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THE CONCEPTION(S) AND THE BIRTH OF ASTIN 

A personal view by Gunnar Benktander, presented on the last day 
of the XXVIIth ASTIN Colloquium in Copenhagen 

5 September 1996 

(reprinted from ABaCusen No. 3/96, with kind permission of the Editor) 

Thank you Mr. Chairman. 
Dear friends, this has been a very fine Colloquium. For me the greatest thing has 

however been to meet an old friend for fifty years. Dr. Paul Johansen, now 86 years 
old. Last time we met was in Zurich in 1980. 

In 1946 there was a Nordic Mathematical Congress in Copenhagen. Paul was 
there, we met Niels Bohr and his brother Harald whom I knew from the wartime 
when he was a refugee in Stockholm. Today I will deal with events of which only 
Paul, Teivo Pentik~iiinen and myself have some direct experience. 

Let us think back on Europe in the years after World War 2, a time when the 
optimists studied Russian and the pessimists Chinese and where an Anglo- 
American orientation was natural. In my country--which is Sweden--and several 
other countries there was a great admiration of the British, who had been able to 
resist on their island in the critical year 1940. 

Furthermore London was the insurance centre of the world and it was natural for 
us, who were interested in a future ASTIN, to go there. A disappointment was that 
insurance managers were against using actuarial talent in the general lines and life 
actuaries did not like the idea of an ASTIN. One prominent exception was Bobbie 
Beard, who worked for The Pearl Assurance Company, and later became its General 
Manager. 

An early pilgrim to London was Dr. Paul Johnsen, who met Mr. Beard in 1946. 
I had that pleasure in 1949. 

Things certainly also happened on the continent of Europe: France, Italy, 
Belgium, Switzerland, Holland and up in the Nordic countries. 

As the life actuaries were sceptical of the ASTIN idea, the Permanent Committee 
of what later became The International Actuarial Association wanted some 
supervision to be exercised. This task was given to the distinguished Government 
Actuary in England, Sir George Maddex, the Chris Daykin of those days. 

At the actuarial congress in 1954 in Madrid, we--the dissidents--were allowed 
to meet unofficially for half a day for an exchange of ideas. Research data and 
statistical results were presented. In Madrid some papers of an ASTIN nature were 
published. 

This was even more the case three years later in New York. 16 ASTIN papers 
from 8 countries were published. From each of the countries Belgium, Britain, 
France, Holland and Switzerland one paper, from each of Denmark and Italy two, 
and from Sweden no fewer than seven papers. 
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162 THE CONCEPTION(S) AND THE BIRTH OF ASTIN 

Why so many papers written by Swedish actuaries? Let me recall that at the 
beginning of this century Dr. Filip Lundberg presented his Collective Theory of 
Risk. In his work a central idea was Ruin Theory, the heart of Risk Theory. 

Professor Harald Cramer of Stochholm interpreted the works of Dr. Lundberg 
and further developed the theory. During the thirties he gathered around himself a 
handful of talented and very brilliant researchers. Some of them became Chief 
Actuaries. 

During the forties a further group of actuaries won respect by analyzing statistics 
from the general lines, mainly in order to find a realistic basis for the rating in 
motor, fire, etc. 

Let me remind you that in the USA the Casualty Actuarial Society (CAS) existed 
since 1914. On the European scene the Permanent had agreed on the formation of a 
provisional ASTIN Committee with the following personalities, namely Mr. Beard, 
Prof. Franckx, Dr. Johansen, Mr. Monic, their activities to be supervised--as I said 
before--by Sir George Maddex. 

Such was the situation when we prepared to go to New York in the autumn of 
1957. A matter of decisive importance was the election of a chairman for ASTIN. 
Actually there were two prominent candidates and now the drama begins! 

The Swedes--based on their above mentioned strength and with the support of 
the other Nordic countries--believed themselves to be able to determine the 
outcome of the election of the chairman. Impossible today, certainly. 

Paul decided to come to Stockholm. I met him at the Bromma Airport and in my 
home four of us put relevant questions to him. The other three have passed away. 
One was Carl Philipson, known for writing papers very difficult to understand. 
Another was Ingvar Sternberg with his orientation towards statistical facts and his 
reservation regarding the so called "integral boys". Both served later on the ASTIN 
Committee. The third one was Carl-Otto Segerdahl who joined the publishing board 
of the ASTIN Bulletin. 

The next step was that Sternberg and myself on behalf of the Swedish actuaries 
should meet and interview the other candidate in New York. So there were two 
prominent and distinguished candidates. We ourselves were clearly in favour of 
Paul and we took care to make our preference known. 

And now to the final act of the drama. 
Those with an ASTIN interest met on the 16th and 17th of October 1957. I think 

there were some thirty of us. Unexpectedly the French launched a third candidate - -  
a prominent "President et Directeur General"! This was in a way natural as 
statistical research in the general lines was highly developed in France. Remember 
that Buonaparte--his original spelling--had started L'Ecole Polytechnique ! Several 
leading managers in France were Polytechniciens. So it was by no way Napoleonic 
that a third candidate appeared. The voting took place. Sir George counted the 
votes, put them in his pocket and stated, "Dr. Paul Johansen has been elected with a 
clear majority"! My interpretation of this was that Paul had received more than 
50% of the votes, in other words, he did not profit from the francophonic split. 

Paul became an excellent chairman, even better than we had expected. He could 
rely upon his great linguistic abilities, his Danish charm and his general insurance 
knowledge. 
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Paul gave 23 years of devoted service to ASTIN before retiring from the 
Committee in 1981. It has been a great pleasure to me personally--and 1 know that 
feeling has been shared by the other actuaries here who have fond memories of  Paul 
from earlier days- - to  see him back among us here in Copenhagen. 

I shall end with a quotation from Paul. In a short sentence he distinguished 
between life and non-life mathematics: "You only die once - -  and totally". 





THE ACTUARY: THE ROLE AND LIMITATIONS OF THE PROFESSION 
SINCE THE MID-19th CENTURY 

H A N S  B U H L M A N N *  

ETH Ziirich 

The history of any profession relates to the history of the division of labour in 
society. This is generally true and can also be attributed to expertise in the financial 
world - -  a world which generates with increasing complexity growing numbers of 
specialists offering know-how and expertise. The competition amongst these 
different specialists as to whose services are the more useful, valuable or promising 
is a phenomenon which is more than simply personal. Individuals with similar 
training and a common base of knowledge form groups which promote in corpore 
their competence in certain specialised services. Such a group, which also assumes 
the responsibility of guaranteeing the qualifications of its members, is usually called 
a "profession ". 

The profession of the actuary is one of the oldest in the financial world. There are 
also accountants, underwriters, statisticians, demographers, operations researchers 
and financial engineers to name but a few. Allow me now to attempt to place the 
actuarial profession in this area of professional conflict. There can be no doubt that 
we actuaries have constantly increased our area of competence since our profes- 
sional beginnings in the last century. But to maintain that we are the only ones to 
have done so would be inappropriate. 

P h a s e  o n e :  Consolidation of life insurance 

To understand what actuaries are is not possible without knowing where their roots 
lie. Actuarial organisations owe their existence to a unique service to society which 
originated in the second half of the last century. I would like to point out that I 
consider this to be a worldwide achievement and not one limited to a British 
context, although history books emphasise this aspect. The latter was indeed 
chronologically first: in Victorian England--the world's leading nation--develop- 
ments occurred somewhat earlier than in other countries. But the same develop- 
ments took place in Germany, France, Scandinavia, USA and even in Japan and 
Australia, for example, a few decades later. What is this co-called unique service? 
Actuaries of the second half of the last century managed to gain recognition for 
their mathematical doctrine from the entire life insurance industry worldwide. The 
essential elements of this doctrine had already been around for almost a century and 
in fact James Dodson formed the Equitable Life Assurance Society on its principles 
in 1762. 

* Translat ion o f  a talk held at a meeting o f  the "Deutsche  Aktuarvere in igung"  in Wiirzburg,  April 30, 
1997. 
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166 THE ACTUAR,Y : THE ROLE AND LIMITATIONS OF THE PROFESSION 

For such an astounding achievement, conditions at the time had to be favourable. 
The first condition being that in the first half of the last century life insurance was 
to a large extent speculative business. An insurance chronicler wrote: "Insurance 
companies writing life business were breeding like flies in the summer sky, and 
disappearing just as fast". The reason for this disappearance was the non- 
application of a proven base for premium calculations on the one hand, and above 
all the lack of method in the excessive distribution of profits to the entrepreneurs on 
the other. To give a concrete example: between 1844 and 1853, in Great Britain 
335 new insurance companies were planned, 149 were actually formed and a total 
of 59 survived this period. This called for legislative measures to protect the 
insured. Secondly, it is just as important to note that Equitable, founded in 1762 as I 
mentioned earlier, managed to weather all storms in good shape and flourished 
because of the scientific methods it employed. Other companies thus took over the 
insurance technique developed mainly by its actuary William Morgan to calculate 
reserves, create a technical balance sheet and develop mortality tables using 
statistical data. 

This professional know-how had already begun to spread by word of mouth 
beyond national boundaries. Legislative bodies in most industrial nations were thus 
able to adopt a tried and tested scientific and mathematical technique. What had 
once been only a competitive edge for some life insurance companies was suddenly 
the norm, and the pioneers of this technique became members of the leading 
industrial profession. 

It was this high status of actuaries which led to the formation of the first national 
actuarial bodies, the Institute of Actuaries in London in 1848, the Faculty of 
Actuaries in Edinburgh in 1856, and the Institut des Actuaires Franqais in 1889. 
This was also the year that the first professional actuarial body was formed in 
America which was the forerunner to today's American Society of Actuaries. It is 
also interesting to note early developments in Germany. As early as 1860, a group 
of mathematicians met regularly to discuss problems related to the insurance 
industry. This group published its ideas mainly in the Masius Rundschau der 
Versicherungen, with extremely innovative contributions by Zillmer and Hattendorf 
for instance. My efforts to find the exact date on which the Deutsche Gesellschaft 
fiJr Versicherungsmathematik was formed were unfortunately unsuccessful, though 
it is known that the Institut ftir Versicherungswissenschaften with an actuarial 
department at the University of GOttingen was founded in 1895. Looking to the Far 
East, I would like to add 1897 and 1899 as the dates when the Australian Institute 
of Actuaries and the Institute of Actuaries of Japan were formed respectively. As 
you all know from the recent anniversary celebrations, the first International 
Congress of Actuaries took place in Brussels in 1895, which additionally led to the 
formation of the Belgian ARAB. 

The circumstances which I have just described provided the basis for the golden 
age of the actuary spanning the first half of the 20th century. This period was 
characterised by the proud awareness that actuaries controlled the know-how and 
expertise in the area of life insurance, which formed the solid foundation for an 
entire industry. Managers often came from this profession and used their managerial 
position to maintain the high status of actuaries within the company. 
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Phase 2: Lack of challenge 

This portrayal of the golden age of the actuary is a little one-sided. I first came into 
contact with the profession in the 1950s as a young actuary and it would perhaps be 
interesting to hear my personal impressions on joining the world of life insurance. It 
was probably the same for most of my young colleagues of that time: 

I was additionally fortunate in that I had a job with a company which was 
characterised by outstanding personalities, offered me excellent opportunities for 
development and, last but not least, paid very well. ! soon realised that my 
mathematical knowledge gained at university was regarded as a welcome status 
symbol, but that my cornmand of languages and other general knowledge gained at 
high school were far more important than mathematics. My dear teacher and 
supervisor at work, Professor Jecklin, summarised this so: actuarial science is a 
"ready-made" theory; all that remains to be done is the tuning of fine technical 
details. He could also have said that actuarial science has devoted itself to statics 
after it had mastered the dynamic conditions of the last century. For a young 
actuary this meant that a career in the insurance industry may well have offered an 
attractive entrepreneurial challenge, but the creative side of mathematics would be 
nothing more than a hobby. Despite the undertone in these statements, I hope that 
you will not find my impressions too negative; I later came to believe that viewed 
from the inside, i.e. from the point of view of someone who joined the insurance 
industry, working in this branch definitely had its attractions; admittedly these were 
highly dependent on individual situations. 

But, as you know all too well, this looked different viewed from the outside. It 
was difficult to convince students or anyone from academic institutions in general 
that a profession which uses mathematics statically, but produces no dynamic 
scientific development of its own, can be attractive. In the first half of the century, 
the recruiting of young academics interested in actuarial science began to suffer 
because of this. The situation was made more desperate by the fact that the 
universities asked themselves---from an academic angle quite justifiably--whether 
there was still a need to continue with actuarial science chairs; the declining interest 
shown by students was accompanied by the academic questioning of the lack of 
innovative ideas in actuarial science. This led to the bizarre situation, for example in 
Germany, where, on the one hand, the insurance industry wanted to promote 
actuarial chairs---even offering to support them financially--but on the other, the 
universities accepted these offers rather reluctantly, if at all. This situation could not 
only be observed in Germany: it was mirrored the world over. In the Anglo-Saxon 
countries it merely took another form : universities assumed the role of preparatory 
schools for examinations without having a say in their content. It is well known that 
the examination content in the US and Great Britain for example is set by the 
professional bodies, which meant that until only 20 years ago actuarial exams 
contained little on mathematics from the 20th century. 

In broader terms, not too long ago it could be ascertained that, professionally, the 
actuary was flourishing while, academically, his reputation was low. 
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Phase 3: New impulses 

In the 1960s and 1970s, the actuaries began to break out of the domain of life 
insurance. The scenario for the acceptance of actuarial methods in non-life 
insurance was interestingly similar to the one of a hundred years ago in the life 
branch. 

Motor liability in particular was responsible for the enormous losses suffered by 
insurers in many countries. Even if companies took the trouble to collect statistical 
data thoroughly they had no clear concept of how premium discounts should be 
rated. It needed a sound, theoretical approach to bring order to the proliferation of 
the system. 

As in life insurance, the theoretical approaches were once again already in place. 
In 1903 the Swede Filip Lundberg published the first paper on what was later to 
become known as collective risk theory. In this publication, he made the pioneering 
step towards modelling insurance events as a mechanism of chance developing over 
time. Without knowing, he had used the key concept of modern probability 
theory--the stochastic process--for the first time in an insurance context. His 
problem was that in 1903 there was no exact theory of stochastic processes in the 
strict mathematical sense. The relevant rigorous mathematical foundations were laid 
in the 1930s and 1940s, mainly by Russian mathematicians. Although Lundberg's 
work caught the attention of actuaries, it was understood by few, until Professor 
Harald Cramrr 's  excellent didactic explanations made the relationship between 
collective risk theory and the theory of stochastic process apparent to a wide 
readership. 

And yet Lundberg's contribution was the most important one. He dragged 
actuarial science form the intellectual "constraints" of the past into the 20th cen- 
tury. Through his efforts a milestone was reached: modelling the processes of 
insurance events on the basis of modem probability theory. 

The mathematically precise structure of the bonus-malus system in motor liability 
insurance, based on the number of losses of individual insureds, is a prime example 
of such a model. This model became established worldwide during the 1960s. It 
was also the driving force which offered actuaries new opportunities for profes- 
sional development outside the field of life insurance. This development soon 
spread to fire insurance, reinsurance and other branches. 

It is interesting to consider whether the activities of actuaries outside the field of 
life insurance actually contributed to the widening of the limits of the existing 
profession or whether a second, new profession was thereby created. In the US, 
where this professional development took place quite earlier than in other countries, 
it ted to a clear separation between Life Actuaries and Casualty Actuaries. In all 
other countries of the world, however, this widening of competencies has been kept 
under the same roof. We must nevertheless continually ask ourselves what actually 
keeps us under the same professional roof. Moreover, in comparison to his 
colleagues in life insurance, the boundaries of the non-life actuary's competence are 
a lot more blurred with other professions such as auditors or underwriters. We may 
regret this, but the pressure of always having to prove oneself in competition with 
other professions through particularly good performance also has its positive aspects. 
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Phase 4 : The challenge from other professions 

In defining the limits of actuarial competence we have so far only considered the 
profession from the inside. We have seen how the actuary clearly marked his 
professional field as his own, foremost in life insurance, in order to then extend it 
into other insurance branches. 

Another trend has also been evident over the last 40 years, namely the 
establishing of competencies in other professions whose areas of competence 
overlap with those of the actuary. Generally speaking, I believe that this develop- 
ment can be attributed to the fact that the concept of probability has, in modern 
times, become a universal way of thinking which is incorporated in all aspects of 
our life; in the last century, this concept was relevant to practically only two types 
of people : to professional gamblers - -  and actuaries. Another profession which has 
integrated the concept of probability increasingly since the middle of this century is 
that of accountants. They, too, often determine the present value of cash flows. 
Because they do this partly in accordance with principles which differ from 
actuarial ones, there is inevitably friction between the two professions. This also 
means competition in activities which were previously reserved exclusively for 
actuaries. From an economic point of view, there is nothing to be said against the 
existence of different professional doctrines to treat identical economic problems. 
On the contrary, the range of possible means available to business managers should 
be enhanced by this co-existence. 

The example of actuary and accountant shows, however, that the overlapping of 
competencies from different professions can lead to disagreement on which one has 
an intellectual monopoly on the correct solution to a problem. I believe that it is 
precisely the role of actuaries to point out how restricting it is to suppose that for a 
given problem there is only one right answer. This is not even true in mathematics, 
let alone in economics (as an aside, the closeness of the actuary to mathematics may 
also be responsible for the fact that, mostly, the claims to a monopoly come from 
the other side). 

The challenge actuaries face from another, newly created profession is however 
much greater than that which has come from the ranks of the accountants over the 
last few decades. This latest profession is so new that there is only an English name 
for it. "Financial Engineers", as they are known, have initially taken up activity in 
an area which was not previously occupied by any profession. We could therefore 
speak of unconquered territory or no-man's-land. The typical activities are : pricing 
of options, term structures for interest rates, optimisation of investment portfolios ; 
in short, the problems of the modern financial world. 

Looking back it is difficult to understand why the approaches and solutions 
developed for today's financial sector, which are clearly oriented towards mathe- 
matics, or to be more precise towards probability theory, did not originate from the 
breeding-ground of actuarial thinking. This is also true of the academic world ; here, 
the innovation stemmed from the faculties of business administration, i.e. the 
business schools. The challenge from financial engineers is thus of a different type. 
It has shown us that a static profession can miss obvious chances of key importance 
to its professional development. The traditional thought patterns of financial 
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mathematics kept us chained for too long to deterministic, non-variable, technical 
interest rates for the entire duration of an insurance contract. But the actuaries have 
woken up and are beginning to occupy the field of  modern financial mathematics 
around the world. 

The universities in particular have realised that finance and insurance mathemat- 
ics should be presented to today's  students as one discipline. I personally favour a 
fruitful co-existence of  the paradigms which have grown from different breeding- 
grounds and which may lead to different practical solutions. In the resulting 
competition between the two professions, the actuaries have the disadvantage of 
having been somewhat late arrivals in the field. In many places, however, the 
training of  actuaries concentrates more on mathematics than courses at business 
schools do. This long-term advantage should not be underestimated. And why can' t  
the actuarial roof be big enough to cover financial engineers too? 

The "common" roof for actuaries 

What exactly is this " c o m m o n "  roof? How wide should it be and how diversified 
can the profession be which it covers? What does it mean: "we  are all actuaries ' '9  
Is it not more helpful to say that you carry responsibility for the calculation of 
reserves in life insurance, for the rating of  substandard risks in life and health, for 
loss statistics in fire insurance, for the development of derivatives at a reinsurance 
company or for demographical projections in social insurance ? If we take our daily 
responsibility as a means of  classification, we are--as  are members of  many other 
professions--an association of  specialists. What does the common profession of 
actuary mean to us then? The first response to this question comes from the 
corporative world : the profession of actuaries defines the necessary code of  conduct 
for its members; it ensures professionalism to others and controls conduct from 
within. Most national actuarial associations are now in the process of  revising their 
rules of  conduct. This will help clarify the professional standing of  the actuary in 
today's  business and insurance world and is thus a welcome move. Corporate 
understanding of  the profession is, however, not sufficient to define " a  comrnon 
roof".  Experience shows that the majority of guidelines developed by the profession 
is aimed at disjunct groups of specialists and thus contributes little to the unity of 
members of  the profession. This unity requires a communicative understanding of 
what constitutes a profession; in addition to the know-how of these specialists, it 
requires in particular an integrated and mutual understanding of  what these 
specialists do and on which basis their know-how is founded. Only in this way can 
we stop the " c o m m o n "  roof from turning into a tower of  Babel. Those of  us who 
work in universities can perhaps make the biggest contribution to our profession in 
this respect by teaching actuarial mathematics, financial mathematics, non-life and 
life insurance techniques, capitalisation and "pay-as-you-go"  from a common base 
of  understanding. I should perhaps add that the concept of a common basis for the 
understanding of the modern financial world (of which insurance is a part) is 
greeted with great enthusiasm by the students. The number of  students who actively 
participate in our seminars on this subject has shot up. What is particularly pleasing 
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is that it is often the best students who want to work in the area of integrated 
finance and insurance mathematics. The future role of  the actuarial profession will 
depend essentially on how successful it is at supporting and encouraging these 
promising young people after they have graduated. If we can succeed in integrating 
them actively and professionally in the financial sector, this important sector of our 
economy will be able to look to the future with confidence. 

HANS BUHLMANN 
Department of Mathematics 
ETHZ 
CH-8092 Ziirich 
Switzerland 





A F R E Q U E N C Y  D I S T R I B U T I O N  M E T H O D  FOR 
V A L U I N G  A V E R A G E  OPTIONS 

BY E D W I N  H .  N E A V E  

School of Business, 
Queen's University, 
Kingston, Ontario 

ABSTRACT 

This paper finds payoff frequency distributions for valuing European and 
American fixed strike average options on a discrete time, recombining multi- 
plicative binomial asset price process. In comparison to other discrete valuation 
methods the distributions, obtained analytically from a generating function, 
greatly reduce the computational requirements needed for accurate valuation. 
Less data are needed to value geometric than arithmetic averages, but the 
magnitude of calculations is similar for both instruments. Calculations of  order 
T ~ are needed to value European instruments, of  order T 4 to value their 
American counterparts. A frequency distribution of a quantity called pathsums is 
used to value geometric average options, and a joint distribution of path sums 
and realized prices is used to value arithmetic average options. The frequency 
distributions give an exact value for geometric average, an approximate value for 
arithmetic average instruments. The method obtains additional information from 
the generating function to estimate approximation errors relative to the exact 
binomial solution. If  the errors are significant they can be reduced using still 
further detail from the generating function. Error reduction can be performed 
selectively to minimize additional calculation. 

K E Y W O R D S  

Binomial models; options pricing; average options; Gaussian binomial coeffi- 
cients; numerical methods. 

I .  INTRODUCTION 

Average options are instruments whose payoff depends on the average price of  
the underlying asset, determined over a prespecified period. The averages may be 
either arithmetic or geometric, and there are both fixed strike and floating strike 
average options, with the former being by far the most common. Jarrow and 
Turnbull (1996: 651: hereafter JT) state that average options are used in foreign 
exchange and commodity trading as well as in interest rate contracts. Commodity  
based options are written on such assets as oil or aluminium. JT note that the use 
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of an average price reduces an option's sensitivity to price changes in the 
underlying commodity, especially to price changes occurring at or near contract 
maturity. Reduced sensitivity to prices can prove especially important in the case 
of illiquid commodities. 

Because of their path dependence, average options are generally regarded as 
difficult to value, despite the following considerable progress. European fixed 
strike geometric average options have known analytic solutions for both 
continuously and discretely determined averages. Valuing European arithmetic 
average options on a continuous time process is more difficult, mainly because the 
conventional choice of process is a geometric diffusion for which the distribution 
of prices' arithmetic averages is not lognormal. Nevertheless, analytic solutions 
for European arithmetic average options have been found for continuously 
determined averages by Yor (1992), and Geman and Yor (1993); Geman and 
Eydeland (1995) report computational experience with these methods. 

There are no analytic solutions for continuous time models with discrete 
averaging, although Turnbull and Wakeman (1991), Levy (1991), and Curran 
(1992) offer approximate solutions. Neither have discrete time models been 
studied analytically. Hull and White (1993) approximately value arithmetic 
average instruments on a binomial process. Neave (1993) uses a binomial model 
to calculate values for European and American arithmetic average options. Ho 
(1992) and Tilley (1993) propose simulation with bundling techniques for 
reducing calculations, and Tilley uses his approach to value both European and 
American average options. Ritchken, Sankarasubramanian and Vijh (1993) 
approximately value European arithmetic average options with up to 64 reset 
points, American options for up to 16 reset points, and compare their 
approximations to values obtained by simulation. 

Methods such as Turnbull and Wakeman's are sufficiently accurate for 
processes with an annual volatility of 0.40 or less, but some price processes (e.g., 
those for alumint, m and crude oil) exhibit higher volatilities. Moreover, for a 
fixed number of time periods T convergence of approximate to exact values 
becomes slower as volatility increases.This paper reduces the computational tasks 
in valuation for any volatility, it both offers new approximation methods with 
greater accuracy than those in the literature, and shows how the approximations 
can be amended to find exact valuations. It achieves these goals by organizing the 
data along lines indicated by a generating function. 

While less data are needed to wdue geometric than arithmetic average 
instruments, in both cases the calculations are of order T 3 for European 
instruments, of order 7 ~ for American instruments, where T is the number of time 
periods. (Both n and T are used to denote time in the literature; T is used in at 
least two recent texts.) The calculations employ sets of paths called bundles, 
where a bundle is defined as the set of all possible paths of the same length and 
having a common end point. Each bundle can be broken into sub-bundles, where 
a sub-bundle consists of the paths in st bundle that have the same pathsum, the 
latter being defined as the sum of path price indices. The number of paths in each 
sub-bundle is described by the so-called Gaussian binomial coefficients, for which 
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analytic formulae are available. Distributions of path sums can be used to value 
European and American geometric average options exactly, the latter by recursive 
methods. 

Another description of path characteristics, the joint frequency distribution of 
path sums and realized prices, is obtained from the same generating function in 
this paper. The joint distribution can be used to obtain good approximate values 
of both European and American arithmetic average options. In the European 
case, exact solutions can be found from the approximations with relatively little 
additional computing. Further experimentation is needed to determine the best 
way of refining the approximations to obtain exact values of the American 
options. 

The methods can be applied to a variety of options, but for illustrative 
purposes the paper only values fixed strike average calls. The discussion is 
organized as follows. Section 2 specifies the asset price process and defines the 
options. Section 3 describes the problem structure, defines the generating 
function, and specifies the frequency distributions. Section 4 values a European 
and an American geometric average call. Section 5 values the corresponding 
arithmetic average calls; Section 6 concludes. Appendices detail some features of 
the methods. 

2. THE PRICE PROCESS AND THE OPTIONS 

This section defines the price process and formulates European call valuation 
problems. A recursive form of the European valuation problem is developed to 
show how bundling methods can be extended to value American as well as 
European instruments. 

2.1. The Process and its Averages 

Let So = 1, and define {S,}, the asset price process, by: 

S, = US,_i; 

where for t E {I, 2, ..., T}, 

(2.1) 

U =  {u; p u-I; q 

with u > 1. The realized price cannot become negatDe, and remains finite for 
finite values of T and u. Cox and Rubinstein (1985) show that one continuous 
time limit of the binomial process is the lognormal; Feller (1957) provides 
parameter values for which the limiting distribution is the Poisson. 

