 3.2.

REFERENCES

BLACKWELL, D (1953) Equvalent comparisons of experiments Annals of Mathematcal
Statistics 24, 265-272

BrackweLL, D and L E Dusins (1963) A converse to the dominated convergence theorem
Ilinois Journal of Mathematics 7, 508-514

BUHLMANN, H (1970) Mathematical Methods in Risk Theory Springer-Verlag

BuHLMANN, H (1980) An cconomic premium principle ASTIN Bulletin 11, 52-60

BuHLMANN, H (1984) The general economic premium principle ASTIN Bulletin 14, 13-2]



ON STOP-LOSS ORDER AND THE DISTORTION PRICING PRINCIPLE 133

BUHLMANN, H, GAGLIARDI, B, GERBER, H U uand E STRAUB (1977) Some incqualities for
stop-loss premiums ASTIN Bulletin 9, 75-83

CHATEAUNEUF, A, KAsT, R and A LAPIED (1996) Choquet pricing for financial markets with
fricions Mathematical Finance 6(3), 323-30

DENNEBERG, D (1985) Valuation of first moment risk for decision purposes in Fiance and
Insurance In Goppel, H, Henn, R (ed) 3 Tagung Geld, Banken und Veisicherungen,
Karlsruhe, 855-869 Verlag Versicherungswirtschaft, Karlsruhe

DENNEBERG. D (1990) Premium calculation why standard deviation should be replaced by
absolute deviation ASTIN Bulletn 20, 181-190

DENNEBERG. D (1994) Non-Additive Measure and Integral Theory and Decision Library,
Senes B, vol 27 Kluwer Academic Publishers

DHAENE, J , WANG, S, YOUNG, V and M J GooVAERTS (1997) Comonotonicity and maximal
stop-loss premiums Submutted

DuBins. LE and D Guat (1978) On the distnibution of the maxmima of martingales
Transactions of the American Mathematical Society 68, 337-38

ELton, J and TP HiL (1992) Fusions of a probabilty distnbution The Annals of
Probability 20(1), 421-54

EmBRECHTS, P, KLUPPELBERG, C and Th MikoscH (1997) Modelling Extremal Events for
Insurance and Finance Applications of Mathematics - Stochastic Modelling and Applied
Probability, vol 33

HarDY, GH and JE LITTLEWOOD (1930) A maximal thcorem with function-theoretic
applications Acta Mathematica 54, 81-116

HEERWAARDEN, VAN A E (1991) Ordering of risks theory and actuanial applications Ph D
Thesis, Tinbergen Research Series no 20, Amsterdam

HEERWAARDEN, VAN A E and R Kaas (1992) The Dutch piemium principle Insurance
Mathematics and Economics 11, 129-133

HEILMANN, W -R (1987) Grundbegnffe der Risikotheorie Verlag Versicherungswirtschaft,
Kailsruhe (Englhsh translation (1988) Fundamentals of Risk Theory)

HURLIMANN, W (1993) Opuimal stop-loss linuts under non-expected utility preferences In
Opcrauons Research '92, 550-552 Physica-Verlag

HURLIMANN. W (1994) A note on experience rating, remsurance and premium principles
Insurance Mathematics and Economics 14, 197-204

HURLIMANN, W (1995a) Links between premium principles and reinsurance International
Congress of Actuaries, Brussels, vol 2, 141-167

HURLIMANN, W (1995b) Transforming, ordering and rating risks Bullein of the Swiss
Association of Actuaries, 213-236

HURLIMANN, W (1997) On quasi-mean value principles Blatter der Deutschen Gesellschaft fur
Versicherungsmathemauk XXIII, Heft 1, 1-16

HURLIMANN, W (1998a) Tiuncation trunsforms, stochastic orders and layer pricing 26-th
International Congress of Actuaries, June 1998, Birmingham

HURLIMANN, W (1998b) On distribution-frec safe layer-additive pricing  Appears 1n
Insurance Mathematics and Economics

Kaas, R and A E VAN HEERWAARDEN (1992) Stop-loss order, unequal means, and more
dangerous distributions Insurance Mathematics and Economics 11, 71-77

Kaas, R, HEERWARDEN, VAN A E and M J GOOVAERTS (1994) Oidering of Actuanal Risks
CAIRE Education Series 1, Brusscls

KarLIN, S and A NovViRorF (1963) Generalized convex mequahties Pacific Journal of
Mathematics 13, 1251-1279

Krrrz, R P and U ROSLER (1990) Murtingales with given maxima and terminal distributions
Israel Journal of Mathemaucs 69, 173-192

KERTZ, R P and U RosLER (1992) Stochastic und convex orders and latuices of probability
measures, with a martingale intei pretation  Isracl Journal of Mathematcs 77, 129-164

LemAaire, J (1988) Actuanial challenges of reinsurance Proceedings of the 23-th International
Congress of Actuartes, Helsinki

MtiLson, I and A NaDAS (1979) Convex majerization with an application to the length off
critical paths Journal of Applied Probability 16, 671-77




134 WERNER HURLIMANN

MULLER, A (1996) Ordenng of risks a comparative study via loss-stop transforms Insurance
Mathematics and Economics 17, 215-222

OHLIN, J (1969) On a class of measures of dispersion with application to opumal reinsurance
ASTIN Bulletin 5, 249-66

RUSCHENDORE, L (1991) On conditional stochasuc ordering of distributions Advances 1n
Applied Probability 23, 46-63

SHAKED, M , SHANTHIKUMAR, J G (1994) Stochastic orders and their applications Academic
Press, New York

STovAaN, D (1977) Qualtative Eigenschaften und Abschatzungen Stochastischer Modelle
Akademie-Verlag, Berlin (Enghsh version (1983) Comparison Methods for Queues and
Other Stochastic Models J Wiley, New York )

SzekLl, R (1995) Stochastic Ordering and Dependence in Applied Probability Lecture Notes
in Statistics 97 Springer-Verlag

TAVLOR, JM (1983) Compansons of certain distnbution functions Math Operations-
forschung und Statistik, Ser Stat 14(3), 397-408

VAN DER VrcHT, D P (1986) Inequalities for stopped Browmian motion CW I Tracts 21,
Mathematisch Centrum, Amsterdam

WANG, S (1995a) Insurance pricing and increased hmits ratemaking by proportional hazards
transforms [nsurance Mathematics and Economics 17, 43-54

WANG, S (1995b) Insurance pricing and increased hmits ratemaking by proportional hazards
transforms Proc XXV Int Congress of Actuaries Brussels, vol 2, 293-323

WANG, S (1995¢) Riks loads on hfe/non-hfe insurance a unified approach XXVI ASTIN
Colloguium, Leuven

WANG, S (1996a) Premium calculation by transforming the layer premium density ASTIN
Bulletin 26, 71-92

WANG, § (1996b) Ordering of nisks under PH-transforms Insurance Mathematics and
Economics 18, 109-114

WANG, S. VR YOUNG and HH PANIER (1997) Axiomatic characterization of imsurance
prices Insurance Mathematics and Economics 21, 173-183

WERNER HURLIMANN
Mathematik KB L
“Winterthur”

Paulstr. 9

CH-8401 Winterthur

Switzerland