It is helpful to rewrite (2.1) as 

t 

S , = u S ' ; J , ~ - Z X , . ;  t =  I, 2, ..., V (2.2) 
s= I 
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where the X,., s = 1, 2 . . . . .  T are independent, identically distributed random 
variables: 

!; p 
Xs ~ - I ;  q. 

The values J , ,  t = O, 2 . . . . .  T are called n o d e  values. Since So ~ I, J0 ~ 0. The 
cumulative sums of node values 

I I 

v, _= ~ J.,. = ~ ( t -  s) x.,+. (2.3) 
s=O s=O 

are called p a t h  s u m s .  Define the process averages, geometric and arithmetic 
respectively, by 

= Lno,, ] ,,,,+,, 
(2.4) 

= uV,/(t+U 

and 

= [~ua ' ] / ( t+l )s=0 (2.5) 

Given u, (2.4) shows that the V, are needed to determine geometric averages, 
while (2.5) shows that the J . , . , s  = 0 . . . . .  t are needed to determine arithmetic 
averages. 

2.2. Standard Indices 

It is convenient to represent the possible outcomes of (2.1 as in Figure I. For 
T=  4, the Figure arrays successive periods' outcomes along the main diagonals, 
starting with t = O  in the lower left hand corner. Price increases are represented by 
upward moves, decreases by horizontal moves to the right. 
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U 4 

U3 ,/12 

21, 2 '/.L 1 

?A 1 U 0 

'/Z 0 U -  1 

U 0 

2£ -1 ,/2-2 

//,-2 ,/t-3 U-4 

FIGURE I: Original Indexing. 

Price paths can be described either by a sequence of realized prices or, as 
Figure I and the subsequent discussion suggest, by the timing and signs of  their 
first differences. For example, the path with price indices 

0 - 1 - 2 - 3 - 4  

is described by the vector of  first differences 

( X t  X2 X3 X4)'= ( -1  - I - l - l ) ' ;  

while the path with indices 

0 1 0 - 1 - 2  

is described by 

( X  I X 2 X 3 X'4) t =  (+1 - 1 - 1 - 1)'. 

The respective path sums - I  0 and -2  can be calculated either from the node values 
or, using (2.3), from the X,. Using (2.3), the path sum for the second path above is 

4 - 3 - 2 -  I = - 2 .  

Information regarding paths and path sums can be determined systematically 
from a generating function that recognizes the sign and timing of first differences. 
For example, when t = 4 a suitable generating function is 

4 

f 4°O ', w) = H 0'-' w-q + Y"J) = 
j=l  

y - 4 w - 1 0  + y - 2 ( w - 8  + w -6 -t- w -4  "1- W -2)  (2.6) 

+y°(w-4 + w -2 + 2w ° + w 2 + w 4) 

-}-y2 (W2 -I" 14 ,4 -1"- W 6 '1-W 8) q -y4wl0-  
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Tile terms y-~ in the first line of (2.6) record the effect on the time 4 price of any 
differences such X, = - 1 ,  while the terms y~ record the effect on the time 4 price 
of any differences such that X, = 1, t E {I, 2, 3, 4}. The terms w -5 record the 
effect on the path sum if X4+i-.,. = - I, while the terrns w 5 record the effect on the 
path sum if X4+1-.~ = I; s E {1, 2, 3, 4). 

Lines 2 through 4 of (2.6) suggest grouping paths according to powers of  3'. Let 
a bundle B(t,j)  be tile set of  all paths ending at (t,j).  For any given bundle 
defined by (2.6), the associated polynomial in w defines the distribution of path 
sums: powers of  w indicate the values of the sums, coefficients of  individual terms 
indicate the frequencies with which the sums are attained. For later use, let a sub- 
bundle B(t,j, V) be the set of all paths in B(t,j)whose indices sum to V. The 
number of  paths in each sub-bundle is given by the coefficients of  the appropriate 
polynomial in w. 

Function (2.6) and Figure I help both to structure valuation problems and to 
simplify path descriptions. With regard to structure, Figure 1 indicates that the 
attainable set of realized indices for paths in B(4,0) is defined by the rectangle 
with lower left-hand corner at (0, 0) upper righthand corner at (4, 0). The Figure 
can be used to verify that B(4. O) consists of  4!/2!2/ = 6 paths, all with the same 
probability of  occurrence, and that the maximal and minimal path sums in 
B(4, O) are 4 and --.--4 respectively. Accordingly, the set of  possible values for path 
sums in B(4,0) is 

- 4 - 2 0 2 4 ,  

and (2.6) shows these wdues respectively occur with the frequencies 

1 1 2 1 1 .  

With regard to simplifying path descriptions, the paths in a given bundle are 
distinguished by different orderings of price increases and decreases, but the 
timing of the increases implies the timing of the decreases. For example, since all 
paths in B(4, O) have two increases and two decreases, the path for which 
X~=X2= I must also have X3:X4=-I, from which it follows that the path's node 
values are 

0 1 2 1 0 .  

Generalizing the example, the paths ill any bundle can be described fully just by 
specifying the values of  s, s E {1, 2, ..., t}, for which Xs = 1. More formally, 
path characteristics can be inferred from a standardized process which replaces S, 
in (2. 1) with S~, where 

f 

- ~ ;  ~ = ~ X~.~; (2.7) 
s =  I 

I ; X ~ .  = 1 I 
_= o ;  x l l  - . 
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A s tandard ized  process for t = 4 is d isp layed in Figure  2. 

U 4 

U a U 3 

U 2 U 2 

U 1 U 1 

U o U o 

U 2 

U t U 1 

U o U o U o 

FIGURE 2: Standard Indexing. 
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where x =- v 2 and i, ~ it ,2. When using the s tandard ized  process the mult ipl icat ive  
cons tant  x':4) '-m is ignored and the generat ing function writ ten in the s impler  
form 

4 

ja(x, 1,)= H (~ +.,-1~)= 
j=l 

I + X ( V  I + I' 2 + 1,3 + V 4) 

+ x  2 (v 3 + v 4 + 2v 5 + 1,6 --t- I '7) (2.9) 

-I"x3 (I ~6 -{- 1,7 -{- I 's -'}- I '9) -t-X41 sl0 = 

1 +xv[(v 4 -  I ) / ( v - I ) ]  + \'2v3 [(v 4 -  l)(v 3 -  l)/(, '  2 -  i ) ( ~ - I ) ]  

'q--A'3V6 [(l  ' 4 -  l ) / ( l ' - - I ) ]  -I- X4p lO = 

=-- g4,0(v) + xvg4.i(v) + x2v3g4,2(v)+ 

X 3 v6g4,3 (V) --{- x4gl°g4,4 (v). 

The generat ing function for the s tandard ized  process is ob ta ined  by rewrit ing 
(2.6) as: 

4 

S°(y, '")= I10 ' - ' , , ' - '  + y"J) = 
s=, (2.8) 

4 
y - 4 W - 1 0 H  1 + X l d ) ,  

j=l 
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More generally, the generating function for the standardized process is: 

I 

:,(", ")= YI +-"")= 
j*=l 

! 

E gtd. (v)v/*0*+ 1)/2;*. (2. I0) 
.i*=0 

The functions gt.i,(v) in (2. 10), known as Gauss ianpolynomials ,  take the form 

r I  v'+ i-#" j* (2. I I ) 1 
g,,/*(v)= v ~ - I  ; 1 <  <t, 

i 

k=l 

and gt, o.(v) =- 1; cf. Berman and Fryer (1972). The coefficients of the gr (v), 
which can be written as polynomials, define the so-called Gauss ianbinomialcoe f -  

f ic ients .  In the present setting the Gaussian binomial coefficients gr.j. (v) describe 
the frequencies of V*, conditional on J* =j*. it is clear from comparing (2.6), 
(2.7) and (2.9) that 

Jt = 2 " 4  - t; . 
(2.12) 

V, = 2. ~ - t(t + I)/2. 

The possible values J; are the integers from 0 to t, those of ~ the integers from 
zero to t ( t  + 1) /2.  

The sub-bundles defined by (2.10) can be used directly to value European 
average options, but recursion relations between the sub-bundles are needed to 
value American options. As Section 3 will show in greater detail, the necessary 
relations can be determined fi'om (2.10) 

.D(x, ,,)=.l;_~(x, ,,)(i +.\-,,'), 

in conjunction with: 

gt,o " = g t - l , O ;  

g , , d=g~_ l . /+g t_ l , j _ l v l~ / ,  j =  I, 2, ..., t - -  I; 

gt ,  t ~ . g t - I ,  t - I  

2.3. European Fixed Strike Average Calls 

The payoff to a European fixed strike average call with exercise date T is 

CT ~ (AT-- K) + (2.13a) 
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where A r is a random variable representing either a geometric or an arithmetic 
average and X+ means max{X, 0}. The geometric average call uses A'r-- GT, 
where GT is defined by (2.4), and the arithmetic average uses AT =-- HT, where HT 
is defined by (2.5). Given a probability measure p, the time zero values o f t h e  
European options are 

Co - R -TE(A ' r -  K) + (2.13b) 

where E denotes expectation under p and R I _= (1 + r) ~ indicates the t-period 
accumulation of $1 at the single-period risk free interest rate r. Recursive 
approaches can be used with either a martingale or with objective probability 
measures; cf. Dixit and Pindyck (I 994). Schwartz (I 994) discusses the theoretical 
correctness of using the different measures. In consistency with option pricing 
theory, we assume no arbitrage opportunities, market completeness, and 
that transactions costs are zero. Then a unique martingale measure 
p * = ( R - u - i ) / ( u - u - ' )  can be obtained from the normalized process 
S~ = Si /R  ~. The paper uses p rather than p*, reserving the asterisks to denote 
standard indexing. 

To value the American analogues to (2.13a) and (2.13b), it is convenient first to 
formulate (2.13b) with the states defined as individual price paths.The methods 
will then be adapted to find recursions between slates defined as path sums. We 
first number paths according to 

T 

Z = - Z  ~.,..2 T-', (2.14) 
s= I 

and note the state variable Z can assume the realized values 
z E {0, 1, ..., 2 "/"- 1}. Identifying the paths using values of  z (2.13b) can be 
written: 

Co(z) - R-TE{(A(z) - K)+}, (2.15) 

where A(z )  indicates an average over path z. There are 2 r possible realized 
values of Z, making computation infeasible when T is large. The states are later 
redefined so that for computational purposes it is only necessary to recognize 
distinct values of  order T 3. Since H(z)>_ G(z) for sill z, (2.15) immediately 
confirms the restllt, first pointed out by Kemna and Vorst (1990), that the value of 
a European arithmetic average call is never less than the value of the 
corresponding geometric average call. 

A recursive formulation is not needed to solve problem (2.15), but will help 
relate our methods for valuing European options to those for their American 
counterparts. Suppose henceforth that the z are arranged in increasing order at 
time T i.e., 

O, I, ..., 2 7"- I. 
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Examination of Z shows the path numbers are lexicographically ordered by the 
signs of path first differences. For example, the pair of paths 2 r -  1 and 2 r - 2  
differ in the sign of the first difference taken between times T-I and T. The 
same is true for the pair 27"-3 and 2T-4, and for all remaining pairs of adjacent 
paths. After the expected value at time T-I is taken over pairs of paths that are 
adjacent in terms of z, the states then requiring to be distinguished are indicated 
by 

z E  {0, 2, ..., 2(2 T - ' -  l)}. 

Again adjacent pairs of the remaining paths differ in the sign of what is now the 
first difference between times T-I  and T-2. That is, tile remaining states are 

z E ( 0 ,  4, ..., 4(2T-2-- I)}. 

The process continues until time 0, when the single state denoted by z = 0 is 
reached. The path nurnbering method is further illustrated in Table 3 below. 

Using the relations between values of Z, (2.15) can be written recursively as: 

cT(z) -= (AT(z)-  K)+; 

z ~ {0, l, . . . ,  2 r -  l} ~z . r ;  

CT-I (Z) ~ R -I {pCT(.Z + l )  + qCr(z)}; 

z E { j . 2 : i = O ,  2, ..., 2 r - I - - l } ~ Z . r _ l .  (2.16a) 

In (2.16a) Cr(z) is the value of the European call at time T i f t h e  price path from 
time 0 time time T is described by z. In general, 

CT_,(z) -- R- '{pCr_t+l(z+2'- ' )  +qC'r_,+,(z)}; (2.16b) 

z E  { j . 2 ' : j = 0 ,  1, . . .2 " r - t -  I} =-Zr_,.  

When t = T, (2.16b) defines the time zero call value. 

2.4. American Fixed Strike Average Calls 

To write the recursion for the American call, (2.16) is arnended to recognize the 
effect of early exercise. Let D,(z) be the time t value of the call if the price process 
has followed path z from time 0 to time t: 

DT(Z) ~ CT(Z); 
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z E ZT; 

DT-,  (z) = max  { (AT- ,  (z) -- K) +, R -I [pD.r(z + 1) + qDT(Z)]}; 

and 

Z E ZT- i  ; 

(2.17) 

DT_,(z) =-- max{ (AT_ , ( z )  -- K) +, R -t  [pDT-t+i (z + 2 ' - ' )  + qDT-,+, (z)] }; 

z E Z.r_~. 

In conformity with the standard result that the value of an American call is never 
less than that of  its European counterpart,  equations (2.17) show immediately 
that D,(z) > C,(z) for all feasible values of z and t. 

Since they recognize 2 T distinct paths, computations based on (2.16) and (2.17) 
increase exponentially in T. To reduce computation, the rest of this paper defines 
state variable values as the values defining path sub-bundles. In the American 
case the paper further determines how sub-bundles at a given time point are 
related to sub-bundles for the immediately preceding time. This approach reduces 
the number of  calculations to cubic or fourth degree polynomials in T, according 
to whether European or American options are being valued. (The higher degree 
of polynomial for American options results from having to repeat the calculations 
at each of the T stages in the problem.) The approach gives exact values for 
geometric average options, approximate values for arithmetic average options. In 
the latter case, approximation error can be estimated and eliminated using 
relatively little additional calculation. 

3. PROBLEM DATA AND VALUATION METHODS 

This section states process parameters, then discusses how paths can be 
bundled for valuation purposes. The methods use properties of  (2.10) to adapt  
(2.16) and (2.17). 

3.1. Process Parameters; Option Specifications 

To enhance comparisons anaong different types of  instruments, the same process 
parameters are used to value examples of four options - European and American 
geometric and arithmetic fixed strike average calls. As specified in Table 2 below, 
the examples value instruments oil (2.1) with T =  6 quarterly time intervals, an 
annual volatility ~7 = 0.40, and a risk free rate i" = 0.10 per annum. The initial 
asset price is So = 1.00. Let k be defined as the solution to u k = K  and take K =  
1.00, so that k = 0. All options are assumed to expire at time T. If an option is 
exercised at time t, its path averages are defined over times 0 ..... t. For European 
options t = T, for American options the early exercise feature means t < T. 
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Section 6.1, reporting computational experience, values European arithmetic 
average calls for t E {6, 12, ..., 48}, a E {0.40, 0.60, and 0.80}, and the re- 
maining parameters as indicated in Table 2. 

T A B L E  2 

D A T A  FOR V A L U E  COMPARISONS 

A t  = 0 . 2 5 0 0 0 0  

T = 6 o- = 0 . 4 0 0 0 0 0  p e r  a n n u m  

7- = 0 . 1 0 0 0 0 0  p e r  a n n u m  

R = 1 . 1 0 0 0 0 0  -~r' = 1 . 0 2 4 1 1 4  p e r  q u a t e r  

.u = 1 . 2 2 1 4 0 3  = e x p  ( 0 . 4 0 0 0 0 0 / ( 0 . 2 5 0 0 0 0  .5) 

i, = 0.510051 = (R - ,r')/(,L - .,L -~) 
q = 0 . 4 8 9 9 4 9  = 1 - p /K = "u ° = 1 . 0 0 0 0 0 0  

3.2. Ordering and Bundling Paths 

Valuing a fixed strike average call involves finding a probability distribution of 
paths whose averages exceed K. These calculations' efficiency can be enhanced by 
organizing the data as indicated in Figure 3. Figure 3 shows the relations between 
a bundle and its sub-bundles, as well as the behaviour of the bundle's arithmetic 
averages when the paths are organized as shown. Each cell in Figure 3 represents 
a path in the bundle B(8,0), and the cell height indicates a path arithmetic 
average, in this case when a = 0.80. Each (horizontal) bar of cells represents one 
of the sub-bundles of  B(8, 0), with the length of  the bar indicating the number of  
paths ill the sub-bundle. The different heights within a bar indicate distinct sub- 
bundle arithmetic averages, the number of  which is generally very much less than 
the sub-bundle' s number of  paths. All the information conveyed by the graph can 
be obtained analyticaly, and all features of the graph except the cell heights are 
invariant with respect to volatility. Grouping paths into sub-bundles as indicated 
by the graph orders both the sub-bundle geometric means and the minima and 
maxima of sub-bundle arithmetic averages, properties used to advantage in the 
subsequent valuations. 

Using the approach suggested by Figure 3, Table 4 organizes the data needed 
to obtain sub-bundle means of arithmetic averages inB(6, 0). Each line of  the 
Table 4 records, in the first thirteen columns, data needed to obtain such a sub- 
bundle mean. (Table 4 is shown with more columns than would normally be used 
in practice.) Column g indicates the numbers of paths in each sub-bundle, column 
V the path sum defining each sub-bundle, and column V* the standardized path 
sums. Column M/g calculated from the index frequency section of Table 4, 
defines the sub-bundle mean of path arithmetic averages. For example, in the row 
forB(6, O, -5) M/g = 6.126512, indicating the mean of the arithmetic averages of  
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t h e  t w o  p a t h s  in t h e  s u b b u n d l e  is 6.126512/7.  W h e n  t h e  s u b - b u n d l e s  a r e  o r d e r e d  

b y  V, t h e  v a l u e s  in c o l u m n  M / g  i n c r e a s e  m o n o t o n i c a l l y ,  a s  i l l u s t r a t e d  b y  t h e  

e x a m p l e .  

k 

::.~:~': ~ . . . . . . . .  :. ::i~::" .:~ . . . . . . .  

-6 

S 

2 u 
-,-4 
4.1 

4.1 
0 ""4 

FIGURE 3. Arithmetic Averages in B(8,0); o = 0.80. 

TABLE 4 

FREQUENCY DISTRIBUTIONS FOR B(6. 0) 

Indices 

-6  -5  -4  -3  -2  - I  0 1 2 3 4 5 6 g V V' M/g 

0 0 0 1 2 2 2 0 0 0 0 0 0 I -9  6 5.526912 
0 0 0 0 2 3 2 0 0 0 0 0 0 I -7  7 5.796831 
0 0 0 0 2 6 6 0 0 0 0 0 0 2 -5  8 6.126512 
0 0 0 0 2 7 I0 2 0 0 0 0 0 3 -3  9 6.504853 
0 0 0 0 0 6 12 3 0 0 0 0 0 3 - I  10 6.858864 
0 0 0 0 0 3 12 6 0 0 0 0 0 3 1 11 7,261537 
0 0 0 0 0 2 10 7 2 0 0 0 0 3 3 12 7.723644 
0 0 0 0 0 0 6 6 2 0 0 0 0 2 5 13 8.156035 
0 0 0 0 0 0 2 3 2 0 0 0 0 I 7 14 8.647860 
0 0 0 0 0 0 2 2 2 I 0 0 0 1 9 15 9.248576 
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3.3. Frequency Distributions 

Let the vector gl, j. represent the coefficients g,,.i,(v). It follows fi'om (2.1 I) that 
gl.j. describes the frequency distributions of path sums for both B(t, j*, V*), and 
B(t, .[, V). Columns g and V of Table 4 can thus be written directly from the 
gt,j,(v). The index frequency data in the first thirteen columns of Table 4 can be 
obtained using two-fold convolutions of  (2. II). Consider each in turn. 

The function (2.10) generates the data in columns g and V directly. (Subscripts 
are omitted when the context permits.) ConsiderB(6, 0), i.e. B(6. 3*) in 
standardized notation. Using (2.10) and (2. I I), the range of values for V* is from 
6 to 15, and their frequencies are obtained from 

g6,3.(v) = (1/6- [)(I ' 5 -  ] ) ( F 4  l ) / ( I , - l ) ( 1 , 2 -  ])(1,3- [) 

= (,,, + ,,3 + ,,2 + , ,+  l) (,,3 + l) (,,2 + l) .  

Expanding the last line, it follows immediately that 

g6.0 = g6,3. = (I I 2 3 3 3 3 2 1 1)', 

the values reported in column g of Table 4. 
To derive the indices columns in Table 4, consider any price attained by one or 

more paths in B(6, 0), and any one of the times at which that price can be 
attained. Then, consider the twofold convolution describing how those time-index 
combinations are related to the path sums at time T. A term from this 
convolution gives a frequency distribution of path sums for paths attaining the 
given time-price combination. Finally, since a given price can be attained at more 
than one point in time, the frequency distributions are summed across time to find 
the frequency distribution of path sums associated with the price index. 
Calculating these distributions for all attainable prices gives the joint frequency 
distribution for the bundle. The frequency data are generated column by column, 
as shown in Appendix II. Effectively, this rnethod circumvents the analytical 
difficulty that the sum of Iognormal variables is not lognormal. 

In practice the data of  Table 4 are computed using a forward recursion.The 
manner of  constructing the data means they remain the same for all options of  the 
type discussed here, so the valuation problem involves a setup cost that only 
needs to be incurred once. 

4. VALUING GEOMETRIC AVERAGE CALLS 

This section values the European and then the American geometric average call. 
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4 .1 .  V a l u i n g  the  E u r o p e a n  G e o m e t r i c  A v e r a g e  C a l l  

European geometric average options can be valued from just columns g and V of  
arrays like Table 4. Table 5, organized in a fashion similar to Table 4, shows all 
the data needed to value the European geometric average call. That  is, Table 5 
displays the frequency distributions for all sub-bundles 

B(6, j, V) ; jE  { - 6 ,  - 4 ,  ..., 6); VE  { -21 ,  - 1 9 ,  ..., 21}. 

As in Table 4, blanks indicate unattainable combinations.  

TABLE 5 

NUMBERS OF PATHS BY SUB-BUNDLE 

V/J -6 -4 -2 0 2 4 6 

-21 
-19 
-17 
-15 
-13 
-II  
-9 
-7 
-5 
-3 
-I 

1 
3 
5 
7 
9 

II 
13 
15 
17 
19 
21 

I 
1 
2 
2 I 
3 I 
2 2 
2 3 
I 3 
1 3 

3 
2 
I 
1 

Totals I 6 15 20 15 6 

The Table 5 data and the parameters o f  Table 2 are used to calculate the call 
payoffs shown in Table 6. For  example, the contr ibution to call value orB(6,0.5)  
is: 

( )* 2.  1.2214035/7- 1, 0 =0.307130.  

The 2 is the number  of  paths in B(6,0, 5), 1.221403 is the value of  u, 5/7 is the 
index of  the geometric average over the periods 0 through 6, and 1 is the exercise 
price. 

The entries in each column of  Table 6 are summed and multiplied by the 
appropria te  probabilities as shown in the Table 's last three lines. For  example, 
column 2 adds to 3.489205 and the probabili ty for each of  its paths is p4q2 = 
0.016246 when p = .510051  and q = 1 -p .  The third line, the product  of  sums 
and probabilities, is summed over all columns and multiplied by R -6 to obtain the 
time 0 discounted call value o f  0.12 t 869. 



188 EDWIN H. NEAVE 

TABLE 6 

EVALUATING THE EUROPEAN GEOMETRIC AVERAGE CALL 

V\J -6 -4 -2 0 2 4 6 

-21 0.000000 
-19 0.000000 
-17 0.000000 
-15 0.000000 0.000000 
-13 0.000000 0.000000 
- I I  0.000000 0.000000 

-9 0.000000 0.000000 
-7 0.000000 
-5 0.000000 
-3 0.000000 
-1 0.000000 

I 0.028984 
3 
5 
7 
9 

II 
13 
15 
17 
19 
21 

Column Sums 
0.000000 0 .000000 0.028984 

Probabilities 
0.013833 0.014400 0.014991 

Expected Values at Time 6 
0.000000 0.000000 0.000343 

European Geometric Average Call 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.086951 
0.268485 
0.307130 
0.221403 
0.293230 

0.000000 
0.028984 
0.178990 
0.307130 
0.664209 
0.586460 
0.738563 
0.449805 
0.535064 

0.293230 
0.369281 
0.449805 
0.535064 
0.625336 
0.720918 

0.822120 

1.177199 3.489205 2.993634 0.822120 

0.015606 0.016246 0.016913 0.017607 

0.018371 0 .056687 0.050631 0.014475 

] 0.121869 ] 

4.2. Valuing the American Geometric Average Call: Recursions 

The  A m e r i c a n  geomet r ic  average call is valued us ing a specialized vers ion o f  
(2.16) that  defines recurs ions  be tween  sub -bund le s :  

DT-,(/ ' ,  z) ~ gr-,,j.: m~x{(Gr_ , ( / ' ,  z) - K) +, 

R - I  [pDT-t+I(]  + 1, z + j +  I)/gT-,+l,j+l, : + j + l +  

+qDr-,+lO-- 1, z +.j-- l)/gT-t+l..i-t.z+i-I]}; (4.1) 

j E  { - ( T - t ) , - ( r - t ) + 2 ,  ..., T - l } ;  

z E {VT- t , j} ;  t E {0, ..., T}, DT+i(') --z O, 

where  gr-t.j,z is the n u m b e r  o f  pa ths  in B(T-t , j ,  z) and  {VT-t,j} is the set o f  
values  def ined by the coefficients o f  gT-t,j.. The  recurs ion  re la t ions  be tween sub-  
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bundles can be derived from (2.10). For example, time 6 and time 5 frequency 
distributions are related by: 

f 6 ( x ,  v) = 

5 
(I + xv 6) Zgs,j .(v)vg(r+')/2x j" . (4.2) 

) '=0 

A bundle defined at time 6 combines paths from adjacent end points at time 5. In 
terms of standard notation B(6, .j*), has a distribution of path s u m s  g6:.j, 

determined by summing the generating function t e r m s  v6g5. (j-I). and g5,j.. A 
backward recursion to a bundle at time 5 must employ the relevant path sums and 
their frequencies taken from adjacent end points at time 6; again cf. (4.2). To 
perform the backward induction calculations at time 5 for an American option, 
the time 5 payoffs (with frequency distribution g 5 , j , )  a r e  compared with the 
expected value of the time 6 payoffs (with frequency distributions determined by 
v6gs.j, and gs,j. respectively). 

To illustrate the recursions using the original indices, consider B(5 , -5 , -15 ) .  
This subbundle's single path extends to the single path in B(6, -6 , -21)  if the price 
decreases between times 5 and 6, to a path in B(6 , -4 , -19)  if the price increases. 
(Remaining paths in B(6 , -4 , -19)  are reached from B(5, -3) ,  and form a part of 
the calculation of expected payoffs for B(5, -3) . )  For B(5, -5 , -15) ,  the payoff to  
holding the option is the expected value of the payoff from proceeding either to 
B>(6,  - 6 , - 2 [ )  or to B(6, -4 , -19) .  The payoff to immediate exercise for B(5,-5, 
-15) is zero, determined by comparing the geometric average u -t5/6 to the exercise 
price of u °. In this case no further calculation is necessary: the expected value of 
continuing from B ( 5 , - 5 , - 1 5 )  cannot be less than the value of immediate 
exercise, and therefore it is only necessary to record the expected value of 
continuing. Table 7 shows in greater detail how the frequencies at time 6 are 
generated from the relevant frequencies at time 5, and thus also shows how time 6 
frequencies can be divided to carry out the backward inductions just described. 

Sub-bundles can contain many paths, but examining (4. I) for T, T-1 ..... 0 
shows that each sub-bundle is defined to contain only paths whose payoffs are the 
same (for geometric average instruments) regardless of time point or nature of 
optimal policy. (The result is not true for arithmetic average instruments; see 
Section 5.) Thus bundling methods can be used for valuing both European and 
American geometric average options, in the latter case, for each of the two time 6 
parts of Table 7, a payoff table similar to Table 6 is constructed. The payoff tables 
for time 6 are then used to construct a table of expected discounted payoffs at 
time 5, and these are compared to the payoffs for immediate exercise at time 5. 

For example, there is one path ending at (6, 4) with a path sum of 19 and one 
path ending at (6, 6) with a path sum of 21. Both these paths emanated from a 
single path at (5, 5) with a path sum of 15. Since the payoffs at time 6 are 
O. 720918 and 0.822120 respectively, the expected discounted payoff at time 5 is 

.754346 = [(.489949)(.720918) + (.510051)(.822120)]/I .024114 



190 

Frequencies at time 5 

EDWIN H. NEAVE 

TABLE 7 

RELATIONS BETWEEN PATH SUMS, TIMES 5 AND 6 

V\J -5 -3 - I  I 3 5 

-15 
-13 

- I I  
-9 
-7 
-5 
-3 
-1 

1 
3 
5 
7 
9 

II  
13 
15 

I 
I 
2 
2 I 
2 1 
1 2 
I 2 

2 1 
I 1 
1 I 

I 
I 

F r e q u e n c i e s  a t  time 6 

V\J -6  -4  -4  -2 -2 0 0 2 2 4 4 6 

1 -21 
-19 
-17 
-15 
-13 
- I I  

-9 
-7 
-5 
-3 
- I  

1 
3 
5 
7 
9 

II 
13 
15 
17 
19 
21 

| 
I 
I 
1 
I 
I 

l 
I 
I 1 
I I I 
1 2 I 

2 2 
2 2 

2 
I 
I 

I 
I I 
2 I 
2 2 
2 2 
I 2 1 
I 1 I 

I I 
I 
I 

I 
I 

To allow for early exercise, these expected values are compared to the values of 
immediate exercise at time 5, and for each comparison the maximum is recorded. 
In the present example, the payoff to B(5, 5, 15), 0.648722, is calculated just as in 
Table 6. Since 0.648722 < 0.754346, the optimal policy for this sub-bundle is not 
to exercise, and the value of 0.754346 is recorded in the payoffs to the optimal 
policy at time 5. 
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The complete set of  time 5 optimal decisions is given in Table 8, where C means 
it is optimal not to exercise, X means it is optimal to exercise immediately, and 0 
means the payoff  is zero whether the option is exercised or not. (The zero payoffs 
are recorded to display the form of  the time 5 optimal policy for all time 5 sub- 
bundles.) Note  that while the paths in B(5, 1,-1) have an immediate payoff  of  
zero - their time 5 geometric average is less than the strike price - there is still a 
positive payoff  to continuing, as shown by the C in the position (-1, 1), referring 
to the payoffs to B(5.1,-1). 

TABLE 8 

OPTIMAL DECISIONS AT t = 5 

V\J -5 -3 -I I 3 5 

-15 
-13 
-11 
-9 
-7 
-5 
-3 
-I 

I 
3 
5 
7 
9 

II 
13 
15 

0 
0 
0 0 
0 0 
0 0 

0 
0 
x 
x 

0 
C 
C 
C 
C C 
x C 
X C 

C 
C 

To continue with the backward induction, a time 5 frequency distribution, 
organized as in the second part  o f  Table 7, is used to divide the optimal payoffs at 
the prices -3,  - I ,  I, and 3 into payoffs for upward and downward  moves. (As 
before extreme prices are reached in only one way; price -5 by a downward  move, 
price 5 by an upward move.) The backward induction then proceeds from time 5 
to time 4, now compar ing  the discounted expected value o f  the optimal payoffs at 
time 5 with the payoffs to immediate exercise at time 4. Continuing the backward 
induction procedure until time zero is reached, choosing an optimal exercise 
policy at each time, gives a value for the American call o f  .126932. 

European Geometr ic  Average Call 0.121869 

American Geometr ic  Average Call 0.126932 
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5. VALUING ARITHMETIC AVERAGE CALLS 

Both European and American arithmetic average calls can be valued 
approximately using the joint frequency distribution of Table 4. The approxima- 
tion error can then be estimated, and if it is small enough no further calculation 
will be needed. If greater accuracy is desired some parts of the joint distribution 
must be elaborated. Obtaining further detail requires the procedures described in 
Appendix l, but can be done selectively and typically does not require extensive 
additional calculations. 

5.1. Initial Approximate Solution for the European Arithmetic Average Call 

Approximate values of  arithmetic average options can be obtained by using the 
kinds of data reported in the body of Table 4. Each line of  Table 4 is be used to 
find the mean of the arithmetic averages for all paths in a given sub-bundle. The 
approximation is based on assuming that the arithmetic average for each path in a 
given sub-bundle is exactly equal to the sub-bundle mean. With this approxima- 
tion, both European and American arithmetic average instruments can be valued 
in a manner analogous to that used for geometric average instruments in Section 
4. Of  course, the assumption introduces approximation error, but the error can be 
estimated and reduced with relatively few additional calculations as discussed in 
the next section. 

To obtain the approximate value of a European arithmetic average option, the 
methods of section 4 are adapted as illustrated in Table 10. The only difference 
between Table 6 and Table 10 is that the latter now contains payoffs determined 
from the means of sub-bundle arithmetic averages. The analogous payoffs in 
Table 6 were determined from geometric averages, known to be equal for all 
paths in any given sub-bundle. 

Table l0 shows a positive value for B(6, 2, -1), whereas the corresponding 
value in Table 6 was zero. The difference reflects the fact that arithmetic averages 
exceed geometric averages. The path in question is 0-1-2-1012, and has an 
arithmetic average of 1.003001 for u = 1.221403. 

European Geometric Average Call 0.121869 

American Geometric Average Call 0.126932 

European Arithmetic Average Call 0.136520 K 

Approximate Value 
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TABLE 10 

APPROXIMATE VALUE. EUROPEAN AVERAGE CELL 

193 

-6 -4 -2 0 2 4 6 

-21 0.000000 
-19 0.000000 
-17 0.000000 
-15 0.000000 
-13 0.000000 
-11 0.000000 

-9 0.000000 
-7 
-5 
-3 
-1 

I 
3 
5 
7 
9 

11 
13 
15 
17 
19 
21 

Column Sums 
0.000000 0.000000 

Probabilities 

0.000000 
0.000000 
0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.060526 0.112087 

0.310133 
0.330296 
0.235409 
0.321225 

0.013833 0.014400 

Time 6 Expected Values 
0.000000 0.000000 0.000907 0.020431 

Time 0 Approx Value of European Arithmetic Average Call 

0.003O01 
0.050O98 
0.215246 
0.343032 
0.734518 
0.626894 
0.782972 
0.477303 

0.368517 
0.426042 
0.496303 
0.582119 
0.686936 
0.814960 

0.060526 1 . 3 0 9 1 5  3.815184 3.374877 

0.014991 0.015606 0.016246 0.016913 

0.061983 0.057079 

0.971328 

0.971328 

0.017607 

0.017102 
0.136520 

5.2. Assessing and Reducing Approximation Error 

Approximation errors can be introduced by the methods of 5.1, because the 
arithmetic averages of  paths in a sub-bundle do not generally equal their mean. 
The present method could be expected to give good approximations even without 
additional refinements. First, it can only introduce error in a limited way, as the 
next section shows in greater detail. Second, the approximation itself should be at 
least as accurate as that of  Curran (1992). The present approximation is actually 
based on both geometric averages and path end points, whereas Curran's  is only 
based on the former. Some computational experience supporting the claim is 
given in section 6.1. 

More importantly, the approximation can only introduce error for a limited 
number of  sub-bundles. Whenver the maximal path average in a sub-bundle is less 
than the strike price, the subbundle contributes nothmg to the value of a 
European call and can be ignored. Whenever the minimal path average in a sub- 
bundle exceeds the strike price, every path in the sub-bundle contributes to the 
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value of  the European call, and using the mean of  sub-bundle arithmetic averages 
introduces no error. Since all paths in a sub-bundle have equal probability, the 
sum of  the individual path averages is n times their mean, where n is the number  
o f  paths in the subbundle. Thus the individual paths '  contributions to option 
value are n times the contr ibution calculated using the sub-bundle mean. 

The only sub-bundles for which error can be introduced in a European option 
are those for which the maximal path average exceeds the strike price and the 
minimum falls strictly below it. Such sub-bundles (which must have more than a 
single path) are said to be cut by the strike price. The number  o f  sub-bundles 
which can be cut by the strike price is relatively small, and the subbundles in 
question can readily be identified; see Neave and Stein (1997) for a method. To 
eliminate all approximat ion error, it is necessary to examine the sub-bundles 
which are actually cut by the strike price, and to correct the approximat ion 
calculations for those cases. 

To illustrate error estimation and reduction, consider B(6, O,-1) .  The 
aggregate data reported in Table 4 are: 

g V M/g 
Indices - I  0 1 
Frequencies 6 12 3 3 -1 6.858864 

The wdue of  M in the above extract from Table 4 is found using 

M = 60u -I + 12u ° + 3u I = 20.576593 

when u =  1.221403. Since all three paths in B (6.0,-1) have the same probability, 
the mean of  the sub-bundle arithmetic averages is M/3g = 0.979838. 
Approximat ion  error could arise if one or more of  the paths in B(6.0,-1)  had 
an arithmetic average in excess o f  I, the strike price. 

To eliminate approximat ion error, it is necessary to determine the frequency 
distribution o f  distinct arithmetic averages in any sub-bundle which can be cut by 
the strike price. Using the methods o f  Appendix I, it can be shown that the 
maximal path average in B(6, O,-l) is less than the strike price, which eliminates 
any need to examine it further. Nevertheless, to illustrate the issues more fully, it 
is useful to write out the individual paths according to rnethods outlined in 
Appendix I: 

Indices -1 0 I z V N 

Frequencies 2 4 I 37 -1 6.858864 
2 4 1 25 -1 6.858864 
2 4 I 21 - I  6.858864 

In this case the sub-bundle has only one distinct arithmetic average. However, if 
the sub-bundle had more than one distinct average, and if it were cut by the strike 
price, only the averages above the price would contribute to call value and the 
original approximat ion would have to be corrected. In the present example, 
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checking the remaining sub-bundles shows that no other subbundle can actually 
be cut by the strike price, and the exact value of the European arithmetic average 
equals the approximate value determined earlier. 

European Geometric Average Call 0.121869 

American Geometric Average Call 0.126932 

European Arithmetic Average Call 0.136520 1.2 

Approximate Value 2 Exact Value 

5.3. Initial Approximate Solution for the American Arithmetic Average Call 

The approximate value of the American arithmetic average call is obtained by 
using the methods of 5.2 recursively. A recursion relation identical to (4.1), except 
in its use of arithmetic averages, is used: 

Dr_,(/, z) -_- g r _ t . . i , : m a X { H T _ , ( j ,  Z) -- K) +, 

R-I[pDT_,+t(,i + 1, z + j + I)/gT-I+l,j+l.:+i+l+ 

+ q D r - t + l ( j -  I, z + j - I)/gr-;+l,./-I._.-/-I;]} (5.1) 

j e ( - ( r  - ;) ,  - ( T  - t) + 2, ..., T - ,}; _, e { V~/}; ~ ~ {0, ..., r } ,  

where gr-l , j , :  is the number of paths in the sub-bundle defined by j and z. 
Equations (5.1) give an approximate value because they assume that arithmetic 
averages are equal for all paths in each sub-bundle. Recursive relations between 
joint frequency distributions are determined using exactly the same methods as in 
Table 8. 

Using the inean value of payofrs for each sub-bundle, backward induction 
calculations can be performed just as in 3.4. The calculations give an approximate 
value of 0.14109.3 for the American call. 

European Geometric Average Call 0.121869 

American Geometric Average Call 0.126932 

European Arithmetic Average Call 0.1365201"2 

American Arithmetic Average Call 0.141093 i 

Approximate Value 2 Exact Value 
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5.4. Reducing approximation error 

The section 5.3 assumption that all paths in a sub-bundle have equal arithmetic 
averages can lead to calculating a sub-optimal option value just as with the 
European option. However, it is possible both to assess the approximation error 
and to reduce it in much the same way as before. 

In the backward induction calculations, the assumption of equal averages is 
used to divide payoffs according to the number of paths in each sub-bundle. To 
reduce approximation errors, it is necessary to evaluate which recursive 
calculations are affected by this approximation. The simplest way to eliminate 
all approximation error is to divide sub-bundles further on the basis of individual 
arithmetic averages, and then proceed exactly as in valuing the geometric average 
options. Unless computing resources are severely limited, this is probably the 
simplest way to eliminate all approximation error, since experinaents indicate the 
number of divided sub-bundles is roughly described by a fourth-degree 
polynomial in T. 

If the procedure of the foregoing paragraph is not followed, sub-bundles can 
contain differing arithmetic averages, and care needs to be taken in assessing and 
reducing the resulting approximation error. (The tradeoff between the two 
approaches is best assessed in the context of a given valuation problem.) A good 
rule of thumb is to begin by examining payoffs near the exercise boundary at 
some time period near 2T/3, and continue backwards to earlier times if 
significant errors are detected. Section 5.2 demonstrated the importance of 
examining payoffs near the exercise boundary; the reason for choosing a time 
period around 2T/3 is that typically more exercise decisions are made as option 
expiry nears. 

In the present example, suppose it is desired to find the details of the two paths 
in B(5,1,3), to check whether the assumption of equal arithmetic averages, which 
implies dividing payoffs in a I:1 ratio, gives a nearly optimal value. Using 
Appendix I, the two time 5 paths are: 

0 1 0 1 0 1  

0 - 1 0 1 2 1 .  

The two paths' arithmetic averages are 1.110702 and 1.125660 respectively, and 
thus their contribution to value under a policy of immediate exercise is.  110702 
and . 125660 respectively. However, if the two paths are extended to time 6, their 
expected values are 

(.165418p + .094887q) /R= .127646 

for the first path, and 

(.177884p + .107623q) /R= .140082 
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for the second. Clearly, the optimal policy for B(5, 1, 3) is not to exercise at time 
5. Even so, the optimal sub-bundle payoff of  

.267728 = .127646 + .140082 

should be divided on the basis ofexpected values rather than by numbers of paths 
as in 5.3. In the present example, this is the only refinement to the approximation 
needed to determine an optimum; all other divisions based on numbers of  path 
are already optimal. Thus, a single modification suffices to obtain the exact 
American arithmetic average option value of 0.141269. The difference between 
exact and approximate valuations indicates that before relying on approximations 
in practice, model-based evaluations of  their accuracy should be established. 

European Geometric Average Call :0.121869 

American Geometric Average Call 0.126932 

European Arithmetic Average Call 0.136520 ~'2 

American Arithmetic Average Call 0.141093 l 
0.1412692 

Approximate Value 2 Exact Value 

The literature does not stress the importance of assessing approximations in 
relation to a model determined optimum. However as evidenced by the 
approximate and exact values for the American arithmetic average call, the 
present example indicates that even plausible approximations can create 
significant valuation errors. More computational experience of the sort described 
in 6.1 is is needed to determine the likely incidence of errors for the American 
option. In practice it may prove useful to find an exact solution for a set of  typical 
parameter values and use that value to estimate approximation errors for 
American instruments when they are valued according to the quick methods of 
Section 5.3. 

6. EXTENSIONS AND CONCLUSIONS 

This section sketches computational experience to date and also remarks on how 
the paper 's methods can be extended to valuing other path dependent 
instruments. 

6.1. Computational Experience 

While computations using the method are still in the early stages, experience to 
date is encouraging. The data in Table l l, taken from Neave and Stein (1997), 
report our results for European arithmetic average calls with relatively large 
volatilities. 
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"FABLE II 

APPROXIMATE VALUES OF ARITHMETIC AVERAGE OPTION 

T ~ = 0.40 a = 0.60 a =  0.80 C P U  Secs 

6 .136520 .184712 .231945 0 
i2 .137026 .185367 .232823 0 
18 .137214 .185685 .233290 2 
24 .137322 .185862 .233547 7 
30 .137392 .185972 .233710 22 
36 .137441 .186046 .233822 52 
42 .137476 .186100 .233901 107 
48 .137502 .186142 .233963 204 

All unstated parameters are the same as in Table 2. Approximation errors are 
discussed below. 

Table I I suggests that, in the context of discrete models, the present method 
both increases accuracy and reduces calculation time. With respect to accuracy, 
Ritchken, Sankarasubramunian and Vijh (1993) use an Edgeworth approxima- 
tion to value European arithmetic average options, benchmarking their results 
usmg simulated values. For volatilities of 0.20 and 0.30 respectively, the standard 
errors in simulations for 16 to 64 periods are on the order of 0.004 to 0.005. For 
25 reset points, the relative approximation errors of this paper '  s method are 
0.0002 and 0.0009 for volatilities of 0.40 and 0.80 respectively (Stein, 1996), and 
exact valuations can be found with modest amounts of  additional calculation. 

An examination of Figure 3 suggests the present approximation is also likely to 
give greater accuracy than that of  Hull and White (1993). Our approach 
approximates arithmetic averages using sub-bt, ndle means, while Hull and White 
use nonlinear interpolation between arithmetic averages determined by the 
maximum and minimum path averages in a bundle. Our approach only 
introduces error in sub-bundles cut by the strike price, whereas nonlinear 
interpolation can introduce error at a greater number of sub-bundles. Finally, we 
can estimate and reduce the error created by a sub-bundle's being cut, while Hull 
and White offer no way of either estimating or reducing the error of their method. 

With respect to computation time, Table I1 reports the number of CPU 
seconds needed to set up and obtain the valuations. In addition to the data 
reported in Table I I, we have been able to find exact values for European 
geometric average calls, and approximate values for European arithmetic 
averages calls, for values of  T up to 100. The compt, tation times for these 
experiments have been about one hour on a SunSparc workstation. Compt, tation 
times are comparable to recent unpublished work using the Hull and White 
approximation, but as already mentioned the present method gives greater 
accuracy. Finally, computation time is independent of  the process volatility. 

With respect to memory requirements, experiments with the European 
arithmetic average call, conducted on a SunSparc work station, indicate the 
procedure uses 0.7MB (megabytes) of RAM when T = 30, 9.3 MB when T = 60, 
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and 68.8MB when T = 100. As rough comparisons, MicroSoft Word '97 uses 
2.6MB, Netscape Navigator 3.0 uses 4.5MB. Personal computers with 64MB of 
RAM are now standard, and some work stations offer up to I IOMB. 

Additional experiments are needed to assess the approach's accuracy and 
memory requirements in valuing the American arithmetic average option. 
Nevertheless, the framework organizes and reduces the numbers of computations 
in new ways, and also permits comparing approximations with exact optima for 
the same problem. 

6.2. Time Weighted Averages 

The methods developed above can readily be modified to value instruments whose 
averages are computed on a subset of the time points. For example, if arithmetic 
averages are computed on a subset of time points, the joint frequency 
distributions used in this paper need only be modified to record the frequencies 
with which indices are realized at chosen reset points. They can also be modified 
relatively easily to value instruments with time weighted averages. The approach 
can be extended to average strike options by determining joint distributions of the 
averages and path ends, readily available from the information developed in this 
paper. 

6.3. Path Sums and Time Dependent Probabilities 

Since the present model uses a constant value of u, valuation under a martingale 
with time varying interest rates requires using time dependent probabilities. Given 
time dependent probabilities, exact values can be found recursively, but the 
calculations are exponential in T. The task can be simplified by using the 
generating function to define a joint frequency distribution of path sums and time 
dependent probabilities, using a procedure much like that of Appendix II. Then 
depending on the relations between probabilities at each point in time, the 
difference between maximal and nai,limal probabilities for the paths in a sub- 
bundle can be assessed. If the difference is unimportant for the problem at hand, 
an average path probability can be used; otherwise individual probabilities need 
to be enumerated using methods similar to those outlined above. 

6.4. Conclusions 

This paper valued European and American fixed strike average calls on a discrete 
time, recombining multiplicative binomial asset price process. Using generating 
functions to find frequency distributions of option payoffs, the paper showed how 
to eliminate much of the calculation previously thought to be involved in valuing 
path dependent options. The procedures value European geometric average 
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op t i ons  ana ly t ica l ly ,  and  use re la t ively few c o m p u t a t i o n s  to va lue  E u r o p e a n  

a r i t hme t i c  ave rage  op t ions .  Both  types '  A m e r i c a n  c o u n t e r p a r t s  are  va lued  using 
recurs ive  re la t ions  be tween  f r equency  d i s t r ibu t ions .  
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Appendix  !. Relat ing Z and V* 

The generating function can be used to study both the mapping from Z to V* and 
the inverse mapping from V" to Z. Consider the term of f4(x .  7. v) equal to 
x4z43p 13, which describes the path defined by z=43, ending price j*, and path sum 
v = 13. 

Suppose it is known that z = 43. The value of j* can be determined by 
expressing 43 as a sum of powers of 2, and counting the number of terms. That is, 

4 3 = 2 5 + 2 3 + 2 1  + 2  o 

so that j*=4. Since Z is defined as a sum of terms 2 i1 while v* is determined by 
a sum of indices j, 

v* = 6 + 4 + 2 + 1  = 13 

To study the inverse mapping from V" to Z, let the values o f f  and v* be given. 
To continue the previous example, if j*=4 and v*= 13, then from (2.3) v* must be 
the sum of four integers chosen from 1 . . . . .  6. There are only two such 
combinations; either the foregoing or 

v * = 5 + 4 + 3 +  1 = 13 

for which Z = 2 9 .  The two paths in the sub-bundle B(6,2,5) are thus 

0101012 and 0-101212 

The maximal arithmetic average in any sub-bundle is defined by one of the 
extremal values of Z associated with the sub-bundle. Moreover, the maxinlal 
arithmetic average increases as the term V defining the sub-bundles increases. 
Finally, a minimal path average can be characterized in terms of Z. However the 
geometric average is also a lower bound oll the arithlnetic averages, and is in any 
case recorded as a part of the valuation method. 



A FREQUENCY DISTRIBUTION METHOD FOR VALUING AVERAGE OPTIONS 203 

Appendix II. Finding the Joint  Frequency Distribution: Example  

This Appendix develops an analytic method of  finding joint frequency 
distributions of  indices and path sums. While in practice it is usually convenient 
to calculate the joint frequency distributions recursively, the analytic approach of  
this Appendix makes it possible to organize the computa t ions  efficiently. The 
joint fi'equency distribution is obtained analytically using two-fold convolut ions 
of  (2.17) taking the form_/3 (x, v) . fr-5 (x. v). A term of  the convolved functions 
can be interpreted as follows. Consider any feasible index in B(T , j ) ,  say (s, k).  
The number  o f  paths through (s, k) is readily shown to be b(s, k ) .  b ( T -  s, j - k), 
where b(T,.j) - T ! / ( T - j ) ! j ! .  From (2.16) the distribution of  path sums at (s .k )  
is g,.k(v)vk:k+lJ/2X k. Since any path in in B ( T , j )  arriving at index (s, k) must 
still take T-s steps, the distribution of  path sums at ( t , j )  is 

v k(T-s) .g.,.,k(v)vk(~+l)/Zxk .gT_.,.,j_k(v)v(:-k)(i-#+l)/2.ri-~ = (A.I)  

1, k(T-s)+[k(k+l)+(h)(i-k+l)l/2xig.,,k (V) • gT-s.j-k (I') 

The term v k:r-') compensates for the fact that the remaining T-s steps begin at 
(s, k) ,  while g-r..,,j.k(v) begins its count ing from (0, 0).  

To illustrate the calculations, Table A.I repeats the joint frequency distribution 
o f  path sums and indices realized reported in Table 4 for B(6,3").  Blanks indicate 
combinat ions  which cannot be realized by paths in B(6, 3*). 

TABLE A.I 
Joint Frequency Distribution for B(6. 3*) 

Vii -3 -2 -I 0 I 2 3 Row Totals 

-9 I 2 2 2 7 
-7 2 3 2 7 
-5 2 6 6 14 
-3 2 7 10 2 21 
-I 6 12 3 21 

I 3 12 6 21 
3 2 10 7 2 21 
5 6 6 2 14 
7 2 3 2 7 
9 2 2 2 I 7 

I 8 29 64 29 8 I 

Note  that the row totals equal the product  o f  the 7 indices in each path and the 
path fi'equencies. The second section of  Table A. I supplements the column totals 
at the bot tom of  the first section by showing the frequencies with which individual 
indices are realized at different times. As before, blanks represent unattainable 
combinations.  
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Terms of  the two-fold  convolu t ions  are used to calculate  the jo in t  frequency 
d is t r ibut ions  are employed  for each t ime-index combina t ion ,  as shown in the 
detai led calcula t ions  of  Table  A.[I .  Each column of  Table  A.I I  represents a time- 
index combina t ion ;  for example ,  the index -2 can be realized at  time 2 or  at  time 4. 
These two columns then indicate the frequency d is t r ibut ions  o f  path sums at time 
6 for paths  a t ta in ing  the index -2 at ei ther time 2 or  t ime 4. Similarly,  the index -i  
can be realized at t imes 1, 3, and 5. The convolu t ion  describes only a single 
frequency dis t r ibut ion  at t imes I and 5, but  three at t ime 3. This is because paths  
arr iving at index - I, t ime 3 can have three values at that  point ,  and each path  from 
that  poin t  to the end can also take on any one o f  three incremental  values. The 
pos i t ioning  o f  the frequencies within the columns  is de termined by the range of  
path  sums, as described both in Section 3.2 and at  the beginning o f  this Appendix .  

TABLE A.II 
Obtaining the Joint Frequency Distribution 

Indices -3  -2  -2  -I  -I  - I  - I  -1 0 0 0 0 0 0 

Times 3 2 4 I 3 3 3 5 0 2 2 4 4 6 

V 
- 9  1 I 1 I I I I 
- 7  I 1 I l I I I 
- 5  I I 2 I I 2 2 I I 2 
- 3  I I 2 I I I 2 3 I I I I 3 
- I  2 I I 2 3 2 I 2 I 3 

1 I I I 3 I 2 I 2 3 
3 I I 3 1 I I I 3 
5 2 I I 2 
7 1 I 
9 I I 

I 4 4 IO 3 3 3 I0 20 6 6 6 6 20 



A FREQUENCY DISTRIBUTION METHOD FOR VALUING AVERAGE OPTIONS 205 

Appendix 111: Finding distinct arithmetic averages in a sub-bundle 

To see how the distinct arithmetic averages in a sub-bundle can be found, 
consider the subbundles (8, 3, 15), (8, 3, 14), (8, 3, 13), and (8, 3, 12). Each sub- 
bundle contains six paths, as shown by the path numbers m the following rows: 

8 6 1  8 5 2  8 4 3  7 6 2  7 5 3  6 5 4  
8 5 1  8 4 2  7 6 1  7 5 2  7 4 3  6 5 3  
8 4 1  8 3 2  7 5 1  7 4 2  6 5 2  6 4 3  
8 3 1  7 4 1  7 3 2  6 5 1  6 4 2  5 4 3  

The arithmetic averages for the foregoing paths are shown next for cr = 0.40. 

0.9056653 0.8909149 0.8909149 0.8909149 0.8909149 0.8828047 
0.8609239 0.8609239 0.8542838 0.8461735 0.8461735 0.8461735 
0.8242928 0.8242928 0.8161825 0.8095424 0.8095424 0.8095424 
0.7943017 0.7795514 0.7795514 0.7795514 0.7795514 0.7729113 

The example shows the need, when exact valuation is desired, for carefully 
investigating any particular sub-bundles cut by the strike price. In the present 
each sub-bundle has exactly three distinct averages, but the frequency 
distributions of the three distinct averages vary. Thus, if one or more of these 
sub-bundles were cut by the strike price, the valuation effect would depend on the 
particular sub-bundle or sub-bundles affected. So far, it seems necessary to 
determine the frequency distribution of the distinct averages in any such sub- 
bundle. 

Frequency distributions of distinct averages can be found either by 
enumerating the subbundle's path numbers or by using a dynamic programming 
search to find the distinct path averages, then determining the frequency of  each 
distinct average using linear programming. In large subbundles, the second 
method is more efficient than complete enumeration, because the number of paths 
can be large while the number of distinct averages is very much less than the 
number of paths. 
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A B S T R A C T  

The problem of determining optimal retention levels for a non-life portfolio consisting 
of a number of independent sub-portfolios was first discussed by de Finetti (1940). He 
considered retention levels as optimal if they minimised the variance of the insurer's 
profit from the portfolio subject to the constraint of a fixed level of expected profit. In 
this paper we consider a similar problem, changing the criterion for optimality to mi- 
nimising the probability of ruin, either in discrete or continuous time. We investigate 
this problem through a series of case studies based on a real portfolio. 
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I .  I N T R O D U C T I O N  

This paper is a risk-theoretic discussion of the problem of determining the relative 
reinsurance retention levels for a non-life portfolio consisting of a number of indepen- 
dent sub-portfolios. We consider only simple forms of proportional and excess loss 
reinsurance. Our discussion will be based largely on numerical results derived from a 
"pseudo-real" portfolio. The characteristics and construction of this portfolio are 
described in detail in Section 2 below. 

The classical results in this area are due to de Finetti (1940) (see also Btihlmann 
(1970, section 5.2)). De Finetti derived relative retention levels which have simple 
forms by considering the insurer's net (of reinsurance) profit from the portfolio at the 
end of a given time period. He then minimised the variance of this profit subject to its 
expected value being fixed. A summary of de Finetti's results is given in Section 3 
below. 

In Section 4 we discuss some alternative criteria for determining relative retention 
levels. These alternatives are to minimise the insurer's probability of ruin over a finite 
time horizon, either in continuous or in discrete time. Questions of interest to us are: 

ASTIN BULLETIN, Vol. 27, No. 2. 1997, pp. 207-227 
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(1) Do some or all of our probability of ruin criteria produce relative retention levels 
close to those given by de Finetti's approach? 

(2) Are the relative retention levels produced by a probability of ruin in continuous 
time criterion close to those produced by a discrete time criterion? 

(3) How do the relative retention levels produced by our probability of ruin criteria 
depend on: 
(i) the insurer's expected net profit? 
(ii) the time horizon for ruin? 
(iii) the insurer's initial surplus? 

These questions are investigated in Section 5 (proportional reinsurance) and Section 6 
(excess loss reinsurance). Our conclusions are set out in Section 7. 

2. THE PORTFOLIO 

In order to investigate the problems outlined in the previous section, we have con- 
structed a non-life insurance portfolio based on a study by Ramlau-Hansen of data 
supplied by a Danish insurance company. Ramlau-Hansen's work is detailed in a 
series of working papers (1986a, 1986b, 1986c and 1986d) and a conference paper 
(1983) and summarised in two papers (1988a and 1988b). 

Ramlau-Hansen analysed data from the Nye Danske Lloyd insurance company co- 
veting the period 1977 to 1981. The data related to policies on: 
- single-family houses, and, 
- dwellings (mainly apartment buildings, but also some office buildings). 
These policies covered the buildings, but not their contents, against: 
- glass damage, i.e. damage to windows and sanitary fittings, 
- fire damage, and, 
- windstorm damage. 
Claims from these three sources will have very different characteristics: 
- Glass claims: these will be relatively numerous but for rather small amounts. 

- Fire claims: these will be far less frequent than glass claims but will be for far grea- 
ter amounts .  

- Windstorm claims: the number of windstorms will be very small but each wind- 
storm will produce a large number of individual claims. 

In terms of claims experience, we would expect glass claims to be relatively stable, 
fire claims to be less stable and windstorm claims to be even less stable over time. 

Our portfolio is based on Ramlau-Hansen's "Standard Portfolio" (1986d, section 
4.3). It consists of three sub-portfolios covering glass, fire and windstorm claims, each 
of which can be reinsured separately. However, within each subportfolio, single- 
family houses and dwellings cannot be reinsured separately. The total annual expected 
claim amount, before reinsurance, is 500 × 106 of which 25% (125 x 10 6) is expected 
to come from glass claims, 70% (350 x 106) from fire claims and the remaining 5% 
(25 x 106) from windstorm claims. (Ramlau-Hansen's monetary unit was Danish Kro- 
ner at 1981 values, For our purposes only relative monetary values are important, not 
absolute values.) 
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Ramlau-Hansen modelled in some detail the annual claim numbers and amounts 
distributions for each sub-portfolio. We have adopted Ramlau-Hansen's models for 
our portfolio with some very minor simplifications. Our models are as follows: 

Glass claims: Since glass claim amounts are almost always relatively small, we 
have assumed that this sub-portfolio would not be reinsured under an excess loss 
treaty, but would be reinsured under a proportional reinsurance treaty. (This agrees 
with Ramlau-Hansen's study (1988b, section 3.2).) For this reason we need to specify 
a model for the aggregate annual glass claims but not for claim numbers and claim 
amounts separately. We have assumed that the aggregate annual glass claims have a 
normal distribution. This is a slight simplification of Ramlau-Hansen's model but his 
analysis (1986a, Table 12) does show that the skewness of aggregate annual glass 
claims is very small. The expected aggregate annual glass claims are 125 x 106, as 
explained above, and we have taken the standard deviation to be 4.3 x 10  6. The 
standard deviation has been inferred from the information given by Ramlau-Hansen 
(1986a, Table 14). 

Fire claims: The annual fire claim rate for dwellings is about 0.0885. (See Ramlau- 
Hansen (1986b, Tables 1 and 2).) The annual fire claim rate for single-family houses 
is 0.0127. (See Ramlau-Hansen (1983, Tables 1 and 7).) In 1981, the numbers of 
dwellings and single-family houses in Ramlau-Hansen's data were 12,318 and 83,699, 
respectively. These figures indicate that the expected number of claims each year is 
approximately the same for dwellings and single-family houses. Ramlau-Hansen 
(1988a, section 2.1) assumes claim numbers have a Poisson distribution. We have 
assumed the Poisson parameter for dwellings and for single-family houses is 7,893.9. 
(This value, when combined with the claim amount distributions specified below, 
gives a mean aggregate annual fire claim amount of 350 × 106, as required.) 

We use different claim amount distributions for dwellings and for single-family 
houses. In each case, the distribution is loggamma, truncated at an expected maximum 
loss (EML), with a density function of the form: 

ct r 1 
f ( x ; c z , y ) -  - -  (log(x/xo))Y-l(X/Xo) -Ca÷O forx 0 < x < EML 

F(7) Xo 

where in each case the lower limit x0 is 100. The other parameters and the resulting 
moments are: 

Dwellings Single-family houses 

EML 35 X 10 6 402,500 
tx 1.4177 1.1220 
y 5.1003 3.2477 
Mean 33,611 10,727 
St. Dev. 490,721 42,560 
Skewness 51.64 7.338 

Ramlau-Hansen (1988a, section 2.2 and 1983, section 3) uses parameter values which 
depend on the floor area of the dwelling or house. We have selected a "typical" distri- 
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bution for each type of  property. Let F(x; ~ 7) denote the distribution function corres- 
ponding to the density functionflx;  a, 7)- Then the aggregate annual fire claims have a 
compound Poisson distribution with Poisson parameter 15,787.8 and individual claim 
amount distribution F(x), where: 
F(x) = 0 forx < 100 
F(x) = (F(x; 1.4177,5. 1003) +F(x; 1. 1220,3.2477))/2 for 100 _< x < 402,500 
F(x) = ( 1 + F(x; 1.4177,5.1003))/2 for 402,500 _< x < 35 x 1 if' 
F(x) = 1 forx_> 35 x 10  6 

For our model, aggregate annual fire claims have the following moments: 
Mean 350 X 1 0  6 

St. Dev. 43.875 X 10  6 

Skewness 0.571 

Windstorm claims: Ramlau-Hansen (1988a) developed a complicated model for 
windstorms. He modelled the number of  storms per annum, the number of claims from 
each storm and the amount of the individual claims. For the purposes of  proportional 
reinsurance we need model only the aggregate annual windstorm claims. When we 
consider excess loss reinsurance, we shall assume the insurer protects the windstorm 
(sub-)portfolio with a catastrophe excess loss treaty whereby the reinsurer reimburses 
the insurer for the amount by which the total claim amount caused by a storm exceeds 
a given retention. See Ramlau-Hansen (1986c, p. 42). This means that we need model 
only the annual number of windstorms and the total claim amount from each wind- 
storm. 

The number of  windstorms per annum (in Denmark) in Ramlau-Hansen 's  model 
has a Poisson distribution with mean 4.36 and the expected cost of  a single windstorm 
is 9.3 x 106. Since we require the expected aggregate annual cost of  windstorms to be 
25 x 106, we need to scale down either the expected number of windstorms or the 
expected cost of  a single windstorm. We decided to do the latter, which is equivalent 
to an insurer (in Denmark) having fewer windstorm policies than in Ramlau-Hansen 's  
portfolio. 

Our model for windstorm claims is as follows: 
The number of storms per annum has a Poisson distribution with mean 4.36. 
The total claim amount from a single windstorm has the following moments: 

Mean 5.734 x 106 
St. Dev. 13.14 x 10 ~ 
Skewness 2.649 

We have assumed that the total claim amount from a single windstorm has a translated 
gamma distribution with the above moments, i.e. has the distribution of t¢+ Y, where Y 
has a F(a ,  fl) distribution. The parameters of this distribution are: 

= 0.5700 
,/3 = 5.746 x 10 "s 

= -4.187 x 106 
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This model gives the following moments for the aggregate annual claims from wind- 

storms: 
Mean 25 X 1 0  6 

St. Dev. 29.936 × 10  6 

Skewness 1.49 
Fol lowing Ramlau-Hansen,  we assume that all random variables in our model are 
independent unless specified otherwise, so that, for example,  aggregate claims from 
the three sub-portfolios are independent and aggregate claims in separate years are 
independent. In addition, we assume that the distributions do not change from year to 
year. It would not be difficult to relax this assumption, for example by incorporating 
inflation and business growth, but this would complicate  the presentation without 
adding significantly to the study. 

For the remainder of the paper we will work in units of one million, so that the ex- 
pected aggregate annual claim amount from the portfolio is 500. 

3. A REVIEW OF DE FINE'VTI'S RESULTS 

This section contains a brief summary of  the essential points of de Finet t i ' s  results. 
More details,  and proofs, can be found in de Finetti (1940) (see also BiJhlmann 
(1970)). The basic idea underlying these results is as follows. An insurer has a portfo- 
lio on n independent risks and wishes to effect the same type of reinsurance for each 
risk. The insurer 's  profit level from these risks clearly depends on the level of reinsu- 
rance. The insurer fixes a level for its expected profit from the portfolio over a given 
time period, say one year, and chooses retention levels to minimise the variance of  the 
profit from the portfolio over this period. De Finetti 's  results state how retention levels 
for proportional and excess loss reinsurance should be calculated under this criterion, 
which we shall refer to as the minimum variance criterion. 

Consider first proportional reinsurance. For a portfolio of n independent risks, let S,  

denote aggregate claims from the ith risk in a fixed time period for i = I, 2 . . . . .  n, and 
let Pi denote the premium received by the insurer to cover this risk. The insurer effects 
proportional reinsurance for each risk with proportion ai retained for the ith risk, pay- 
ing a reinsurance premium of (I + 0 3 ( I  - a , ) E ( S 3  for this reinsurance cover. Thus, the 
reinsurance premium is calculated by the expected value principle with a loading O, for 
the ith risk. The insurer 's profit over the period is 

rl 

Z(~)  = ~ (P~ - (I + Oi )(I - a i  ) E ( S i )  - a i S i  ) 

i=l 

Subject to the constraint E[Z(a) ]  = k, where k is a constant, V[Z(.q_)] is minimised by 

CO i E ( S  i ) 
a i - - -  for i  = 1,2 . . . . .  n 

V ( S ~  ) 

where c is a constant which is determined by the condition E[Z(a ) ]  = k. If this proce- 
dure produces a value of ai > 1, the solution is to set that value of  ai equal to 1, with 
the remaining retentions being of the above form. 
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In the case of  excess loss reinsurance, let Si and Pi have the same meaning as 
above. We assume that each S, has a compound Poisson distribution. The insurer ef- 
fects excess loss reinsurance with retention level Mi for the ith risk and pays a reinsu- 
rance premium of (1 + 0~)E (S~- S/) where S/denotes the insurer's aggregate retained 
claim amount from the ith risk. The insurer's profit over the period is 

I1 

= - + o i ) E ( s i  - s / ) -  s / )  
i=l 

Subject to the constraint E[Z(M)] = k, where k is a constant, V[Z(M)] is minimised 
by 

Mi=cO~ for i =  1,2 . . . . .  n 

where c is a constant which is determined by the condition E[Z(M)] = k. 
Tables 1 and 2 show optimal retention levels for the portfolio described in Section 2 

for proportional and excess loss reinsurance respectively. In the case of proportional 
reinsurance, the loadings in the reinsurance premiums are 10% (glass), 40% (fire) and 
80% (windstorm), while for excess loss reinsurance they are 40% (fire) and 80% 
(windstorm). The tables also show the mean and variance of the insurer's retained 
aggregate claims. We can see in each case that these quantities increase as the expec- 
ted net profit increases. We note that for each level of  expected net profit, the values 
of  mean retained aggregate claim amounts under each type of reinsurance are similar. 
However, for a given level of expected net profit, the variance of  the retained aggre- 
gate claim amount is considerably smaller under excess loss reinsurance. For example, 
when the expected net profit is 90, a reduction of  just 10 from its maximum value, the 
variance of  the insurer's retained aggregate claim amount can be reduced by 44% 
using excess loss reinsurance, compared to a reduction of only 24% using proportional 
reinsurance. 

TABLE I 
O P T I M A L  R E T E N T I O N S  - P R O P O R T I O N A L  R E I N S U R A N C E  

Expected Glass Fire Windstorm 
Net Profit Retention Retention Retention Mean Variance 

50 
60 
70 
80 
90 
100 

0.753 0.231 394 1,157 
0.821 0.252 419 1o373 
0.890 0.273 443 1,609 
0.958 0.294 468 1,863 

I 0.5 488 2,168 
I I 500 2,840 

Note that in the case of  proportional reinsurance, there is in fact no reinsurance for 
the glass sub-portfolio, nor for the fire sub-portfolio as the expected net profit incre- 
ases. In all other cases in Table I, the retentions for the fire and windstorm portfolios 
are in the same proportion. In Table 2, the retention levels for windstorm claims are 
twice those for fire claims since the reinsurance premium loading factors are in the 
ratio 2:1. 
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TABLE 2 
OPTIMAL RETENTIONS - EXCESS LOSS REINSURANCE 

Expected Fire Windstorm 
Net Profit Retention Retention Mean Variance 

50 2.08 4.15 397 213 
60 3.55 7.09 418 351 
70 5.86 11.72 438 582 
80 9.66 19.32 458 961 
90 16.88 33.77 478 1,602 
100 ~ ~ 500 2 ,840 

Thus, de Finetti's results provide simple formulae from which optimal retention le- 
vels can be calculated. In the case of  proportional reinsurance, the optimal retention 
levels depend on the first two moments of aggregate claims from each sub-portfolio. 
This is perhaps not surprising since the problem is specified in terms of the first two 
moments of profit from the n sub-portfolios considered together. In the case of excess 
loss reinsurance, the optimal retention level for each sub-portfolio depends only on the 
reinsurer's loading for that sub-portfolio. An interesting feature of this result is that the 
distribution of individual claims for a sub-portfolio has no bearing whatsoever on the 
retention level. 

The results are independent of the insurer's premium income (before reinsurance) 
and of  the amount of  the insurer's surplus. Intuitively we would expect these factors to 
play a part. We also note that these results hold for a single period analysis. If we 
assume that claims in successive time periods are independent, then a change in the 
time period considered does not alter the optimal retention levels. 

Finally, we note that if the optimality criterion is altered from minimising V[Z(b)] 
subject to the constraint E[Z(b_)] = k (where b denotes the vector of retention levels) 
to minimising V[Z(_b)I subject to the constraint E[Z(b_)] _> k then it is not difficult to 
prove that the solution to the problem is unchanged. In our case studies in Sections 5 
and 6, where we apply different criteria for optimality, we will see that a change in the 
constraint from E[Z( b )] = k to E[Z( b)l -> k can make a considerable difference. 

4. AN A L T E R N A T I V E  CRITERION FOR O P T I M A L I T Y  

In this section we consider an alternative criterion for optimality. We will consider a 
vector of retention levels to be optimal if those retentions minimise the insurer's pro- 
bability of ruin (net of reinsurance) subject to the constraint that the insurer's expected 
profit per unit time is greater than or equal to some constant. Thus we have not only 
changed the objective function from variance of profit to probability of ruin, but we 
have also altered the constraint. It will be clear in the examples in the next sections 
why it is sensible to do this. In our examples we will consider finite time ruin, both in 
discrete and in continuous time. 

Since the probability of ruin depends on all the characteristics of the surplus pro- 
cess, we might expect this new criterion to produce different optimal retention levels 
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to those produced by the minimum variance criterion. However, the following exam- 
ples suggest that this new criterion may not produce very different results. 

Example  1: It is well-known that if the adjustment coefficient, denoted R, for a risk 
exists, it can be approximated as 

2 × Expected Profit 
R =  

Variance of Profit 

Let us treat profit in this approximation as being the net of  reinsurance profit from a 
portfolio of risks over a fixed time period. A natural (and approximate) way of  obtai- 
ning retention levels to minimise the insurer's probability of ultimate ruin would be to 
find retention levels that maximise this approximation to R. When we apply the con- 
straint that the expected profit is constant, maximising R is equivalent to minimising 
the variance of profit, i.e. minimising the variance of net retained claims. 

Example  2: Suppose that an insurer has a portfolio of n risks and receives a total 
premium of P per annum to cover these risks. Suppose further that the insurer effects 
some form of reinsurance for each of these risks, defined by a vector b of  retention 
levels. Let l l ( b )  denote the total premium paid by the insurer for this reinsurance, and 
let S,,(_b) denote the aggregate claims, net of reinsurance, paid by the insurer up to 
time n. Finally, let U denote the insurer's initial surplus. 

We assume that the insurer's expected net profit per unit time, P -  l-1(b) - [S~(b)], 
is positive. Assuming that S,,(_b) has a normal distribution, and that aggregate claims 
are independent and identically distributed from year to year, the insurer's probability 
of  ruin at the end of n years is 

i_~lnP-nH(~)-nE(Sl(_b))+U I 
[nV(Si (_b))] I/z 

where • denotes the standard normal distribution function. Minimising this probabi- 
lity of  ruin (as a function of  b_) subject to the insurer's expected net profit per unit 
time being fixed is equivalent to minimising the variance of  the insurer's net profit per 
unit time subject to the same constraint. 

Example 3: Now let us extend the previous example by assuming in addition that the 
insurer's aggregate gain process { G,(_b) },~ is a Brownian motion with (positive) drift. 
Let tP(U, T I b)denote the probability of ruin in continuous time before time T, which 
may be finite or infinite. Let b~ and b2 be two reinsurance retention vectors which 
result in the same expected net profit for the insurer, say M per unit time, but different 
variances. Then using a coupling argument, i.e. regarding G,(b ~) as equivalent to 

/.It + (G, (b 2 ) - I~t)(V[G, (b I )] / V[G, (b2)]) I/2 

it is easy to see that tp(U, TIb~) > tP(U, Tlbz) i s  equivalent to V[G,(b~)]> V[G,(b~I 
Hence, minimising the probability of  ruin in continuous and finite or infinite time 
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subject to the insurer's expected net profit per unit time being fixed is equivalent to 
minimising the variance of the insurer's net profit subject to the same constraint. 

Each of these last two examples relies on being prepared to approximate the insu- 
rer's net surplus process by a process determined by just its mean and variance (see, 
for example, Grandell (1977)). They also apply the constraint that the expected net 
profit equals some constant, rather than is greater than or equal to that constant. 
Nevertheless, they suggest that a change in the optimality criterion from minimising 
variance to minimising a ruin probability may not result in very different retention 
levels. We shall see in Sections 5 and 6 that this can be the case, although we shall 
also see that the change in optimality criterion can lead to very different results. 

Since our new optimality criterion is to minimise a probability of ruin, we need to 
be able to calculate ruin probabilities. Our approach to this problem will not be to 
attempt to calculate exact ruin probabilities. Rather, we will use an approximation. We 
will approximate the retained aggregate claims process by a translated gamma process. 
There are two reasons for using this approximation. First, formulae exist from which 
ruin probabilities can be calculated. Second, recent evidence shows that this approach 
provides very good approximations to ruin probabilities, particularly in problems 
involving reinsurance. See Dickson and Waters (1993 and 1996). 

We conclude this section by describing how we calculated ruin probabilities. Con- 
sider first the discrete time ruin problem. We require probabilities of the form 

~1 (u, t) = Pr(u + Pn - X,, < 0 for some n, n = I, 2 ..... t) 

where P represents the insurer's premium income, net of reinsurance, per unit time, 
and X,, denotes aggregate claims up to time n, again net of reinsurance. We approxi- 
mated X,, by Y,, + kn where Y,, has a gamma distribution with parameters n a  and 13 and 
calculated probabilities from 

W l ( u , t ) = P r ( u + P * n - Y , ~  < 0  for somen,  n = l , 2  ..... t) 

where P* = P - k. The parameters ¢x, fl andk are found by matching the first three 
moments of X, and Y, + kn. Let G(x) and g(x) respectively denote the distribution 
function and density function of a gamma distribution with parameters c¢ and [3, so that 
the mean of the distribution is ¢x/[3. Then 

~l (u,I)=l-G(u+P*) 

and f o r t = l , 2 , 3  . . . .  
, . g u + P *  , 

W I ( u , t + l ) = W  1 (u , t )+J0 W n (x , t )g(u+ P * - x ) d x  

Values of  Wt (u, I) were calculated directly from computer routines which compute 
the gamma distribution function. Values of W~(u, t) for t > I were calculated by nume- 
rical integration. For each value of u required we performed numerical integration on 
the interval (0, [u + P*]), where [u + P*] denotes the greatest integer less than or 
equal to tt + P*, by applying the repeated trapezoidal rule on unit steps. The integral 
over the range ([u + P*], tt + P*) was calculated by the trapezoidal rule. Thus, except 
for the integral over the final part of the range, W~(x, t) values were required only for 
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integer values of x. For the integral over ([u + P*], u + P*) values of ~ ( x ,  t) were 
required for non-integer x. These were obtained by linear interpolation. For our nume- 
rical examples, a unit step size was deemed to be sufficiently large in view of the 
parameter values in our examples. In particular, the value of P* was typically between 
300 and 500. 

In the case of continuous time ruin probabilities, we require probabilities of the 
form 

W(u , t )  = Pr(u + PT - S(r) < 0 for some -r,0 < r _< t) 

where P is as above and {S(t)},  ~ o denotes the aggregate claims process, net of reinsu- 
rance. We approximate the process {S(t)},_,0 by the translated gamma process {S~(t) + 
kt},~o where {Sc(t)},ao is a gamma process with parameters a and/3. The parameters 
e~, fl and k are found by matching the first three moments of the two processes. Ruin 
probabilities for the translated gamma process were calculated by the method descri- 
bed by Dickson and Waters (1993). 

5. PROPORTIONAL REINSURANCE 

In this section we consider the problem of choosing proportional reinsurance retention 
levels for each of the three sub-portfolios, glass, fire and windstorm, of the portfolio 
described in Section 2. We will discuss two case studies which reveal rather different 
features. 

Case Study 1: We have set the insurer's premium income (before reinsurance) to be 
600 per unit time, i.e. 120% of the expected aggregate claims. The insurer's initial 
surplus has been set at 20. The initial surplus was chosen so that the one-year discrete 
time ruin probability is about 1% when the vector of retentions _a is given by the solu- 
tion under the minimum variance criterion with an expected net profit of 50. The rein- 
surer's premium loading factors are _0= (0.044, 0.1605, 1.533). These loading factors 
are in proportion to the standard deviation of aggregate claims per unit time for the 
three sub-portfolios and are such that, if the insurer reinsured the whole of each sub- 
portfolio, the reinsurance premium would be 600. 

Table 3A shows for the time horizons t = I, 2, 5, 10 and 20, the probability of ruin 
in continuous time and in discrete time assuming the insurer does not effect any rein- 
surance. In this case the insurer's expected net profit per unit time is 100, as shown in 
the final column of Table 3A. 
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TABLE 3 A  

C A S E  S T U D Y  I - NO REINSURANCE 

Prob'y of  ruin Prob 'y of ruin Expected 
t a (continuous) (discrete) n e t  profit 

1 (1, 1, l) 0.2413 0.0237 100 
2 (1, 1, 1) 0.2484 0.0262 100 
5 (1, 1, I) 0.2494 0.0267 100 
10 (1, I, 1) 0.2495 0.0267 100 
20 (1, I, 1) 0.2495 0.0267 100 

The proportional reinsurance retention levels which minimise the variance of the 
insurer's net (of reinsurance) aggregate claims subject to the constraint that the insu- 
rer's expected net profit per unit time should be 50 are _a= (1, 0.396, 0.581). Table 3B 
shows the insurer's probabilities of ruin with these retention levels. 

TABLE 3B 

C A S E  S T U D Y  | - MINIMUM VARIANCE 

Prob'y of  ruin Prob'y of ruin Expected 
t a (continuous) (discrete) n e t  profit 

1 ( l, 0.396, 0.58 I) 0.0898 0.0103 50 
2 (I, 0.396, 0.581) 0.0948 0.0115 50 
5 (I, 0.396, 0.581) 0.0955 0.0117 50 
10 (1,0.396, 0.581) 0.0955 0.0117 50 
20 (I, 0.396, 0.581) 0.0955 0.0117 50 

Table 3C shows for each time horizon, the retention levels which minimise the in- 
surer's probability of ruin in continuous time subject to the insurer's expected net 
profit being at least 50, the corresponding minimum probability of ruin, the probability 
of ruin in discrete time for these retention levels and finally the insurer's expected net 
profit. In this case, the optimal retention levels are such that the insurer's expected net 
profit is equal to 50 for each of the five time horizons. 

TABLE 3 C  

C A S E  S T U D Y  1 -- MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME 

Prob 'y o f  ruin Prob 'y of  ruin Expected 
t a (continuous) (discrete) n e t  profit 

D 

I (1,0.438, 0.519) 0.0882 0.0095 50 
2 (1, 0.438, 0.519) 0.0929 0.0106 50 
5 (1, 0.439, 0.518) 0.0935 0.0108 50 
10 ( I, 0.439, 0.518) 0.0935 0.0108 50 
20 ( 1,0.439, 0.518) 0.0935 0.0108 50 

Table 3D is similar to Table 3C except that for each time horizon, the retention le- 
vels are those which minimise the insurer's probability of ruin in discrete time subject 
to the insurer's expected net profit being at least 50. 
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T A B L E  3 D  

C A S E  S T U D Y  I -- MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME 

Prob'y of ruin Prob'y of ruin Expected 
t a (continuous) (discrete) net profit 

1 ( 1,0.456, 0.493) 0.0885 0.0094 50 
2 ( I, 0.456, 0.493) 0.0933 0.0105 50 
5 (I, 0.456, 0.493) 0.0939 0.0107 50 
10 (1, 0.456, 0.493) 0.0939 0.0107 50 
20 ( I, 0.456, 0.493) 0.0939 0.0107 50 

Case Study 2: We have again set the insurer's premium income to be 600 but have 
increased the initial surplus to 35. This initial surplus gives a one-year discrete time 
probability of ruin of about 1% when there is no reinsurance. We have set the reinsu- 
rance premium loading factors as O= (0. I, 0.4, 0.8). These are somewhat arbitrary 
choices but are designed to reflect the relative risk for the three sub-portfolios. With 
these loadings, the premium for reinsuring the whole portfolio is greater than 600. 
Adopting the same constraints as for Case Study 1, the retention levels which minimi- 
se the variance of the insurer's net claims are ( I, 0.753, 0.231). 

Tables 4A, 4B, 4C and 4D give the information relating to Case Study 2 which cor- 
responds to the information relating to Case Study I in Tables 3A, 3B, 3C and 3D. 

TABLE 4 A  

CA SE  S T U D Y  2 -- NO REINSURANCE 

Prob'y of ruin Prob'y of  ruin Expected 
t a (continuous) (discrete) net profit 

B 

I (I, 1, I) 0.1282 0.0146 100 
2 (I, I, 1) 0.1347 0.0164 100 
5 (I, I, I) 0.1357 0.0167 100 
10 (I, I, I) 0.1357 0.0167 100 
20 (1, 1, I) 0.1357 0.0167 100 

TABLE 4 B  

C A S E  ST U D Y  2 - MINIMUM VARIANCE 

Prob'y of ruin Prob'y of tTdn Expected 
t a (continuous) (discrete) net profit 

1 ( I, 0.753, 0.231 ) 0.0746 0.0147 50 
2 ( I, 0.753, 0.231 ) 0.086 t 0.Or 85 50 
5 ( I, 0.753, 0.231 ) 0.0894 0.0199 50 
10 (1, 0.753, 0.231) 0.0895 0.0199 50 
20 ( I, 0.753.0.231 ) 0.0895 0.0199 50 
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TABLE 4C 
CASE ST U D Y  2 - MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME 

Prob 'y o f  ruin Prob 'y of  ruin Expected 
t a (continuous) (discrete) net profit 

I (I, 0.749, 0.257) 0.0745 0.0147 50 
2 (1,0.749, 0.257) 0.0860 0.0184 50 
5 (I, 0.749.0.257) 0.0893 0.0198 50 
10 (I, 0.749, 0.257) 0.0894 0.0199 50 
20 (I, 0.749, 0.257) 0.0894 0.0199 50 

TABLE 4D 
CASE STUDY 2 - MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME 

Prob'y o f  ruin Prob'y o f  ruin Expected 
t a (continuous) (discrete) net profit 

1 ( 1, I, 0.42) 0.0957 0.0103 88.4 
2 (1, 1,0.43) 0.1011 0.0115 88.6 
5 (I, 1,0.43) 0.1018 0.0118 88.6 
10 (I, I, 0.43) 0.1018 0.0118 88.6 
20 (1, 1,0.43) 0.1018 0.0118 88.6 

Comparison of Tables 3A-D and 4A-D: 

(a) Comparing the ruin probabilities in Table 3A (no reinsurance) with those in Tables 
3B-D, and also those in Table 4A with those in Tables 4B-D, it is apparent that 
proportional reinsurance can reduce the probability of ruin considerably,  although 
in many cases 50% of the maximum expected profit has been sacrificed to achieve 
this reduction. 

(b) A feature of  Tables 3C-D and Tables 4C-D is that the optimal reinsurance reten- 
tions are not very sensitive to changes in the time horizon for ruin. This suggests 
that if we wish to choose proportional reinsurance retentions which minimise the 
insurer 's  probabili ty of  ruin in either continuous or discrete time, subject to a mi- 
nimum level for the insurer 's  expected net profit, it may be sufficient to calculate 
the optimal retentions for a short time horizon. 

(c) A feature of Case Study 1 is that the optimal retentions in Tables 3C (I ,  0.438/9, 
0.519/8), and 3D, (1, 0.456, 0.493), are close to each other and not too far from 
those in Table 3B, (I ,  0.396, 0.581). Also, the corresponding probabilit ies of ruin 
in Tables 3B-D are all very close to each other. This suggests that, in this example, 
if we wish to choose retention levels which minimise a probability of ruin, in either 
continuous or discrete time, an approximation can be obtained by calculating re- 
tention levels using the minimum variance criterion. This could be a significant 
point since the computational effort required for the latter is considerably less than 
that required for the former. 

(d) The comments in (c) above, all of which related to Case Study I, do not apply to 
Case Study 2. For Case Study 2, the optimal retentions, and ruin probabilities, cal- 
culated using a minimum variance criterion, Table 4B, and a continuous time ruin 
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criterion, Table 4C, are very close to each other. Also, the optimal retentions in 
Table 4C give an expected net profit for the insurer of  exactly 50. However, 
the optimal retentions and ruin probabilities calculated using the discrete time 
ruin criterion, Table 4D, are very different from those in Tables 4B and 4C. A no- 
ticeable feature of  Table 4D is that the optimal retentions give expected net profits, 
88.4/6, well in excess of the constrained minimum value of  50. 

(e) A common feature of  Tables 3A-D and 4A-D is that, for a given set of retentions 
and a given time horizon, the probaility of  ruin in continuous time is a factor of  
almost 10 times greater than the probability of ruin in discrete time. To see why 
this is the case, consider Table 3B. The insurer's initial surplus is 20 and the ex- 
pected surplus at the end of the first year is 70. This indicates that if ruin occurs in 
continuous time, it is likely to occur soon after time 0, so that there will be a large 
part of  the year remaining in which the surplus can recover to a positive value. In 
fact, the probability of ruin in continuous time within the first half year is 0.0758 
so that the probability of  ruin in the following half year, having not been ruined in 
the first half year, is 0.0140. In general we would expect the probabilities of ruin 
within a given time period (continuous) and at the end of the time period (discrete) 
to be much closer if either the insurer's initial surplus were larger and/or the ex- 
pected net profit in the time period were smaller. Referring again to the example in 
Table 3B, the probability of  ruin at the end of  0. I years is 0.0166. The important 
feature in this case is that the insurer's expected net profit in the time period is 
only 5. 
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Further discussion of Case Study 2: 

Figure I shows minimum discrete time ruin probabilities as a function of the insu- 
rer's expected net profit for t = 1 and t = 10. This figure shows the advantage to the 
insurer of constraining the expected net profit to be at least 50. In particular, when t = 
10 we see that any expected net profit greater than 50 results in a lower probability of 
ruin than when the expected net profit equals 50. Results showing the effect of diffe- 
rent values for the initial surplus are shown in Tables 5A, 5B, 6A and 6B, in all cases 
the reinsurance premium loadings are as in Case Study 2. Tables 5A and 6A show 
figures for an initial surplus of 20 and Tables 5B and 6B show figures for an initial 
surplus of 50. Tables 5A and 5B show for each of the five time horizons the optimal 
retention levels calculated using a continuous time ruin criterion, together with the 
resulting expected net profit for the insurer and the minimum value of the ruin proba- 
bility. These values should be compared with those in Table 4C. Tables 6A and 6B 
show the optimal retention levels calculated using a discrete time ruin criterion. These 
values should be compared with those in Table 4D. 

The optimal retentions in Table 5B are very close to those in Table 4C, indicating 
that increasing the insurer's initial surplus from 35 to 50 has had little effect in terms 
of optimal retention levels and the insurer's expected net profit. However, Table 5A 
displays different features. The optimal retention levels change as the time horizon 
increases, appearing to converge to (I, 0.827, 0.256), and the insurer's expected net 
profit moves away from the constrained minimum value. Table 5A indicates that the 
optimal retentions under a continuous time ruin criterion may depend on the time 
horizon and, by comparison with Tables 4C and 5B, on the insurer's initial surplus. 
Turning to Tables 6A and 6B, we see that a change in initial surplus has only a small 
impact on optimal retention levels and the insurer's expected net profit. 

TABLE 5 A  

MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME, U = 2 0  

Prob'y of  ruin Expected 
t a (continuous) net profit 

I (I, 0.753, 0.23 l) 0.1883 50.0 
2 (I, 0.799, 0.247) 0.2025 56.8 
5 (I, 0.827, 0.256) 0.2050 60.9 
10 (I, 0.827, 0.256) 0.2050 60.9 
20 (I, 0.827, 0.256) 0.2050 60.9 

TABLE 5B 

MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME, U = 5 0  

Prob'y of  ruin Expected 
t a (continuous) net profit 

m 

I (I, 0.747, 0.271) 0.0288 50 
2 (I, 0.747, 0.271 ) 0.0362 50 
5 (1,0.748, 0.264) 0.0387 50 
10 (1,0.748, 0.264) 0.0387 50 
20 (I, 0.748, 0.264) 0.0387 50 



222 DAVID C.M. DICKSON AND HOWARD R. WATERS 

TABLE 6A 
MINIMUM PROBABILITY OF RUIN IN DISCRETE'rIME, U = 2 0  

Prob 'y o f  ruin Expected 
t a (continuous) net profit 

m 

I (I, I, 0.460) 0.0186 89.2 
2 (1, I, 0.470) 0.0205 89.4 
5 (I, 1,0.470) 0.0208 89.4 
10 (I, 1,0.470) 0.0208 89.4 
20 (I, I, 0.470) 0.0208 89.4 

TABLE 6B 
MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME, U = 5 0  

Prob'y o f  ruin Expected 
t a (continuous) net profit 

I (1, 1,0.390) 0.0055 87.8 
2 (I, 1,0.400) 0.0063 88.0 
5 ( I, 1,0.405) 0.0065 88.1 
10 (I, I, 0.405) 0.0065 88.1 
20 (1, 1,0.405) 0.0065 88.1 

6. EXCESS LOSS REINSURANCE 

Case S tudy  3: In this Case Study we investigate different optimal retention levels for 
excess loss reinsurance of the fire and windstorm sub-portfolios. For the reasons given 
in Section 2, we assume that the glass sub-portfolio is not reinsured under an excess 
loss treaty. The insurer 's premium income is 600, as in the previous two Case Studies, 
and the initial surplus is 35. The reinsurance premium loading factors are 100% (fire) 
and 200% (windstorm). These factors are higher than those in the previous two Case 
Studies, a consequence of the fact that excess loss, by its very nature, should be more 
expensive than proportional reinsurance. 

The probabili t ies of  ruin, for continuous and discrete time, and for different time 
horizons, when there is no reinsurance are as in Table 4A. We will assume that the 
insurer wishes to find the optimal excess loss retentions subject to the constraint that 
the expected net profit is at least 50. The minimum variance solution to this problem is 
._M= (~,  9.66, 19,32). The ruin probabilities with this set of retention levels are shown 
in Table 7B. Table 7C shows the optimal continuous time retentions and ruin probabi- 
lities for different time horizons, together with the discrete time ruin probabilit ies for 
these retentions and the insurer 's  expected net profit, which in every case is 50. Table 
7D shows the optimal discrete time retentions and ruin probabilities for different time 
horizons, together with the continuous time ruin probabilities for these retentions and 
the insurer 's expected net profit. 
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TABLE 7B  

CASE STUDY 3 - MINIMUM VARIANCE 

Prob'y of ruin Prob'y of ruin Expected 
t M (continuous) (discrete) net profit 

m 

I (~, 9.66, 19.32) 0.0420 0.0068 50 
2 (o~ 9.66, 19.32) 0.0485 0.0083 50 
5 (oo, 9.66, 19.32) 0.0499 0.0087 50 
10 (~, 9.66, 19.32) 0.0499 0.0087 50 
20 (~, 9.66, 19.32) 0.0499 0.0087 50 

TABLE 7C 

CASE STUDY 3 - MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME 

Prob'y of ruin Prob'y of ruin Expected 
t M (continuous) (discrete) net profit 

I (,o, 10.43, 17.39) 0.04 14 0.0066 50 
2 (oo, 10.39, 17.48) 0.0479 0.0081 50 
5 (o~, 10.38, 17.50) 0.0492 0.0085 50 
10 (oo 10.38, 17.50) 0.0493 0.0085 50 
20 (co, 10.38, 17.50) 0.0493 0.0085 50 

TABLE 7 D  

CASE STUDY 3 - MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME 

Prob'y of ruin Prob'y of ruin Expected 
t M (continuous) (discrete) net profit 

l (~,  I 1.52, 19.09) 0.0451 0.0066 54.7 
2 (~, 12.56, 20.78) 0.0543 0.0078 58.8 
5 (oo, 12.9 I, 21.37) 0.0564 0.0081 60. I 
10 (oo, 12.91,21.37) 0.0564 0.0081 60.1 
20 (co 12.91,21.37) 0.0564 0.0081 60. I 

A comparison of Tables 7B-D shows that the ruin probabilities in these tables, ei- 
ther continuous or discrete time, do not change significantly from one table to the 
next. This indicates that for many practical purposes the probability of ruin, in either 
discrete or continuous time, can be assumed to attain its minimum value at the solution 
to the minimum variance problem. However, the extra computational effort required to 
compute the optimal retentions for discrete time ruin in Table 7D may be considered 
worthwhile since they result in an expected net profit for the insurer in excess of  60, 
for t > 5, rather than 50 for the minimum variance optimal retentions. 
Other features of Tables 7B-D are: 
(a) the different time horizons in Tables 7C and 7D have little effect on the values of 

the optimal retention levels, and no effect for t > 5, and, 
(b) optimal retentions for continuous time ruin, Table 7C, are closer to the minimum 

variance solution than are the optimal retentions for discrete time ruin, Table 7D. 
In particular, the former give an expected net profit for the insurer of  50, i.e. on the 
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boundary of  the constraint, as for the minimum variance solution, whereas the lat- 
ter give an expected net profit away from the boundary. 

Figure 2 shows the minimum discrete time ruin probabilities as a function of the in- 
surer's expected net profit for t = I and t = 10. As in Figure I, we can again see the 
advantage of constraining the expected net profit to be at least 50 rather than exactly 
50. 

The effect of  altering the insurer's initial surplus is shown in Table 8. This table 
shows for U = 20 and U = 50 the optimal retentions for both the continuous time and 
the discrete time ruin criteria, together with the minimum value for the probability of  
ruin and the resulting expected net profit for the insurer. In all cases the time horizon 
for ruin is 20 years. 
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FIGUaE 2: Excess  loss reinsurance,  discrete t ime ruin, U = 35, Ioadings are 100% and 200%. 
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T A B L E  8 

CASE STUDY 3 -- DIFFERENT VALUES FOR. THE |Nn'IAL SURPLUS; t ---- 20 

Continuous / Expected 
t discrete M Prob 'y o f  ruin net profit 

20 Cont inuous  ( ~ ,  I 0.08,  18.22) 0 .1569 50 
50 Cont inuous  (~,, 10,49, 17.25) 0.0155 50 
20 Discrete (~ ,  16,18, 27.00) 0 .0182 70.5 
50 Discrete (~,, 10,89, 17.89) 0.0031 51.8 
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The important point revealed by Table 8 is that changing the insurer's initial surplus 
has little effect, in terms of the optimal retentions or the insurer's expected net profit, 
in the case of continuous time ruin but makes a considerable difference in the case of 
discrete time ruin. 

7. CONCLUSIONS 

Our purpose in this paper has been to investigate different criteria for determining the 
optimal relative retention limits for a non-life portfolio consisting of a number of in- 
dependent sub-portfolios. For the reasons discussed in Examples 1,2 and 3 in Section 
4, the minimum variance criterion could be regarded as a proxy for a probability of 
ruin criterion. The advantages of the minimum variance criterion are: 
(a) it is possible to express the retention levels in closed form, 
(b) the optimal retention levels depend only on the reinsurance premium Ioadings and, 

in the case of proportional reinsurance, on the first two moments of aggregate 
claims for the sub-portfolios, and, 

(c) the optimal retention levels can be calculated very easily. In contrast, the optimal 
retention levels using a ruin probability criterion cannot be expressed in closed 
form and can be time consuming to compute, particularly for the longer time hori- 
zons. 

Our method of investigation has been to carry out several "case studies" for a single 
portfolio. Using this method it can be difficult to draw any conclusions. Nevertheless, 
we consider that the numerical results in Sections 5 and 6, and the other examples we 
have investigated in the course of this study, enable us to reach the following tentative 
answers, for both proportional and for excess loss reinsurance, to the questions posed 
in Section 1: 
(I) The minimum variance criterion produces optimal relative retention levels close to 

those produced by the continuous time ruin criterion (see Tables 3B and 3C, Ta- 
bles 4B, 4C, 5A and 5B and Tables 7B, 7C and 8 (Continuous)) but not necessarily 
similar to those produced by the discrete time ruin criterion (see Tables 4B, 4D, 6A 
and 6B and Tables 7B, 7D and 8 (Discrete)). The three examples in Section 4 all 
indicated that optimality with respect to the minimum variance criterion might be 
approximately the same as optimality with respect to the probability of ruin in 
continuous time (Examples 1 and 3) and the probability of ruin in discrete time 
(Example 2). Specifically, we assumed in Examples 2 and 3 that the (retained) ag- 
gregate claim amount distribution could be reasonably approximated by a normal 
distribution, and hence is symmetric. However, with an expected net profit of at 
least 50 the coefficient of skewness of the retained aggregate claim amount distri- 
bution in Case Studies 1 and 2 turns out to be above 0.5 for all combinations of 
retention levels, and hence the distribution is not symmetric. For this reason it 
should not be surprising that optimality with respect to the minimum variance cri- 
terion can produce different results to optimality with respect to the probability of 
ruin in discrete time (Case Study 2). What may be considered surprising is the clo- 
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seness of the results in all three case studies under the minimum variance criterion 
and the continuous time ruin criterion. 

(2) As indicated in (1) above, the discrete time ruin criterion can produce very diffe- 
rent optimal retentions from those produced by the continuous time ruin criterion. 
This should not be too surprising since these two probabilities are rather different 
both in nature and, in our examples, numerically. See comment (e) in Section 5. 
That these two probabilities behave differently has already been observed in a so- 
mewhat different setting. See Dickson and Waters (1996, Section 8 and 9). 

(3) (i) In most cases we investigated, the optimal retention levels for continuous time 
ruin give an expected net profit for the insurer on the boundary of its constrained 
values (see Tables 3C, 4C, 5B, 7C and 8 (Continuous)). In one example this was 
not the case (see Table 5A). The exact reverse is true for the optimal retentions for 
discrete time ruin (see Table 3D for the former case and Tables 4D, 6A, 6B, 7D 
and 8 (Discrete) for the latter case). 
(ii) A marked feature of  all our calculations is that the time horizon for ruin, for 
one year and longer, has very little effect on the optimal retention levels in either 
continuous time or discrete time. In all cases the optimal retention levels are un- 
changed to three significant figures as the time horizon increases from five years to 
twenty years. 
(iii)The insurer's initial surplus, which is not considered by the minimum variance 
criterion, can have a considerable effect on the optimal retention levels using a 
probability of  ruin criterion (see Tables 7D and 8 (Discrete)). 
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A NEW DISTRIBUTION OF POISSON-TYPE 
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ABSTRACT 

This paper is concerned with two methods to estinaate the parameters of the 
Poisson-Goncharov distribution introduced recently by Lef6vre and Picard 
(1996). These methods are applied to fit, inter alia, the six observed claims 
distributions, from automobile insurance third party liability portfolios, studied 
by Gossiaux and Lemaire (1981) and analysed afterwards by several authors. 

KEYWORDS 

AbeI-Goncharov polynomials; Poisson-Goncharov distribution; Generalized 
Poisson law; fitting; claims distribution. 

I .  I N T R O D U C T I O N  

The importance of the third party liability automobile insurance has not to be 
demonstrated, in most of the industrialized countries, this branch represents a 
considerable share of the yearly premium collection (for instance, in Belgium, 
29.5% during the year 1993). In view of this, many attempts have been made in 
the actuarial literature to find a probabilistic model for the distribution of the 
number of auto-accidents (see the review contained in Section 3). Our purpose 
here is to show that the Poisson-Goncharov distribution introduced recently by 
Lef6vre and Picard (1996) provides an appropriate probability model to describe 
the annual number of claims incurred by an insured motorist. We will then 
propose two methods to estimate the parameters and we will apply them to fit the 
six observed claims distributions in Gossiaux and Lemaire (1981), as well as 
recent data sets from Belgium. 

Let us briefly survey the paper. In Section 2, we will shortly present the 
Poisson-Goncharov distribution, establishing two new properties of it. In Section 
3, we will first introduce the problem under study and then bring up the Poisson- 
Goncharov model for the number of claims in automobile insurance. Section 4 
will be devoted to the Maximum Likelihood method to estimate the parameters of 
the Poisson-Goncharov distribution. We will see that this method usually yields 
implicit Likelihood equations which have to be solved numerically. The starting 
values of the parameters will be obtained using the so-called "Ad Hoc" method 
developed in Panjer and Willmot (1992). In Section 5, we will propose a specific 

^STIN BULI.I~'rIN. VOI. 27. NO. 2, 1997, pp. 229-242 



230 MICHEL DENUIT 

Least Squares type estimation method, specially built for the Poisson-Goncharov 
distribution. We will see that this method provides explicit expressions for the 
estimators and, in most of the cases, accurate fits. Section 6 will be concerned with 
concluding remarks. Finally, Appendix will take all the numerical illustrations up. 

2. THE POISSON-GONCHAROV DISTRIBUTION 

Recently, Lef6vre and Picard (1996) introduced a new discrete probability 
distribution on the set of the non-negative integers (subsequently denoted by IN), 
called the Poisson-Goncharov law, which is constructed in terms of Abel- 
Goncharov polynomials and which extends the classical Poisson law as well as the 
Generalized Poisson distribution proposed by Consul and Jain (1973). 

Very briefly, le U = {ui, i E IN} be any given family of real numbers. To Uis 
attached a unique family of AbeI-Goncharov polynomials, {G,,(x]U),  n E hV}, of 
degree n in x, defined recursively, starting from Go(x[U) =- I, by 

A~ n-I  t.t~_~ 
G"(xIU)  = n'- '~ - , o  G / x l U ) ,  ,1 _> 1. (2.1) 

The reader is referred to Oskolkov (1988) (and the references therein) for a 
presentation of these polynomials ( A G  polynomials, in short). Note that the only 
particular case in which an explicit expression is known for the G,,(x[U)'s  is the 
Abel one. Specifically, if tti = a + bi, i E IN, a and b being real constants, then 

c,,(.¥] u )  = (x - (x - ,  - , ,b)"- '  n! , I1 E IN.  ( 2 . 2 )  

When u~ = a, i E W, (2.2) reduces to G,,(xIU) = (x - a)"/n!, n > 0. In order to 
have all the G,,(.r I U) 's  positive for x > 0, it suffices for U to be negative and non- 
increasing, i.e. 0 > uo >_ ul >_ ... _> ui _> ui+t _> ... (this condition will be retained 
subsequently). Now, the Poisson-Goncharov distribution associated with U, 
negative and non-increasing, is the family {'RG,,(U), n E iN} defined by 

"RC,,(U) = G,,(OIU)e",  n E IN. (2.3) 

It is denoted by "PC(U). 
As announced earlier, the PC(U) law can be viewed as a distribution of 

Poisson-type. I f the  ui's are linear in i, ui = - 0  - iA say, with 0 E ~ -  and A E /R +, 
then, using (2.2), 

PC,,( U) 0(0 + ,,~,)"-' 
- e - ° - ' ' ~ ,  n E / V .  ( 2 . 4 )  

n! 

The distribution (2.4) is nothing else than the Lagrangian or Generalized Poisson 
law introduced by Consul and Jain (1973) (see the book by Consul (1989)). | t  is 
non-defective if and only if X E [0, I]. In particular, if all the u,'s are equal to -0 ,  
say, with 0 E /R~, then PC(U) becomes the usual Poisson distribution with 
parameter 0. 
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[t is worthwhile recalling that the Generalized Poisson law belongs to the wide 
class of discrete Lagrangian probability distributions, defined by Consul and 
Shenton (1972), by means of the Lagrange expansion formula. Moreover, it is 
also part of the Abel series distributions family introduced by Charalambides 
(1990). It has various fields of applications, in particular biostatistics (see, e.g., 
Janardan et al. (1979)) as well as actuarial sciences where it has been proposed 
initially by Consul (1990), and then by Ter Berg (1996), to model the annual 
number of accidents incurred by a motorist. See also Gerber (1990) for an 
application linking to the ruin model. We mention that recursive algorithms to 
evaluate compound Generalized Poisson probabilities have recently been 
developed, e.g. by Goovaerts and Kaas (1991) and Sharif and Panjer (1995). 

Coming back to the 7~G(U) law, this corresponds typically to the distribution 
of the first crossing level L of a Poisson process ./V" = {N(t), t E IR +} (with 
parameter I, say) in a lower non-decreasing boundary/3u (such as represented in 
Figure 2. l). More precisely, we first observe that/3u may be reduced to the set of 
points that are eligible as levels of first-crossing, i.e. points with integer ordinate. 
Denoting this set of points by {(-ui, i),i E hV}, where U = {ui, i E £V} is 
negative and non-increasing, it can then be proved that the law of L is provided 
by (2.3) (see Lef6vre and Picard (1996)). We notice that the Poisson law for L is 
obtained when/3u is vertical, and the Generalized Poisson law when/3u is linear. 

L 
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FIGUI~.E 2.1. First-crossing level L of the Poisson process tiff" 
in Ihe lower boundary 13u 
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Lel~vre and Picard (1996) have also pointed out the relationship between the 
7~G(U) law and the number of customers served in the first busy period of a M~ 
D / I  queueing system in which customers arrive according to a Poisson process 
with rate 1, a unique customer is present initially in the queue and the service 
times are deterministic but differ from a customer to another (let -u0 be the 
service time of the initial customer and, for i >_ 1, Jet ui-~ - ui denote the service 
time of the i-th customer). In such a system, the number of new customers served 
during the first busy period is of law 79G(U). 

Now, the family U may represent any negative and non-increasing sequence of 
real numbers, so that the 7::'~(U) law may depend on a large, even infinite, number 
of parameters. For statistical estinaation, however, it is necessary to specify for the 
u;'s a simple analytical expression, depending on one, two or three parameters for 
example (like u, = 01 + 02i + 03 i2, i E ~V, OI < O, 02 _< O, 03 _< 0). 

It is possible to show that the 79G(U) law belongs to the Sundt's family, i.e. 
satisfies, for some fixed values of k and w, 

T'Gn(U) = ~ i +  79G,,_i(U), n = w + l ,  w + 2 ,  ... 
i =  I 

Indeed, starting from the following identity, 

7:'G,(U) = e -''° T '~ (U)  - l 7:'G,,-~(U), n >_ l, (2.6) 
i =  I 

we obtain (2.5) with k = n ,  w = 0  and, for i_> I, czi=-e'"-"°Gi(OlU),  
gi = 2ieU'-U°Gi(O[ U). These ai's and g/s  are in fact those suggested in Theorem 
3 of Sundt (1992). Nevertheless, if we desire to obtain the distribution of the 
compound T'G(U) sum, as pointed out by Panjer and Wang (1995), when k = n  m 
(2.5), the computing effort using Sundt's recursive formula is of the same order as 
that needed by a direct convolution approach (Sundt's recursion is interesting 
only when the claim frequency distribution satisfies (2.5) with small values for k 
and w). 

Let us recall that, given two random variables X and Y valued in gV, Y is said 
to stochastically dominate X, denoted by X ~  tY, when P[X _< n] > 
P[Y _< n] 'Vn E #V (see, e.g., the recent books by Shaked and Shanthikumar 
(1994) and by Kaas et al. (1994)). It is well-known that X~,  r Y if and only if there 
exist two random variables A" and Y, defined on the same probability space, such 
that X and ,~', as well as Y and ]", are identically distributed, and P[A" _< )"] -- 1. 

It is easy to prove that, if X (resp. Y) is distributed according to the 79G(U) 
(resp. 'PC(V)) law, with ui > vi V i E IN, then X ~  Y. This follows immediately 
from a decomposition formula of the Raikov type, obtained by Lef6vre and 
Picard (1996), which states that it is always possible to decompose Y into the sum 
Zi + Z 2  such that ZI follows the T'G(U) law and the law of Z2, given 
Zt = j ,  j E hV, is PG(V( j ) ) ,  where V(j)  = {'o,(j),i E h~¢'} with -vi(j) = v'i+j - u j .  

Thus, with X a n d  Ydescribed above and using X = Z i  and Y = Z ~ + Z 2 ,  we 
have X ~ t  Y. 
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If we come back to the representation of the 7:'G(U) as the law of the first- 
crossing level L, the above result becomes obvious. Indeed, if X (resp. Y) is the 
first-crossing level of the Poisson process .A/" in the lower boundary 13u (resp. By ) 
described by U (resp. by V), and i fv i  < uiVi E IN (that is/3v lies on the right of 
/3u), it is clear that X~,.t Y (since X < Y almost surely). Choosing families like 
{-0,  i_>0} or { - 0 - i A ,  i>_0}, with 0 > 0  and AE[0,  1], yields straight 
corollaries for the Poisson or the Generalized Poisson laws. 

3. THE POISSON-GONCHAROV MODEL FOR THE NUMBER OF CLAIMS 

IN AUTOMOBILE INSURANCE 

Let us first introduce the problem under investigation in the present paper. In 
order to see if there exist some probability law applicable to claims distributions 
in automobile insurance third party liability portfolio, Gossiaux and Lemaire 
(1981) examined six observed claims distributions. Those came from five 
countries and were studied before by other researchers. Gossiaux and Lemaire 
(1981) fitted the Poisson distribution, the Generalized Geometric distribution, the 
Negative Binomial distribution and the mixed Poisson distribution to each of 
them by the Maximum Likelihood method and the method of Moments. They 
concluded that no single probability law seems to emerge as providing a good fit 
to all of them. Moreover, there was at least one example where each model gets 
rejected by a chi-square test (at the level 10%). Seal (1982) supplemented the 
paper by Gossiaux and Lemaire (1981) with an analysis of some automobile 
accidents data from California. He concluded that it supports the mixed Poisson 
hypothesis for the distribution of the number of claims. Kestemont and Paris 
(1985), using mixtures of Poisson processes, defined a large class of  probability 
distributions and developed an efficient method of estimating its parameters. For 
the six data sets in Gossiaux and Lemaire (1981), they proposed a law depending 
on three parameters and they always obtained extremely good fits. Wilhnot (1987) 
showed that the Poisson-lnverse Gaussian law deserves consideration as a model 
for the claims distribution due to its good fit to the data. Furthermore, this law 
enjoys abundance of convenient mathematical properties. Willmot (1987) 
compared the Poisson-lnverse Gaussian distribution to the Negative Binomial 
one and concluded that the fits are superior with the Poisson-lnverse Gaussian in 
all the six cases studied by Gossiaux and Lemaire (1981). See also the note by 
Lemaire (1991) about the confrontation between Negative Binomial and Poisson- 
Inverse Gaussian on the basis of six data sets not related to insurance. Ruohonen 
(1987) considered a model for the claim number process. This model is a weighted 
Poisson process with a three-parameters Gamma distribution as the structure 
function and is compared with the two-parameters Gamma model giving the 
Negative Binomial distribution. He fitted his model to some data that can be 
found in the actuarial literature and the results were satisfying. Panjer (1987) 
proposed the Generalized Poisson-Pascal distribution, which includes three 
parameters, for the modelling of the number of automobile claims. The fits 
obtained were satisfactory, too. Note that the Polya-Aeppli, the Poisson-lnverse 
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Gaussian and the Negative Binomial are special cases of this distribution. 
Willmot (1988) enumerated completely the class of claim frequency distributions 
discussed by Sundt and Jewell (1981). He demonstrated the good fit to 
automobile claim frequency data of one member (in fact, the Modified Extended 
Truncated Negative Binomial distribution), using the six data sets analyzed by 
Gossiaux and Lemaire (1981). Consul (1990) tried to fit the same six data sets by 
the Generalized Poisson distribution. Although the Generalized Poisson law is 
not rejected by a chi-square test, the fits obtained by Kestemont and Paris (1985), 
for instance, are always much better. Furthermore, Elvers (1991) reported that 
the Generalized Poisson distribution did not fit very well the data observed in an 
automobile third party liability insurance portfolio (the distribution hypothesis 
was, according to his note, in almost every case rejected by a chi-square test). 
More recently, Ter Berg (1996) considered a slightly different model, involving the 
Generalized Poisson, too. Moreover, he introduced a loglinear model, which is 
able to incorporate explanatory w~riables. The fits were found satisfactory. Islam 
and Consul (1992) suggested the Consul distribution as a probabilistic model for 
the distribution of the number of claims in automobile insurance. These authors 
approximated the chance mechanis,n which produces vehicle accidents by a 
branching process. They fit the model to the data sets used by Panjer (1987) and 
by Gossiaux and Lemaire (1981). Note that this model deals only with autos in 
accident. Consequently, the zero-class has to be excluded. The fitted values seem 
good. However, this has to be considered cautiously, due to the comments by 
Sharif and Panjer (1993). Indeed, these found serious flaws embedded in the 
fitting of the Consul model; in particular, the very restricted parameter space and 
some theoretical problems in the derivation of the Maximum Likelihood 
estimators. They refer to other simple probability models, as the Generalized 
Poisson-Pascal or the Poisson-lnverse Gaussian, whose fit were found quite 
satisfying. We end this brief review with two books. The first one is due to Panjer 
and Willmot (1992) in which Chapter 9 is devoted to the fitting risk model 
problem. In the second one, by kemaire (1995), Chapte," 3 focus on models for the 
claims number distribution. These authors give a remarkable account to the 
problem under investigation. 

The probabilistic model for the number of claims incu,'red by a motorist 
introduced here extends both the classical Poisson and the Generalized Poisson 
models. We will use extensively the decomposition formula of the Raikov-type for 
the 7)Cj (U) recalled above. We split the total number of claims N,ol caused by an 
individual during a fixed period of time (say one year), which is distributed 
according to the 7 ~  (U) law, where ui = 01 + 02i + 03i 2, i E hV, Ot < O, 02, 03 <_ 0 
into Npo,sso,, and Nextra, that is 

Nto, = Neois.,,m + N~x,-,,, (3.1) 

where Nl'oi~: .... follows a Poisson law with parameter -01 and N~.,.,,.,, given 
Npo,.~.~,,,,=jl, is distributed according to a "P~ (V(/'j)) law, with v i ( j l )=  
0 2 ( i + j l ) + O 3 ( i + j l ) z ,  i EIN.  Note that [N,.,.tr, lNe,,~,.,.,,,,=jl] increases in the 
stochastic dominance with j~. By splitting up the extra claims, it is easily seen 
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that (3.1) consists in lhct in breaking up N,,,, into 

N(~) ~v(2) /v(3) Ntot = Npois ....... + --~'.,',,, + --,'.,v', + --ex,,', + " (3.2) 
( I )  . 

where N~.,.t,. . ,  given Npoisso,,:Ji. follows a Poisson law with parameter  
• .2 (2-) ' - "  Jr(I) = j2 ,  follows a Poisson law -J102 - J j  03, N,,,.,.,,, gwen NpoL ........ --Jl  and , ,~,.,.,,.0 

with parameter  - j202 - j ~ 0 3  - 2jr/20> and so on. Considering N,,,, as distributed 
according to the 72G (U) law comes thus down to distinguish among the claims 
whether they are produced by one or another  source, each source adduceing a 
number  o f  accidents condit ionnally distributcd as a Poisson law, so that the 
model (3.2) seems intuitively acceptable. 

4 M A X I M U M  I . I K E L I H O O D  ESTIMATORS 

4.1 A genera l  a p p r o a c h  

Let us suppose that the uits, i E P¢, depend on m parameters,  i.e. 
ui = u,(O~, ..., 0,,,), where (01, ..., 0,,) ¢ O i  x ... x ®,,, _C 9~'". We want Io find 
the Maximum Likelihood estimators ( M L E ,  in short) of  the parameters 
~91, ..., t~,,,. 

Let a random sample of  size n, (XI, ..., X,,), be taken from a populat ion with 
the 720 , (L0 law. The corresponding observations are (xl, ..., x,,). Let k m a x  be 
the largest observation; nk, 0 < k < k m a x ,  the number  of  occurences for k; and 

f~. = nk /n ,  0 < k < kma.v,  the observed fi'equencies for the different classes. The 
Likelihood function is 

klHil.v 

L< . . . .  o,,, (,to, ..., n6- ........ ) = ]F I (e"~Gk(OI U))"". (4. I )  
k=O 

The M L E  ,01, ..., 0,,, of  the parameters 0~, ..., 0,,, are such that they maximize the 
Log-Likelihood function. This leads to the Likelihood equations 

0 = E ,76- 
6=0 Lo°'A (0l . . . . .  0m)=( 0I . . . . .  ('~'n) -}- 

6 ....... Fr , (01u)] 
,,k , l < j <_ m ,  (4 .2 )  

k = 0  L~6/~J/0, . . . . .  . , , , /= (0 ,  . . . . .  ,i,,,) 

where ~ji ~(xIU)] 0 ( k ( k ]]~[l.v , I ~ j  ~ ]~] denotes the first partial derivative o f  
Gk(xiU) with respect to the parameter  0j. From (2. I), we see that the F/,6.(01U)'s 
satisfy the following recurrence relations: starting from Fj,0(0IU ) = 0, I <_j _< m, 
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we have that 

k- I  Zt~-t-I Otli lti _ \ 

i=0 

(4.3) 

which allow us to compute them rect~rsively. 
Unfortunately, the MLE (Ol, ..., 0 .... which are solutions of (4.2) cannot be 

obtained in a closed form (except in the Poisson case). Hence, they are computed 
via numerical maximization of  the Log-Likelihood function. Let us quote in the 
next subsection some particular cases of special interest. 

4 .2  P a r t i c u l a r  c a s e s  

4 . 2 . 1 .  If U =  {-Oi, i •^IN},Oi > 0 ,  then Gk(OIU) = (~'/k!,Fl,k(OIU) = O~-I / 
(k - 1)!, and (4.2) gives Oi -- ~, which is the classical result for the Poisson law. 

4.2.2. If U = {0~ + 02hi (i), i •/TV}, 01, 02, and hi (.) such that U is negative and 
non-increasing, let us establish the two following results, which will give us 
expression for Pt.k(x[U) and F2.k(x[U),kE IN. First of all, we recall two 
interesting operational properties of the AG polynomials. For any integer , ,  

elk G,,(xIU) = f G"-k(xlEkg)'  if n >_ k, (4.4) 
d.x a [ 0, otherwise, 

where E#U = {uk+~,i • hV} denotes the family U without its first k elements. We 
also have that, for a, b • IR, and for n • IN, 

G,,(ax + blaU + b) = a"G,,(x I U), (4.5) 

where aU + b = {aui  q- b, i • IN} .  

L e m m a  4.1 For a, b • IR and n • IN, 

{ - G , , _ , ( x l { a + t ~ f ( i + l ) , i • i N } ) ,  i f  n >  1. 
G " ( x l { a + b f ( i ) ' i • i N } ) =  0, /f n = 0 .  

Proof. The result is obvious for n = 0. For n > 1, using (4.4) and (4.5) yields 

- -~ -a , , ( x l~a+bf ( i ) , i • r  IN}) = a , , ( . v - a l { ~ / ( i ) , i •  ~V}) Oa 

= -O, ,_ ,  (.v - a l {b f ( i  + I), i • IN}) 

= - G , _ t ( x [ { a + b f ( i +  1),i E IN}), 

hence the announced result. [] 
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L e m m a  4.2 For a, b E IR and n E IN, 

[' ~ G~_(~.~iI{a + bf ( i ) , i  E hV}) 

0 G , , ( x l {a+b f ( i ) , i  E /N)) = l, 0, t fn  = 0 .  O-b ~ + ~ G , , _ , ( x l { a + b f ( i + l ) , i E g V } ) ,  i f n >  I, 

Proof. The result is obvious when n = 0. For n >_ I, using (4.4) and (4.5) yields 

o [b"G t i" x" o#° G"(xl{a + b f ( i ) , i  E IN}) = "~t ,,,,~: - a ) / b l { f ( i ) , i  E P¢})] 

= nb" - IG, , ( ( x -  a) /b l{ f ( i ) ,  i E / N } )  

+ b " - 2 ( a  - - a) /b l{f ( i  + l ) , i  ev}), 

and this achieves the proof by (4.5). [] 

From (4.2) together with Lemma's 4.1 and 4.2, the M L E  Oi and t92 of the para- 
meters 01 and 02 are thus solutions of the following system: 

,, = , ,k ' ( 4 . 6 )  

Oi = -Oz H i - 2 ,  

i ~ kma.v n k - -  1 ~ k,,,o,.n h where Y=~Z_.,k=t k and Hj =7, Z..,~=0 k i(k). The second equation of(4.6), 

with h , ( i ) =  i, gives 0, = -7(02 + 1), which is the one obtained by Consul and 

Shoukri (1984) for the Generalized Poisson distribution. On the other hand, it is 
possible to show that, when ht(i) = i, 0t < 0 and 02 E [-1, 0], the system (4.6) is 
equivalent to the one derived by these authors. 

The first equation of (4,6), which provides the M L E  for the parameter 02, is 
implicit. So, we have to use numerical methods to obtain the solution. To get the 
initial approximation of 02, we refer to the method described in paragraph 4.2.3. 

4.2.3. If U = {01 +02hi(i)+03h2(i) ,  i E #V}, 0t, 02, 03, hi(.), ]/2(.) such that U 
is negative and non-increasing, it is possible to obtain numerically the M L E  of 
Oi, 02 and 03, for instance using the method of Scoring, that can be found, e.g., in 
Panjer and Willmot (1992), pp. 326-328. We will utilize the starting values 
obtained by the "'Ad Hoc" method (ibidem, pp. 303-305). The idea of "Ad Hoc" 
estimation is to equate sample statistics where "most of probability" is to 
corresponding theoretical quantities. Since there is a high proportion of zeros in 
the data sets concerning automobile claims, we propose estimators based upon 
lower classes frequencies, that is we equate the observed lower cla..sses..freque.n.cies 
with the corresponding probabilities. The "Ad hoc" estimators 01, 02 and 03 of 
the parameters 0j, 02 and 03 are given by 
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/~-h~(li,)-~/~(hz(I)-h:(o)). 
Oi = /n 0~) - 02hi (0) - 03112(0); 02 = h,(I)-h,(O) , (4.7).  

0"~ = ('~-I"If°))(h'(~)-h~(O))+(h'(O/h~(Z))("-Z"~O) 
- ( h 2 ( l ) - h 2 ( O ) ) ( h l ( O ) - h t ( 2 ) ) + ( h z ( 2 ) - h 2 ( O ) ) ( h , ( I ) - h l ( O ) ) '  

where  c~ = In(f,) - In(-  In01~)) and f l  = In( f2)  - /n [ - 0 . 5 ( / n ( f o ) ) 2 + c 2 / n ( f o ) ] .  

5.  LEAST S Q U A R E S  TYPE E S T I M A T O R S  

Let us first establish the following result. For  any discrete observed distribution 
defined on a subset o f  W, {J~., 0 < k < kmax},  such that ./~. > 0 for all k, there 
exists a unique family O' such thatJ~- = e~G~-(0] ~J), for k = 0, 1 . . . . .  k m a x .  The 
i~i's are defined recursively as hi = lll Oq) - In(Gi(O[ U))  i = 0, I . . . . .  k m a x  (let us 
quote  that, by definition, the A G  polynomial  G~(x]U) depends only on 
h0, /li, ..., hi-i).  Note  that  U built above is not always negative and non- 
increasing. In practice, it is often preferable to only consider those iti's which form 
a negative non-increasing family. 

The idea is to minimize the function $(0j ,  ..., 0,,,) defined by 

1 # ~ x  
6'(0~, ..., 0,,,) = ~ ~ n~.(uk(0~, ..., 0,,,) - zk.) 2, 

k 0 "= 

where U is the opt imal  family constructed above.  The Least Square type 
es t imators  ( L S T E ,  in short) proposed here are thus those which minimize 
,5'(01 . . . .  , 0,,,), the weighted sum of  the squared differences between the hi'S and 
the u,'s having a specified parametr ic  form. Let us mention that if we want to fit 
an observed distr ibution {(k, nk), 0 < k < k m a x } ,  we must  at first group the 
classes in order  to have all the nk's positive. 

The main advantage  of  this method is that  it often provides explicit 
expressions for the est imators ,  as we[[ as accurate  fits. We give below the 
estinaators in the case U = {01 + Ozhl(i) + 03h2(i), i e / N } ,  parameters  01, 02 and 
03, and functions hi ( . ) a n d  h2(.) such that U is negative and non-increasing. The 
est imators  Ol, [92 and 03 of  the parameters  0~, 0z and 03 are those which minimize 

I k m a . v  

3(0l: 02, 03) = ~ ~ nk(OI-'F 0 2 h i ( k )  J r  0 3 1 1 2 ( # )  - /'lk) 2. H 

They are given by 
% 

03 = H,2t'I , , ,- HI ,H2, ,  O~ = -03H] i '~+iH]  5" O, = U - 0 2 H 1 -  ()3"H'% (5.1) 
( H i 2 ) 2 _ H i i H 2 2  - , _ 

where -U ~ ~--,k ....... - ~ i ,~--.k,,,,.,. . . . .  1 x -'k ....... " = 2..,i=0 nit6; H j  = 1, "); Hj×k ;72~i=0 n,njld),J = - : ,,z--,,=O 
I ,¢'-' . ,kma.v i / .~ ~ n ih j ( i )hk( i ) . j . k= l ,2 ;  Hix , ,  = 7,2_,~=o n in jL0u~,J  = 1 ,2 ;  Hjk = Hjxa.- 

ItjH~., j ,  k =  I,  2; Hj,, = Hjx, , -  HjU, j =  1,2 .  
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6. C O N C L U D I N G  R E M A R K S  

Looking at the numerical results presented in Appendix, we could say that the 
7z'G (U) law seems to be suitable to fit the discrete data sets met in automobile 
insurance. The fits are more accurate than most of the ones discussed before, and 
applied to recent data sets coming from Belgium, the methods proposed here 
provide good fits. Moreover, the underlying probabilistic model is intuitively 
acceptable. Nevertheless, other authors, like for instance Kestemont and Paris 
(1985), also provided accurate fits, but sometimes with more intricate models. On 
the other hand, the Least Squares type method is easy to understand and provides 
explicit expressions for the estinaators of the parameters, while it yields satisfying 
results. We also mention that the simulation method proposed in Devroye (1992), 
which consists in the partial recreation of the queueing system described in 
Section 2, can easily be used to simulate the number of claims that affect some 
automobile insurance portfolio. 
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APPENDIX:  N U M E R I C A L  RESULTS 

The reader will find here the fits of  the six data sets in Gossiaux and Lemaire 
(1981), as well as of two recent belgian data sets, obtained with the PG (U), 
U = {Oj +02i+03 i2, i E/~V}. To measure the goodness-of-fit, standard X 2- 
statistics is used, with the following grouping procedure: the outside classes are 
gathered together in order to get theoretical class sizes greater or equal to 5 (that 
is, Rule B in Lemaire (1995)). 

Belg ium 1975-76 Za' ire 1974 

M L E :  0~ = - 0.0981, 02 = - 0.0250: (0:~ = - 0.0037 

LSTE:  01 = - 0.0981; 0., = - 0.0212.0~ = - 0.0069 

k n,k M L  L S T  

0 96 978 96 978.16 96 975.53 
I 9 240 9 244.4 9 252.45 
2 704 693.27 684.44 
3 43 53.19 55.48 
4 9 4.50 5.37 

> 5 0 0.49 0 .73  

0 .82  4 .76  

M L E .  01 = - 0.0728; 0e = - 0.1546; 83 = - 0.0005 

LSTE:  01 = - 0 0728; 0,! = - 0.1429; 0.~ = - 0.0110 

2 
Xo~ 

k D4., 

0 3 719 
1 232 
2 38 
3 7 
4 3 
5 I 

> 6  0 

X2b.~ 

M L  ~ L S T  

3 719.00 3 719.06 
231.98 232.22 

38.00 37.06 
8.22 8.27 
2.03 2.26 
0 .55  0.71 
0.22 0.43 

0 .00  0.06 
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7/t k 

7 840 
I 317 

2 239 

43 42 
14 

5 4 
6 4 

, 
-> o 

2 

B elg ium 1958 G r e a t - B r i t a i n  1968 

MLE: 01 = - 0.1839:02 = - 0.1045; 0~ = - 0.0078 

LSTE: 01 = - 0.1883; 0, = - 0 0699; 0:3 = - 0.0337 

MLE: O] = - 0.1285:07 = - 0.0182: 0.~ = - 0.0048 

LSTE: 01 = - 0  1289; (J2 = -0 .0183;  0:~ = -  0.0048 

ML L S T  

7 840.00 7 836.81 
I 316.97 I 330.77 

239.00 221.81 
49.31 48.47 
11.48 13.77 
2.98 4 .84  
0.85 2.01 
0 .26  0.95 
0.14 1.57 

k 71/,, 

0 370 4i2 
1 46 545 
2 3 935 
3 317 
4 28 
5 3 

->6 0 

3.38 I 2.36 X ~  
L 

S w i t z e r l a n d  1961 G e r m a n y  1960 

ML L S T  

370 444.17 370 412.38 
46 519.72 46 544.74 

3 928.66 3 934.60 
316.79 317.53 

27.60 27.68 
2.71 2.72 
0.35 0.35 

0.03 0 .00  

MLE: 01 = - 0.1447:07 = - 0.0555; 0,~ = - 0.0099 

LSTE: ~j = - 0.1447:02 = - 0.0571: 0:j = - 0.0078 

k ~.~ 

Q 103 7o4 
I 14 075 
2 1 766 
3 255 
4 45 
5 6 
6 2 

->7  0 

MLE." O] = - 0 1359; 07 = - 0.0387; 0:~ = - 0.0154 

LSTE: 0~ = -0 .1358:  0.~ = -0 .0414;  0~ = - 0 . 0 1 3 0  

ML ] L S T  

103 706.62 103 708.19 
14 056 .34  14 061.18 

I 778.12 1 781.10 
256.80 251.79 

43.68 40.95 
8.69 7.64 
1.99 1.62 
0 .72  0.53 

1.17 0.91 

k 72k 

0 20 592 
I 2 651 
2 297 
3 41 
4 7 
5 0 
6 I 

>_7 0 

,y2 
• o b . s  

ML L S T  

20 592.00 20 593.44 
2 650.60 2 648.58 

297.19 298.96 
40 .30  39.76 

6.90 6.52 
1.46 1.30 
0.37 0.31 
0.18 0.13 

0. I I 0 .06  

Be lg ium 1993 Be lg ium 1994 

MLE" 01 = -  0.1017; 0~ = - 0.0165:03 = - 0.0185 

LSTE: 0~ = - 0.1017:02 = - 0.0183; 00;~ = - 0.0168 

k 7~ ML L S T  

0 
I 
2 
3 
4 

2 5  

2 

MLE ~Ji = - 0.1000; 02 = - 0.0253:03 = - 0.0095 

LSTE: 0~ = - 0.1000; 07 = - 0.0243; 0:~ = - 0 0091 

57 178 
5 6 1 7  

446  
50 

8 
0 

57 178.02 
5 615.00 

448 .56  
48.25 

7.22 
1 .95  

0.23 

57 179.55 
5 613.30 

450.23 
47.39 

6.82 
1 .72  

0 .22  

k ] 7£/. 

0 I 18 700 
I 11 468 
2 930 
3 70 
4 14 

_>5 0 

ML L S T  

I 18 698.38 I 18 697.78 
I I 463.87 11 481.01 

921.22 908.95 
86.61 83.24 
10.13 9.43 

1.77 1.59 

3.64 3.41 
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A B S T R A C T  

In the present paper we discuss error bounds for approximations to aggregate 
claims distributions. We consider approximations to convolutions by approx- 
imating each of the distributions and taking the convolution of these 
approximations. For compound distributions we consider two classes of 
approximations. In the first class we approximate the counting distribution, but 
keep the severity distribution unchanged, whereas in the second class we 
approximate the severity distribution, but keep the counting distribution 
unchanged. We finally look at some examples. 

1. INTRODUCTION 

During the last two decades there has developed a large literature on 
approximations to aggregate claims distributions and related functions, in 
particular their stop loss transforms. In the present paper we give bounds for 
some measures of errors caused by such approximations. These measures can also 
be applied as measures for the distance between two distributions. 

In Section 2 we introduce some notation and conventions, and in a short 
Section 3 we present some simple inequalities for error bounds. 

Approximations to convolutions of distributions is the topic of Section 4. We 
approximate a convolution by approximating each of the distributions in the 
convolution and then taking the convolution of the approximations. 

Approximations to compound distributions is the topic of Section 5. We 
consider two classes of approximations. In the first class we approximate the 
counting distribution, but keep the severity distribution unchanged, whereas in 
the second class we approximate the severity distribution, but keep the counting 
distribution unchanged. Error bounds for approximations where both the 
counting distribution and the severity distribution are approximated, can be 
found by application of triangle inequalities. 

In Section 6 we finally consider some applications. Further applications of 
results from the present paper are given in Dhaene & Sundt (1996). 

ASTIN BULLETIN. Vol 27. No. 2. 1997. pp 243-262 
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The main topic of  the present paper is approximations to probability 
distributions. These approximations are not necessarily distributions themselves. 
Sometimes one would apply an approximation that could be naturally split into 
more than one step, e.g. approximating a compound distribution by first 
approximating its counting distribution and then its severity distribution. In this 
situation one could first give bounds for the approximation error of the 
approximation with correct severity distribution and approximated counting 
distribution, then for the final approximation considered as an approximation to 
this intermediary approximation,  and finally use triangle inequalities to assess the 
approximation error of the aggregate approximation. In such a procedure, the 
intermediary approximation would not necessarily be a distribution, and thus in 
our frame-work it is also of  interest to discuss approximations to ftmctions. On 
this background we have sometimes in our results assumed that the quantity to be 
approximated is a more general function than a probability distribution. Such 
generalisations are also possible in some of the other results where we for 
simplicity have made more restrictive assumptions. 

2. NOTATION AND CONVENTIONS 

In the present paper we shall be concerned with probability distributions on the 
non-negative integers. We shall approximate such distributions by approximating 
their discrete densities. Thus we identify a distribution by its discrete density, and 
for convenience we shall usually mean its discrete density when we talk about a 
distribution. 

Let 7 9 denote the class of (discrete densities of) probability distributions on the 
non-negative integers. When discussing approximations to compound distribu- 
tions, we shall restrict the severity distribution to the positive integers, and we 
therefore also introduce 79+ as the class of  distributions on the positive integers. 
As we shall approximate distributions in 79 and 79+ by functions which are not 
necessarily distributions themselves, we shall also need the classes .f" and .f '+. 
being respectively the class of  functions on the non-negative integers and the class 
of  functions on the positive integers. We see that 79+ C 79 C .f" and 79+C . f '÷C .f'. 

For a function f E ..T we introduce 

oo 

t,,,(J) = ~ xT(.,) 6" = 0, 1) 
x=0 

Fr(.x') = ~ f ( y )  r [ f (x)  = ( y -  x ) f 0 ,  ). fir = o, I~ 2, ...) 
y : O  . 1 ' : . ~ , ' - ~  - ] 

When the quantities fro( f )  and Itl ( f )  appear, it will always be silently assumed 
that they exist and are finite. When Hf(x) appears, it is assumed that f ro( f )  and 
t.tt ( f )  converge so that IHj.(x) is well defined and has a finite value. 

I f f  E 79, then I~f is the corresponding cumulative distribution, H f t h e  stop 
loss transform, l,tx ( f )  the mean, a n d / t o ( f )  = I. 
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As the main purpose of  this paper is to study the approximat ion error  for 
approximat ions  to a distribution, we introduce the following measures for the 
distance between two f u n c t i o n s f , g  E ~ :  

o o  

ej(J', g ) =  ~ x J l f ( x ) - g ( x ) l  ( j = O ,  1) 
. ~ ~ 0  

g) : s n p l n / ( x )  - n A x ) l .  
x>O 

For evaluating the quality of  an approximat ion only considered as an 
approximat ion to the discrete density, e0(f, g) is a natural measure for the 
approximat ion error. If we want to evaluate the corresponding approximat ion to 
the stop loss transform, then 'rl(/',g) is a natural measure. We see that e0(/', g), 
e l ~ ,  g), and 'lT~,g) are equal to zero if and only i f f = g  

By the notat ion x+ we shall mean the maximum of  x and zero. 
We denote by 1 the indicator function defined by I(A) = 1 if the condit ion A 

is true and / (A) = 0 if it is false. 
We shall interpret Eib=,,vi = 0 and l-Iih=,,vi = I when b < a. 

3. SOME USEFUL INEQUALITIES 

The following lemma gives some useful inequalities that we shall need later. 

L e m m a  3.1 Forf  , g, h E .Tandj=O, l, wehave 

eA/', g) <_ eZ/ ,  /,) + ej(/,, g) 

' l (f ,  g)<- ' tU ' ,  h ) +  ,/(h, g) 

[t~.l ( f )  - m (g) l  < el ( f ,  g) ,  

andJbr f , g E P 

1 
[f(0)  - g ( 0 ) l  <_ ~eo(f, g) _< e l ( f ,  g). 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Proof. The inequalities (3. I)-(3.3) are obvious. 
For  (3.4) we have 

e0(.f, g) - 2If(0)  - g(0)] = ~ I f (x)  - g(x) I - v~l ( f ( x )  - g(x))  
Y =  I . " =  

> 0 ,  
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which proves the first inequality. Fur thermore ,  

.,.=~ g(x))  eo(f, g) = (f(.v) - + ~ I f (x )  - g(x)l  <_ 
.V= [ 

oo 

2 ~ . v l f ( . v )  - g(x)l = 2e~ ( f ,  g), 
x =  [ 

which proves the second inequality. 
This completes the proof  of  Lemma 3.1. Q.E.D. 

4. CONVOLUTIONS 

4A. When for i = 1 . . . . .  17, approximat ing f,-E 7 9 by gi E .T', which is not 
necessarily in 79 itself, it is also natural to approximate  the convolut ion ." '  c by i = l a t  
*'i"==g, The convolut ion I1= "112 of two functions hi and 112 O11 the non-negative 
integers is defined by 

(/1~ •/12)¢,-) = ~ / 1 ~  (y)h2(.,- - ,,); (x = 0, l ,  ...) 
. | '=0 

we also define h°*(.v) = I (x  = 0) for a funct ion/ i  on the non-negative integers. 
The following well-known properties o fconvolu t ions  ofdis t r ibut ions  in 79 also 

hold for convolut ions of  functions in .T': 

/11 */.'2 = It2 */;q 

(h! */12) */13 =/11 * (/12 * h3) 

Ill */13 +/12 * h3 = (/in +/12) */13. 

Furthermore ,  we easily see that 

I& * h21 _< lh, l * 11121 

#j(/,,) < ,t,j(h2). (Iq _< h2; j = 0, 1) 

L e m m a  4.1 l fh  , h2 E f f  such that #o(1/1,1) < c ~ f o r  i = I, 2, then 

l~o(& * h2) = #o(h~)/~o(h2). 
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P r o o f i  We have 

#o(h,  • 11,_) = ~ (h, • h2)(.,-) = h, (y)h2(.,- - y )  = 
x=O .v=O y=O 

00 oo 

h ,  (y) ~ h 2 ( . , -  - y) = ~,o(h,)f,o(h~). 
y=O x = y  

Q.E.D.  

,m t: , ' "  'h ~ Fo r  the p r o o f  o f  our  4B. We shall first consider  bounds  for ~0( ,=l.fi, i=l a j .  
main result we shall need the fol lowing lemma. 

L e m m a 4 . 2  For f , g, h ~ .U we kave 

e00 c • h, g ,  h) _< #0(Ihl)E00 ¢, g). 

Proof.  We have 

c~ 

e0(f  * h, g * k) = Z I(/" * h)(x)  - (g * h)(x)l  = 
A'=0 

,,=o y)) oo ~ hO,)( f (x  - y ) - g ( x -  _< ~ [ h ( y ) l L f ( x - y ) - g ( x - y ) l  = 
x=0 . x=O y=0  

(3(3 130 

~ Ih(y)l ~ [ f ( x  - . v )  - g ( x  - Y)I = no( Ih l )~o( f ,  g) ,  
3'~0 x = y  

Q.E.D.  

T h e o r e m  4.1 For£, gi E ,T" ( i= I . . . . .  m),  wehave 

eo i=*Ji,,__* g, _< so(f ,  gi) #o t',o(lgj • 
i =  I "= k , i = i +  I 

(4.1) 

Proof.  If #0([Xi])= o,9 or  p,o([gi[)= 0<) for some i, then the theorem obvious ly  
holds.  Let us therefore assume that  #0( f )  and #o(gi) are finite for all i. Under  this 
assumpt ion  we shall prove (4.1) by induct ion on m. Fo r  m = 1 it tr ivially holds.  
We now assume that  it holds for m = I . . . . .  n. By using successively (3.1), Lemma 
4.2, Lemma 4.1, and (4.1), we obta in  
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:,,+ ,,+,) :,,+ ( , , ) )  ,,+,) 
£Oki~l f i ,  i=*l gi ~ EOki_*lfi, i_~lJi * g , , + l  + ¢ 0  \ \ i = 1  " * g"+l'i-~l -< 

(" ,,) 
~Lo i i f ,  ¢oU; ,+l ,g , ,+J)+P.o( lg , ,+l l )co  i__*l.6,i__*tgi _< 

i= I "= kj'=i+ I 

that is, (4.1) also holds for m =n + I. By induction it holds for all m. Q.E.D. 

One somewhat disappointing aspect of Theorem 4. I is that the upper bound in 
(4. l) is not in general invariant against permutations of the pairs ~., gi) (i = 1 ..... 
m). However, in the special case whenfi ,  gi E 79, (4.1) reduces to 

CO **lJi *l gi __< ~0((~, gi), 
= = i=1 

which is mvariant. 

, iit 4C. For q(*,=l c , " '  "~ j i ,  i=lg,: we have the lbllowing result. 

T h e o r e m  4 . 2  Forfi, gi E 7 9 ( i  = 1, . . , ,  m ) ,  wehave  

I-I.::, :(.¥)-rL,~, ~,,(x) _< ~ sup(rI/(~;)-n~.(v)) 
- i = l  . v > O  . . . .  

(x=o, 1 ,2 , . . )  (4.2) 

i=1 

Proof.  Formula (4.2) follows from Lemma 6 in De Pril & Dhaene (1992), and 
(4.3) follows immediately from (4.2). Q.E.D. 

In (4.2) we gave an upper bound for the difference between the two stop loss 
transforms. By symmetry we can ilnmediately obtain an analogous lower bound. 
Similarly, we shall also in the following often present our results only with upper 
bounds when the analogous lower bounds follow immediately by symmetry. 
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5. C O M P O U N D  DISTRIBUTIONS 

5A. In this section we shall discuss approximations to compound distributions. 
For simplicity we assume that the severity distribution is in 79+. 

We denote the compound distribution with cotmting distribution p E 79 and 
severity distribution h E 79+ by p V h, that is, 

( p V h ) ( x ) = ~ p ( n ) h " * ( x ) ,  (x---O, I, 2, ...) 
II=0 

and we extend this definition of the function p v h  to the case when p E .T" and 
hE.T+ . 

5B. We first consider the case when we approximate a compound distribution 
by approximating the counting distribution and keeping the severity distribution 
unchanged. 

T h e o r e m  5.1 For p, q E f and h E F+ with [Lo([hl) < 1, we have 

eo(p V h, q v h) <Go(p, q), 

Proof .  We have 

e0~, v/1, q v h) = ~ I(p v/,)(x) - (q v h)(x)l = 
x=0 

(5.1) 

O0 O0 O0 

Ip(n) - q(n)l ~ Ihn*l(x) = ~ Ip(n) - q(n)l/t0(Ih"*l) <_ 
n=0 x=0 n=0 

oo oo 

[p(n) - q(n)l/t;(Ihl) ~ ~ [p(n) - q(n)l = e0(p, q). 
tl=O n=O 

Q.E.D. 

To deduce bounds for the approximation error for approximations to stop loss 
premiums, we shall need the following lemma, which is proved as formula (38) in 
De Pril & Dhaene (1992). 

L e m m a  5.1 F o r f  E 79wehave 

n l F l f ( x ) _ < I I f ° . ( x ) < ( n - l ) / t t ( f ) + I I f ( x ) .  ( x = 0 ,  1, ...; n =  1, 2, ...) 

T h e o r e m  5.2 For II E 79+, p, q E ~ with /tt(IPl) < ~ , / t t ( [q l )  < ~ ,  and 
B(p, q) = e, (p, q) - G0(p, q) + 2(p(0) - q(0))++/t, (p) - / t ,  (q) - / t 0 (p )  +/t0(q), 
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we ]lave 

1 
n~,vj,(.,-) = I~v,,(x) <_ ~ (#, (h) - nh(x) )B(p ,  q) + ~h(x) (# ,  (p) - #~ (q)) 

( x = O ,  ~, 2, ...) 

l 
~I(P V It, q V tl) < ~ # t ( h ) ( e l ( p ,  q) + [# l (P)  - # l (q) [ )  _< # l (h )¢ l (p ,  q). 

P r o o f .  F o r  x = 0, I, 2 . . . . .  we have  

n,,vh(x) - n,,vh(X) = ~ (s - x)((p v h)(y) - (q v h)(y))  = 
y=.7. + [ 

O' - x) ~ (p(n) - q(n))h"* (,7) = ~ O')(n) - q(,O)rI,,,,. (x) ,  
y = . v +  I n =  I n =  I 

f rom which we ob ta in  

OO 

n,,v,,(x) - n,~v,,(x) = ~ (e(,,) - q(,,))(nh,.. (x) - , , n , , ( x ) ) +  
/ 1 =  [ 

nh(x ) (# ,  (p) - #, (q)). 

T w o  app l i ca t i ons  o f  L e m m a  5. I give 

~2 ~ ( n )  - q(n))(lrIh,,. (x) - nl-l,,(x)) _< 

(p(n) - q(n))+(nh,, .  (x) -nn~,( .v))  < 
11= I 

~ ( , )  - q( ,O)+(, ,  - l ) (#,  (h) - rI,,(x)) = 

OC 

± (IZ~ (h) - Fit,(x)) E (tP(n) - q(n)] + p(n) - q(n) ) (n  - 1) = 2 
n =  I 

½ (#, (h) - 17h(.v))B(p, q), 

which  t oge the r  with (5.4) p roves  (5.2). 

(5.2) 

(5.3) 

(5.4) 
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A s  

OO 

B(p, q) = e, (p, q) + tq (P) - I.~, (q) - 2 Z (p(n) - q(n))+ <_el (p, q) + I~, (P) - l'., (q), 
t l =  I 

(5.2) gives 

I 
n,,vh(X) - n,~vh(.~-) _< ~ (#, (/,) - l~j,(.,-))(~ (p, q) + l,, (p) - / ,~ (q))+ 

I 
rx/,(x)(#, (p) - / , ,  (q)) _< 2 m  (10(el(p, q) + re(p) - m (q)). 

Together with the analogous inequality with interchanging o f p  and q, this gives 
the first inequality in (5.3); the last inequality in (5.3) follows by (3.3). 

This completes the proof  of Theorem 5.2. Q.E.D. 

The following theorem is a special case of  Theorem 1 in Sundt & Dhaene 
(1996). 

T h e o r e m  5.3 Forp ,  q E 79andh E 79+, w e h a v e  

rIpvh(X) -- l-lqv/,(x) < (fLI (11) -- r lh(x))lIIp(I)  + II/,(x)(#l (p) - t,Li (q)).  

(x  = 0, I, 2, ...) (5.5) 

The bounds in (5.1), (5.2), and (5.3) become equal to zero when p = q. 
Unfortunately, this is not the case with the bound in (5.5) unless 17:(I) = 0, that 
is, p is a Bernoulli distribution. On the other hand, we see that the bound in (5.5) 
is sharper than the bound in (5.2) when I//,(I) = 0 a n d p  -¢ q. We shall discuss this 
case in more detail in subsection 6.2. 

5C. Let us now consider the special case with h E 79+ and p, q C 79 with 
#j (p) = #~ (q). In that case (5.2), (5.5), and (5.3) reduce to respectively 

n:v/,(x) - n,,w,(x) < 

l (#l(h) - Hh(X)) (el (p, q) - E0(p, q) + 2(p(0) - q(0))+) 
2 

(x = 0, I, 2, ...) 

(5.6) 

Flpv/,(x) - Hqv/,(x) _< (#1 (h) - H/,(x))FI/,(I ) (x = 0, 1, 2, ...) (5.7) 

' q ( p V h ,  q V h )  _< {p,l(h)~l(p, q). (5.8) 
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From (5.6) we obtain 

71(pVh, q v h ) <  ~l~l(h)(~l(p, q)-Eo(p, q)+Z[p(O)-q(O)[). (5.9) 

F rom (3.4) we see that this is sharper  than or equal to the bound in (5.8). 
We see that the bounds  in (5.6) and (5.7) are non-decreasing in x. For x = 0 

these bounds become equal to zero. 

5D. In subsections 5B-C we discussed approx imat ing  a compound  distribution 
by approx imat ing  the count ing distribution and keeping the severity distribution 
unchanged.  Let us now instead consider approx imat ing  the severity distribution 
and keeping the count ing distribution unchanged.  For  such approx imat ions  we 
have the following theorem: 

T h e o r e m  5.4 For p E ~ and h, k E ~+ with lto([h[) _< I and ~Lo(lk]) _< I, we have 

e0(p vh, pv#)  < m(Ipl)~0(J', /,')- (5.10) 

If  in addit ion h, k E "P+, then 

, l (pVh,  p V k )  _< m(]p[),I(h, k). (5.11) 

P r o o f .  By applicat ion of  Theorem 4.1 we obtain 

E0(p v/ , ,  p v k) = ~.~ IO) v/,)(.,-) - ~) v k ) (x ) l  = 
.~.'=0 

C o  C o  

- k"*(.¥)) < ,=,  Ip(,,)lrh"*(x) - k"*(x)l = , , = ,  

c o  Co Co 

Z IP(n)l Zlhn*(x)  - kn*(x)l Z ~P( )[¢0(h ,k ) _< 
I 1 =  [ A ' =  [ n = ] 

~.~ Ip(,01,~0(t,, k)=m(Jpl)E0(h, k), 

which proves (5. I 0). 
We now assume that h, k e 'P+. For  x = 0, I, 2 . . . .  we obtain 

Co 

Ilqpvh(X) -- Hpvk(x)l = ,~=tp(n)(IIk,,.(x) - II1,.,,.(x)) _< 

C~3 

~-'~ I P(,,)lllqh,,. (x) - r~k,,.(x)l _< ~ lp(n)l~j(h"*,k"*). 
~1=|  r t = ]  
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Application of  (4.3) gives 

Irxpw,(x)- npvk(x)l _< ~lp(n) ln~(h,  k ) =  ul(lPl)',l(h, k), 
tl= I 

from which we obtain (5.11). 
This completes the proof  of  Theorem 5.3. Q.E.D. 

5E. We shall now discuss two classes of  approximations that can be convenient 
both for the counting distribution and the severity distribution in a compound 
distribution. 

F o r f  E 7 z' we define the approximation f (° for a positive integer r by 

f(O(x) = f ( x ) i ( x  <_ r). (.v -- O, I, 2, ...) 

<,(r,i<"')-- Z .,.'ilxl, o=o,  ,/ 
.v=r+ I 

0=o ,  i) 

As 

.v=O 

we obtain 

+ #,//> (5.~2) 

#o(f (0) = Ff(r ) (5.13) 

~, t i ,# "  ) = ml,.I + 
i N  

r ( l  r / , . ) ) .  

A s f ( x )  >f(")(x) for x = 0, I, 2 . . . .  , Hi(x ) -1-I/,,l(x) is non-negative and non- 
increasing in x, and we obtain 

We see that unless Ps(r) = 1, the approximation f ( o  will not be a proper 
distribution as #o(/"(r)) < ~0(J) -= 1. To obtain a proper distribution, we can apply 
the modified approximation )?(r) defined by 

p / ( x )  = [ ' f ( x )  - I) (x  = 0,  l ,  . . . ,  ,- - I) 
/10. - ~ f ( r  

For j = O, I we get 

ej(f,j~<,,) = e j ( f , . f ( r ) ) + , d ( , -F f ( r ) ) .  

X ~ r )  

( x = r + l ,  r + 2 ,  ...) 
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It is easily shown that 

H i ( x  ) - Fl/ul (x) = r I / (m~cx(x ,  ,-)), (.x = 0, 1, 2, ...) 

from which we obtain 

rl(f , ) c(')) = l - I f ( r ) .  (5.14) 

If X is a random variable with distribution f ,  then .fl') is the distribution of  
~")  = rain(X, r). As ,f'(") _< X, we immediately obtain inequalities like 

r~jlr) (.~k °) ~ "]~f (.%~) l'I~(,) (.%t ") ~ l~j '(~). (-i~ = 01 l,  21 ...) 

Theorem 5.5 i f  p, h E 79 and r and x are positive integers, then 

0 ~ .I'~pvh(X ) -- ~{r)v//(.~" ) 5 ~1 (Ill)IF[p('') (5.15) 

0 _< npv~,(x) -npvD,,, (x) < nh(,-)m (p). (5.16) 

Proof.  Sundt  (1991) proved (5.15). The last inequality ill (5.16) follows from 
Theorem 5.4 and (5.14), and the first inequality is immediately seen by 
interpreting Ilpvh(X) -- IlpvDU~ (x) as the mean of  a non-negative random variable. 

This completes the p roof  of  Theorem 5.5. Q.E.D. 

We notice that 

7,¢:r(r); 77¢,fIr)). 

5F. By combining the results from Section 5 with the results from Section 4, we 
can Obtain error  bounds for approximat ions  to convolut ions of  compound  
distributions. For  a simple illustration, letpi E 7::' and hi C ~+ (i = 1 ..... m). From 
Theorem 4.1, (5.1), (5.12), and (5.13), we obtain 

( ))" ' (  ) I I I  I I I  ~o ,= ,~ ,vh , ) . ,  nvh, _ < ~ o  p, v ,% p}"/ v h, _< 
' '= i=1 

i:1 i = l  
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6. APPLICATIONS 
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6.1. In t roduc t ion  

In this section we shall under various assumptions discuss approximations to 
compound distributions by approximating the counting distribution with another 
distribution with the same mean and keeping the severity distribution fixed, that 
is, we want to approximate p V h  with qVh when p, qE72, h E 7 ' +  and 
#1 (q) = #1 (P). 

6.2. Bernoull i  distribution 

L e m m a  6.1 l f  p is a Bernoulli  distribution and q E 72 with t~l (q) = ILl (p), then 

q(0) ~ p(0) q(I) ~ p(I) 

e0(p,q) =et(p,q) =20 ( I )  - q(I)) 

n.(I) =0  

n.(I) =q(0) -p(0). 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

Proof.  We have 

oo oo 

1 - p ( 0 )  = p ( I )  = #I(P) =/zt(q) = Z n q ( n )  >_ Z q ( n )  = I - q(0) >_ q(l), 
tl=[ n = l  

which proves (6. I). 
We have 

e0(P, q) = ~ IP(") - q(n)l = q(0) -p (0 )  + p ( l )  - q( l )+ ~ q(n) = 
n = 0  n = 2  

2(/)(1) - q ( l ) )  

e , (p ,q)  = nlp(n ) - q(n)[ = p(l) - q(I) + ~ n q ( n )  = 
n =  I n = 2  

p(I) - q ( l ) + ~ t ( q )  - q ( I )  =2(p ( l )  - q ( l ) ) ,  

which prove (6.2). 
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Formula  (6.3) is obvious. 
We have 

Hq(l)  = ~ ( n -  l)q(n) = lq(q)  - (1 - q(0)) = p ( l )  - 1 + q(0) = q(0) - p ( 0 ) ,  

which proves (6.4). 
This completes the p roof  of  Lemma 6.1. Q.E.D. 

By application of  (6.2) to respectively (5.1) and (5.9), we obtain 

eo(pV h, q v  h) < 2 ( p ( l ) -  q(I))  (6.5) 

r/(p V h, q V h) <_ ,Lt, (h)(q(0) - p(0)),  (6.6) 

and insertion of  (6.3) and (6.4) in (5.7) gives 

- ( # , ( h )  - Hh(.\'))(q(0) - -p(0))  _< rlpw,(x) - 1-Iuvh(x ) _< 0 (x = 0, 

the second inequality was proved by Bfihlmann et al. (1977). 

1, 2, ...) 

(6.7) 

6.3. B inomial  distribution 

We now assume that 

( n = O ,  I, ..., t; t =  1, 2, ...; 0 < T r <  1) ' (6.8) 

The Bernoulli distribution discussed in subsection 6.2 occurs as a special case with 
t = 1. However,  unfortunately the situation becomes more complicated when 
t >  1. 

In the general case we have 

# l ( p ) = t ~  

YIp(I) = t~--I-(l - ~ ) ' - I  Ylq(l)=t~+q(O) - I, (6.9) 

and insertion in (5.7) gives 

-(#z (t,)- r~h(x))(t~ + q(0)-  l) _< l~,vh(x)- n,~vh(x) _< 

(# l (h ) -H/ , ( x ) ) ( tTr - ( I -Tr ) t - l ) .  ( x = 0 ,  I, 2, ...) (6.10) 
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Unfortunately,  when t > 1, the upper bound does not become equal to zero like 
in the case t = 1. However,  as the present binomial distribution is the t-fold 
convolut ion of  the Bernoulli distribution p, given by 

p,(1) = 1 - p,(0) = 7r, 

it is tempting to apply the results of  Theorems 4.1 and 4.2. To be able to do that, 
we have to assume that there exists a distribution qt E "P such that q = q~*. Under 
this assumption we have 

p V h = (p, V h)'" q V h = (q, v h) t*. 

From Theorem 4.1 and (6.5) we obtain 

e0(p V h, q V h) <_ te0(p, V h, q, V h) < 2t(Tr - q,( l)) .  (6.1 I) 

We obviously have 

q(0) = q,(0)' (6.12) 

Thus 

q( l )= tq , (O) ' - ' q , ( l ) .  

l q ( l )  ,.,÷ 
qt( l)  = 7 q - ~ q t u ) ,  

and insertion in (6.1 I) gives 

q(l) 
eo(pV h, qV  h) < 2  t T r - q ~ q ( o ) ' ) .  

From Theorem 4.2, (6.7), and (6.10) we obtain 

- (/_q (tt) - IIh(X))(tTr + q(0) -- I) < 1-It, vh(X ) -- I-[qvh(X) < 0, 

( x = 0 ,  1, 2, ...) 

which implies 

'q(p V h, q V h) _< I~l(h)(tTr + q(O) - I). 

(6.13) 

(6.14) 

However,  from Theorem 4.2, (6.6), and (6.12) we obtain 

rl(p V h, q V h) < t[,t(h)(rr + q ( 0 ) L  1) (6.15) 

which gives a sharper bound when t > 1. This implies that the lower bound in 
(6.14) is sharper than the bound in (6.15) only for high values for IHh(X), that is, 
low values of  x. 
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The distribution q is called it~nitely divisible if there for each positive integer 
m exists a distr ibution q,,, such that q = q',',',* (cf. e.g. Feller (1968)). In particular,  
this condit ion should hold for m = t, and thus (6.13)-(6.15) hold when q is 
infinitely divisible. 

The condit ion that there has to exist a distr ibution qr such that q = q't*, may 
seem intuitively unnatural .  However ,  the following example  shows that the 
inequality 1-Iqvh _< Hpw, does not necessarily hold when this condit ion is not 
fulfilled. 

Example. Let t = 2, ¢r = ½, and 

1 3 
q(0) = q(2) = ~ q( l )  = ~. 

Then ;~l (I?) = lzl(q) = 1. and applicat ion of  (6.9) gives l ip( l )  - 1-Iq(I) = ½ > 0. 

6.4. T w o  inf in i te ly  d iv is ib le  d i s t r i b u t i o n s  

We shall now assume that both p and q are infinitely divisible. F rom Theorem 
4.2, (5.7), and (6.1 2) we obtain that for each positive integer 177 

- , ,  (/1)(~, (p)+ 11,q(O)~-m) < ~,,v,,(-,) - n,,v,,(.¥) _< 

~,( / , ) (~ ,0)  +, , ,p/O)L,, , ) ,  /., = o, l, 2, ...) 

and by letting 177 go to infinity we obtain 

- m  (/,)(m (p) + in q(O)) < n~,v~,(x) - nqvh(x) _< 

F~, (h)(m (p) + h,p(O)). (x = o, I, 2, ...) (6.16) 

6.5.  P o i s s o n  vs .  i n f i n i t e l v  d i v i s i b l e  d i s t r i b u t i o n  

We now assume that  

p ( n ) = - - e  - ' \ ,  ( n = O ,  1, 2, . . . ; A > O )  (6.17) 
17 

and that q is infinitely divisible. Then p is also infinitely divisible, and we have 
m (p) = A. 
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Let 

_ 

Then 

p(n) = limP,(n). (n = 0, 1, 2, ...) 
tTcx~ 

From (6.13) we obtain 

- ( q(I) ,,,,÷~ 
e0(P, V h,q v h) < 2 _ A - q ~ q L u ,  ), 

and as this bound is decreasing in t, we obtain 

eo(P V I,,qV It) <- 2( A-q(l)]q(O)j 
by letting t go to infinity. A similar limiting argument for (6.14) gives 

- ( # , ( h )  - Hh(X))(A + q(0) - 1) _< YIpvh(X) -- IIqvh(X) _< 0. 

( n = 0 ,  1, ..., m ; t =  1, 2, ...) 

(6.18) 

( x = 0 ,  1, 2, ...) 

(6.19) 

From (6.16) and (6.19) we obtain 

r/(p V h, q V h) _< #, (h)(A + In q(0)), (6.20) 

which could also have been found by a limiting argument in (6.15). As 
In q(0) < q(0) - 1, the lower bound in (6.19) in weaker than (6.20) for large 
values of  x. 

6.6. Binomial vs. negative binomial distribution 

We now assume that p is the binomial distribution given by (6.8), and that q is 
given by 

q(n)=(a+n-l) (I-p)~p''n ( n = 0 ,  1, . . . , ' c ~ > 0 ; 0 < p < l )  (6.21) 

Then q is infinitely divisible with 

, tq(q)=cY P 
l - p '  

and from (6.13)-(6.15) we obtain 
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eo(P V h, q v  h) <_ 2,7r(1 - (1 - p)~+') (6.22) 

- (# l (h )  - Flh(X))[tTr+ (1 - p ) " -  1] _< Hpvh(X) -- I[qvh(x) _< 0 

(x = O, 1, 2, ...) (6.23) 

,TCp v h,q v h) _< , , ,  {h) (~  +{ I  - p ) ~ - l ) .  (6.24) 
\ / 

6.7. B i n o m i a l  vs. P o i s s o n  d is tr ibut ion  

We now assume that p is the binomial distribution given by (6.8) and q the 
Poisson distribution given by (6.17). Then (6.13)-(6.15) give 

e0(p V tl, q V h) < 217r(1 - e -~) (6.25) 

- ( u ~  (h) - n , , ( x ) ) ( t~ -  + e - ' ~  - l )  _< n p v h ( x )  - n q v h ( x )  _< o 

(x = 0, 1, 2, ...) (6.26) 

~7(p v h, q v h) < t#l(h)(Tr + e -~ - 1), (6.27) 

which can also be deduced from (6.22)-(6.24) by a limiting argument. 

6.8. P o i s s o n  vs. negat ive  b i n o m i a l  d i s tr ibut ion  

We now assume that p is the Poisson distribution given by (6.17) and q the 
negative binomial distribution given by (6.21). Then (6.18)-(6.20) give 

p2 
e0(p V/7, q V h) < 2 t x - -  (6.28) 

l - p  

-(#,(h) - Hh(x))(o~ p p)"- ) + ( l -  i <_Hpvh(X)-IIqv/,(x)<O 

(x = O, 1, 2, ...) (6.29) 

P + ln ( l  - p ) ) ,  (6.30) r l ( p v h ,  q v h )  <alzt (h)  l - p  

which can also be deduced from (6.22)-(6.24) by a limiting argument. 
The bound in (6.28) was deduced by Gerber (1984) and the bound in (6.30) by 

Dhaene ( 1991 ). 
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6.9. C o l l e c t i v e  a p p r o x i m a t i o n  to individual  model 

For i = I, . . . , m, let hi E '~+ and Pi be the Bernoulli distribution given by 

pi( l )  = l - p i (O) = 71"i. 

We approximate p~ V h~ with the compound Poisson distribution qi V h~ with 

q i ( n ) = - ~ - e -  . ( n = 0 ,  1, 2, ...) 

It is well known that then *'" (qi V hi) = q V h with i=1 

q ( n ) = - - e  -a ( n = 0 ,  I, 2, ...) 
1l 

A = 7ri h = - ~ 7rihi. 
i=1 A/__~ 

By a trivial generalisation of  (6.25) and (6.27) we obtain 

eo i=* Vhi) ,qVh < 2  7 r i ( l - e  -~') (6.31) 
i= I ) ± 71 iS Vhi ) ,qVh < tt~(hi)(~~-e . . . .  1). (6.32) 

i= I 

Unfortunately we have not been able to generalise the first inequality in (6.26), 
but the second inequality is easily generalised to 

1Fi.7,__,~,vh,)(x) <- Hqvh(X). (x = 0, I, 2, ...) (6.33) 

The inequalities in (6.31)-(6.33) have been deduced by respectively Gerber 
(1984), De Pril & Dhaene (1992), and Biihlmann et al. (1977). 

When 7ri and h~ are the same for all i, we are back in the situation of  sub- 
section 6.7. 
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ABSTRAC' i  ° 

When claims in the compound Poisson risk model are from a heavy-tailed distribution 
(such as the Pareto or the Iognormal), traditional techniques used to compute the pro- 
bability of  ultimate ruin converge slowly to desired probabilities. Thus, faster and 
more accurate methods are needed. Product integration can be used in such situations 
to yield fast and accurate estimates of ruin probabilities because it uses quadrature 
weights that are suited to the underlying distribution. Tables of  ruin probabilities for 
the Pareto and Iognormal distributions are provided. 

K E Y W O R D S  

Integral equation, convergence, heavy-tailed distributions. 

I. INTRODUCTION 

Let us consider the classical compound Poisson risk model with nonnegative claims. 
Specifically, let u be the initial risk reserv, F(.) be the cumulative distribution function 
of the nonnegative claim size random variable, p~ be the expected claim size, I + 0 be 
the loading factor applied to the net premium rate, and ~ (u) be the infinite time pro- 
bability of ruin for an initial risk reserve of u. 

Gerber (1979, p. 115, equation (3.7)) has shown that ~ (u) satisfies the following 
Volterra integral equation of the second kind: 
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where 

~ ( u ) =  ---~---IA(u)+ ~oK(U,t)lll(t)dt ], 
I + 0 L  

u>_O (~) 

a(u )  = r~| l z F (  , t ,  dt ,  u _> O (2) 
ou Pl 

I - F ( u  - t )  
K ( u , t )  = , O _< t <_ u. (3) 

8 

A classic problem (of interest mainly to academic actuaries) is the numerical evalua- 
tion ~ (u). Numerous authors have studied this problem; see, for example, recent texts 
by Grandell (1991) and Panjer and Willmot (1992, Chapter 11) and references therein. 
In general, no explicit closed form solution to equation (I) exists except in the case 
where claims are mixtures of exponential distributions; see Bowers et al. (1986, 
Chapter 12.6). 

There are, however, several broad approaches to the evaluation ~ (u). The older 
approaches are ad hoc: focusing inverting the Laplace transform, or on matching the 
first few moments of the claim size distribution or on the Cramer-Lundberg approxi- 
mation; see Ramsay (1992a) for a comparison of some of these methods. 

Since the early 1980s, the shift has been to approaches based on discretizing some 
aspect of the risk process and deriving recursive expressions for ~ (u); see, for exam- 
ple, Goovaerts and De Vylder (1984), Panjer (1986), Dickson (1989), Dickson and 
Waters (1991), Ramsay (1992b), and Dickson, Egidio dos Reis and Waters (1995). 
Panjer and Wang (1993) describe the conditions under which these recursions are 
stable. 

Though these recursive approaches may be able to determine ~ (u) to any desired 
degree of accuracy, they are not suitable for heavy-tailed distributions, such as the 
Pareto or lognormal distributions, for two main reasons: 
1. To achieve a reasonable degree of accuracy, the interval of discretization must be at 

most one unit of the mean in lenght. If we standardize the unit of currency such that 
p~ = 1, then to obtain ~ ( I0 )  we must recursively estimate every intermediate unit 
point ~(u)  for k = 0,1,2 ..... 9,10. This may be acceptabel if we need only small 
values of u; however, for large values of u, say u = 500 units, this method can be 
slow. For the Pareto, ~(500) is not insignificant. 

2. The quadrature rules inherent in the recursive schemes are usually of low order. 
This further reduces its accuracy and its rate of convergence. To improve accuracy, 
the intervals of discretization are made even smaller. This substantially increases 
the number of intermediate calculations required, making the process of finding 

(u) slower. 
The objective of this paper is to present a method of evaluating ~(u) using so- 

called product integration. We show that this method can be fast and accurate when 
dealing with heavy-tailed distributions. 
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2. PRODUCT INTEGRATION 

Consider the numerical solution of the Volterra integral equation 

x ( s )=y( s )+  k(s,t)x(t)dt, a_<s_<b (4) 

where k(.,.) is the kernel (and is known) and x(.) is the unknown function to be deter- 
mined. Assume k(.,.) or one of  its low-order derivatives is badly behaved in one of  its 
arguments. (For example, k(.,.) may be singular or nearly singular). In such a situation, 
the Newton-Cotes integration (e.g., trapezoid rule, Simpson's rule, etc.) may produce 
inaccurate results or suffer a reduced rate of convergence. 

Delves and Mohamed (1985) and Linze (1985) recommend the use of product inte- 
gration ~ to take account of the fact that k(.,.) may be badly behaved. Our development 
of  the product integration quadrature rule follows the exposition and notation of  Del- 
ves and Mohamed (Chapters 4.4 and 5.5). For a more detailed description of the pro- 
duct integration technique, see Linz (1985, Chapter 8). 

First we factorize k(s,t) as 

k(s ,  t )  = p(s, t)k(s,t) 

where k(.,.) is smooth and well-behaved and can be accurately approximated by a 
suitable Lagrangian interpolating polynomial, and p(s,t) is badly behaved. Next we 
decompose the interval [a,b] into n subintervals {hi} where 

hi=Si+l-Si, i = 0 , 1  .... , n - 1  

and 

a =  s 0 < S  I < . . . < S  n =b. 

Product integration proceeds by approximating the integral in equation (4) for s = si, 
i = 1,2 ..... n, using a quadrature rule of the form 

i 
f,~' p(si, t)k(si, t)x(t)dt = Z wo k(si' t)x(t.i ) (6) 

j=o 

where t i = si for i = 0,1,2 ..... n. The weights are determined by insuring that the rule of 
equation (5) is exact when k (s,t)x(t) is a polynomial in t of degree _< d. Product inte- 
gration is only applicable if the following (d + 1) moments ,ttlj exist and can be calcu- 
lated for each i, where 

t.LO = tJp(si,t)dt, j = 0,1 ..... d .  

In this paper we assume k(sl, t)x(t) is linear ( d =  1) in t, i.e., 

~(si,t)x(t ) (tJ+l - t ) ~ ( s i , t ) x ( t j ) + ( t - t j ) -  = - -  k(si, tj+l )x(tj+l ). 
hj hj 

Linz (1985, Chapter 8, p. 141) attributes the origin of the product integration technique to Young 
(1954). 
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It f o l l o w s  that 

i-~ I ( t , t t  7 t) _ fii" =X.['" p(si.,) L ' = °  ,, . /', k(,.t,)x(,,) 

(t - t j )  
+ k(si,tj+ I )x(tj+j ) 

hj 
t 

= ~ wo~(s ~, tj )x(t j  ) 
,=0 

where  

~qp(s i , t ) ( t l - t )d t  f o r j  = 0 
Wio = o h 0 

( t j+ l  t)  
Wij f f  J+' P(Si ,  t)  = dt 

Ij h j  

f/J + P(Si , t )( t - t j -I)dt  for j = 1 , 2  . . . . .  i - I  
j-~ h j_  I 

f:~ ( t - t i - I )d t  f o r j  = i %2 = i-, p(s,,t) hi-I 

To faci l i tate  easy  co m puta t io n  o f  the we ights ,  w e  introduce  two  new variables:  

f/ 
l)+l 

Vi) = ( t  j +  I - t)p(s,,t)dt 
2 

I)*l 
cij = [ P(si,t)dt. 

A s  t - tj = (tj+ I - t./) - (tj+ I - t), then 

Vi0 
Wio = -  

ho 
v"i-t f o r j  = 1,2, .  i -  I VtJ + Cij -- - -  . . ,  

WO = hj  h/_  I 

vi,i-I 
wit = ("t.l-I hi_l 

Thus ,  the approx imate  so lut ion  to equat ion  (4)  is de termined  recurs ive ly  us ing  
i 

"~" (Si )  = Y(Si ) + Z wij ~" (Si, t] )'~n ( t j )  
j=0  

for i = 1,2,...,17., with 

.i,, (s0)  = y(a) .  

Th e  resul t ing  es t imate  o f  x(s) is xn (s,,).  

(6) 

(7) 

(8)  

(9)  

(lO) 

(ll) 

(12)  
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3.  A C C E L E R A T I N G  T H E  C O N V E R G E N C E  

We can improve the accuracy of our estimate 2, ,(s)by dividing the interval [a, s] into 
smaller subintervals. Following the arguments of Ramsay (1992), Richardson's  extra- 
polation technique can be used to accelerate the convergence of :~,, (s) to x(s) as n --+ ~ .  
To this end, let us divide the interval [a, s] into n./intervals of equal length, where 

n j = y × 2  j j = 0,1,2 .... (13) 

and 7 is a positive integer. For given j and [a, s], we have 

Snj = S 

h = (s - a) / nj for i = 0, 1,2 . . . . .  Ilj -- 1 

S i = I i = a + ih for i = 0, 1, 2 . . . . .  nj - 1 

The Richardson extrapolat ion technique generates a lower diagonal matrix of  ap- 

proximations: 
T/:,' r /  = TrJ , + T/-I (14) 

2 - I  

for r =  I, 2 . . . . .  j a n d j  = 1, 2 . . . .  with To j = .~,,j (s). The final estimate of x(s) is: 

.~(s) = Tj .  (15) 

4. THE MAIN RESULTS 

Product integration is used to compute ruin probabilities for the Pareto and Iognormal 
distributions. Without loss of generality, set p~ = 1 for each distribution. Tables 1 and 
2 show the final estimated values of the ruin probabilit ies after the Richardson extra- 

polation technique has been applied. 

4.1 The Pareto Distribution 

Consider the Pareto distribution defined on (0, oo) with unit mean, i.e., 

( ]~+' 
F(t)  I o~ = - - -  o : > 0 a n d t > 0 .  

k a + t /  

Equations (2) and (3) imply 

A(u) = ( ~ - ~ ' )  a 

K ( u ' t ) = I a l a + l a + u - t  

Even though K(u, t) and all of  its derivatives are smooth and wellbehaved, they con- 
verge slowly as u --~ ~ .  As all of the moments ,uij exist for any finite s, product inte- 

gration can be used. 
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Next  set 

p(s , t )  = K(s , t )  
- f l  i f0_<t_<s;  

k ( s , t ) =  (O otherwise.  

To determine the product integration weights ,  we need vii and c,j from equations (6) 
and (7). 

I,'ij ---- d i j  "t- (0~ -1- s i - l j +  I ) c t j  

w h e r e  

In(l + s i - l j )  - ln(l + s i - t j+  l ) if  a ~ I; 

I/ ;1 d o = 0(. 2 O( I a-I  _ O~ if ~ ~ 1. 

c i j  = 
Ot + s I - t j  Ol + s i - t j +  I 

Tabel I shows the ruin probabilities for the Pareto distribution with ~ = I and several 
values of  0. From equation (13), we use 7 =  20 a n d j  = 0, l, 2, 3 and 4. (Thus, n 4 = 
320.) 

TABLE ] 

RUIN PROBABILITIES: PARETO DISTRIBUTION (O~ = l) 

tP (u )  f o r  Various Values o f  0 
u O= 0.10 O= 0.25 O= 0.50 O= 0.75 O= 1.00 

10 0.627128 0.372677 0.206646 0.138242 0.102523 
20 0.498142 0.245260 0.119274 0.075908 0.055049 
30 0.411437 0.178338 0.081426 0.051056 0.036887 
40 0.347893 0.137559 0.060856 0.038038 0.027509 
50 0.299155 0.110519 0.048164 0.030142 0.021847 
60 0.260646 0.091524 0.039650 0.024884 0.018080 
70 0.229551 0.077594 0.033588 0.021150 0.015402 
80 0204018 0.067029 0.029075 0.018369 0.013404 
90 0.182761 0.058794 0.025596 0.016222 0.011859 
100 0.164860 0.052227 0.022839 0.014517 0.010630 
200 0.076323 0.023800 0.010860 0.007028 0.005194 
300 0.046612 0.015154 0.007083 0.004621 0.003429 
400 0.032827 0.011071 0.005247 0.003438 0.002557 
500 0.025123 0.008708 0.004165 0.002737 0.002038 
600 0.020273 0.007170 0.003451 0.002273 0.001694 
700 0.016962 0.006092 0.002946 0.001943 0.001449 
800 0.014566 0.005294 0.002569 0.001696 0.001266 
900 0.012756 0.004681 0.002278 0.001505 0.001124 
1000 0.011341 0.004194 0.002046 0.001353 0.001011 
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4.2 Lognormal Distibution 

In this case things will be more complicated because of  the presence of  the normal 
cumulative distribution function. Again we assume that 
p, = I. This implies 

A ( u )  = ~,?1 - F ( t ) d t ,  u _> 0 

j u = e  -~2/2 ( a s p ~ = l )  

where p and (7 are the parameters of the Iognormal and 

u e - t  2 12 

A source of  difficulty is in the computation of v 0 adn c 0, i.e., 

f,,+, ~ (  In(si - t )  -/. . /  
vii = ..It ( t j +  l - t)(l - - ) ) d t  

j (7 

St j+' (1 - qb( .In(si - t )  - # ) ) d r .  
Cij = / (7 

As the function ~(.)  is known only approximately, these integrals must be computed 
numerically; see for example Abramowitz and Stegun (1964, Chapter 26) for several 
approximations. The approximation used in this paper is: 

- ~ b k t  k + e ( u )  
• (.)=1 ~ ~,k=, / 

where  IE(u)} < 7.5 x 10 "8, and 

t =  l / ( l + p u )  p=0 .2316419  
b~ =0.319381530 b,~ = -I.821255978 

b2 = -0.356563782 b5 = 1.330274429 
b 3 = 1.781477937 

Gaussian integration rules many be used to evalutate the integrals. 
Table 2 shows the ruin probabilities for the Iognormal distribution with (7 = 1.80 

and several values of 0. From equation (13), we use 7 =  10 and j =  0, I, 2, 3 and 4. 
(Thus, n4 = 160. These values are very close to those of Thorin and Wikstad (1977), 
where appropriate. 
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TABLE 2 
RUtN PROBABILITIES~ LOGNORMAL DISTRIBUTION (O'= 1.80) 

~ (u) for Various Values of u and 0 
u O= 0.10 O= 0.25 0 = 0.50 O= 0.75 O= 1.00 

10 0,739768 0 , 5 1 8 8 3 2  0 , 3 3 6 8 7 4  0 , 2 4 5 7 4 9  0.192154 
20 0,656692 0 , 4 1 0 7 8 1  0 , 2 4 0 1 8 7  0 , 1 6 5 6 6 9  0.125229 
30 0,593553 0 . 3 3 9 5 3 8  0 , 1 8 4 5 3 9  0 , 1 2 2 9 4 0  0,091161 
40 0,541731 0 , 2 8 7 3 9 6  0 , 1 4 7 7 1 3  0 , 0 9 6 0 7 7  0,070371 
50 0,497634 0 , 2 4 7 1 9 0  0 , 1 2 1 5 1 2  0 , 0 7 7 6 7 6  0,056424 
60 0,459303 0 . 2 1 5 1 6 4  0 , 1 0 1 9 8 9  0 , 0 6 4 3 6 1  0,046484 
70 0.425505 0 . 1 8 9 0 6 8  0 , 0 8 6 9 5 6  0 , 0 5 4 3 4 3  0,039091 
80 0,395396 0 , 1 6 7 4 3 7  0 , 0 7 5 0 8 6  0 , 0 4 6 5 8 0  0,033413 
90 0,368362 0 , 1 4 9 2 6 5  0 , 0 6 5 5 2 8  0 , 0 4 0 4 2 3  0,028940 
100 0,343939 0 . 1 3 3 8 3 0  0 . 0 5 7 7 0 4  0 , 0 3 5 4 4 6  0,025344 
200 0.188093 0 , 0 5 5 5 5 3  0 , 0 2 2 1 2 8  0 , 0 1 3 4 8 2  0,009651 
300 0,113139 0 , 0 2 9 1 4 7  0 , 0 1 1 5 6 7  0 . 0 0 7 1 1 2  0,005124 
400 0,072445 0 , 0 1 7 5 2 4  0 , 0 0 7 0 6 7  0 , 0 0 4 3 9 0  0,003180 
500 0,048684 0 , 0 1 1 5 3 4  0 , 0 0 4 7 4 7  0 , 0 0 2 9 7 4  0,002164 
600 0,034048 0 . 0 0 8 0 9 6  0 , 0 0 3 3 9 7  0 , 0 0 2 1 4 3  0,001565 
700 0.024637 0 , 0 0 5 9 6 0  0 , 0 0 2 5 4 4  0 , 0 0 1 6 1 4  0,001182 
800 0,018360 0 , 0 0 4 5 5 1  0 . 0 0 1 9 7 1  0 , 0 0 1 2 5 7  0,000922 
900 0,014040 0 , 0 0 3 5 7 7  0 , 0 0 1 5 6 9  0 , 0 0 1 0 0 4  0,000738 
1000 0,010981 0 , 0 0 2 8 7 8  0 , 0 0 1 2 7 6  0 , 0 0 0 8 1 9  0,000603 

5. CONCLUDING COMMENTS 

The important strength of  the product integration technique in solving equation (I )  is 
that it converges significantly faster and is more accurate than the Goovaerts  and de 
Vylder (1984) technique, or the improved version proposed by Ramsay (1992b). This 
is acheived by using a quadrature rule that exploits some of the features of the kernel, 
thus requiring a reduced amount of recursions. Even though the weights w 0 (and hence 
c,~ and %) have to be computed directly from the kernel, these extra computations are 
fast and easy to perform. 

Because product integration converges relatively rapidly, it does not require the use 
of  small intervals, thus reducing the possibili t iy of subtracting nearly equal numbers 
(and hence rounding errors). In addition, it requires a small fi'action of  the computa- 
tions required by the Goovaerts-De Vylder-Ramsay approach to obtain the same de- 
gree of  accuracy. This should not be surprising because product integration uses much 
more information from the integrand than do the common Newton-Cotes quadrature 
formulae. 

A further area of research is the determination of the error bounds of the solutions 
generated via the product integration technique. Linz (1985, Chapter 8, p. 131) shows 
that the error bounds and orders of  convergence for product integration follow the 
standard results of approximation theory. Thus, product integration based on the trape- 
zoidal rule is of order O(h2). 

Addit ionally,  one may be able to use the Goovaer ts-De Vylder-Ramsay approach 
and combine it with product integration to produce a faster scheme with explicit  error 
bounds. 
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ABSTRACT 

To use Bayesian analysis to model insurance losses, one usually chooses a 
parametric conditional loss distribution for each risk and a parametric prior 
distribution to describe how the conditional distributions vary across the risks. A 
criticism of this method is that the prior distribution can be difficult to choose and 
the resulting model may not represent the loss data very well. In this paper, we 
apply techniques from nonparametric density estimation to estimate the prior. 
We use the estimated model to calculate the predictive mean of future claims 
given past claims. We illustrate our method with simulated data from a mixture of  
a lognormal conditional over a Iognormal prior and find that the estimated 
predictive mean is more accurate than the linear Bfihlmann credibility estimator, 
even when we use a conditional that is not lognormal. 

KEYWORDS 

Kernel density estimation, claim estimation, Bayesian estimation. 

I. INTRODUCTION 

in a portfolio of  insurance policyholders (also called risks), risks are 
heterogeneous; that is, the insurance losses of  different risks follow different loss 
distributions. The premium an insurer charges a given risk depends on the 
information available concerning the loss distribution of that risk. If the insurer 
knew the exact loss distribution of a risk, then the appropriate net premium to 
charge would be the expectation of that loss distribution. On the other hand, if 
the insurer has no information about a specific policyholder, then the net 
premium is the expectation over the entire portfolio of  policyholders. For the 
situation between these two extremes, suppose the insurer has prior claim data f o r  
the risk, then the net premium is the conditional expectation of future claims 
given the prior claims. 

To use Bayesian analysis to model insurance losses, one usually chooses a 
parametric conditional loss distribution for each risk and a parametric prior 
distribution to describe how the conditional distributions vary across the risks. A 
criticism of this method is that the prior distribution can be difficult to choose and 
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the resulting model may not represent the loss data very well. One method of 
circumventing this problem is to apply empirical Bayesian analysis in which one 
uses the data to estimate the parameters of the model (Klugman, 1992). 

In this paper, we use a semiparametric mixture model to represent the 
insurance losses of a portfolio of risks: We choose a flexible parametric 
conditional loss distribution for each risk with unknown conditional mean that 
varies across the risks. This conditional distribution may depend on parameters 
other than the mean, and we use the data to estimate those parameters. Then, we 
apply techniques from nonparametric density estinaation to estimate the 
distribution of the conditional means. 

In Section 2, we describe a mixture model for insurance claims and estimate 
the prior density using kernel density estimation. In Section 3, we calculate the 
credibility estinaator assuming squared-error loss and also give the projection of 
that estimator onto the space of linear functions. Finally, in Section 4, we apply 
our methodology to simulated data from a mixture of a lognormal conditional 
over a lognormal prior. We show that our method can lead to good credibility 
formulas, as measured by the mean squared error of the claim predictor, even 
when we use a gamma conditional instead of a lognormal conditional. 

2. SEMIPARAMETRIC MIXTURE MODEL 

2.1. Notat ion  and Assumptions  

Assume that the underlying claim of risk i per unit of exposure is a conditional 
random variable YlOi, i = 1, 2, ..., r, with probability density function f(y]0i). 
For each of the r risks, we observe the average claims per unit of exposur 
x i =  (xil,xi2, ..., .x'i,,,) with an associated exposure vector wi = (wi l ,  
11:,2 , ..., Win,) ~ i = "  1, 2, ..., r. Thus, the observed average claim x 0- is the 
arithmetic average of w9 claims, each of which is an independent realization of 
the conditional random variable Y]O~. For example, if a risk is a group 
policyholder, then -\'4i may be the average claim per insured member of the group 
in t h e f  t' policy period and wij is the number of members in the group during the 
fh policy period. For the data from Hachemeister (1975), a risk is the collection of 
insureds in a particular state covered by bodily injury automobile insurance, xij 
represents the average claim severity during period j, and w,~ is the corresponding 
number of claims. 

Assume that the parameter 0 is the conditional mean, E[YIO ] = 0. There may 
be other parameters that characterize the conditional distribution, such as the 
shape parameter ~ for the gamma density. However, in this paper, we assume that 
parameters, other than the conditional mean, are fixed across the risks. The loss 
distribution of a given risk is, therefore, characterized by its conditional mean, 
although that mean is generally unknown. Denote the probability density 
function of 0 by 7r(0), also called the s tructure  f unc t i on  (Biihlmann, 1970). The 
structure function characterizes how the conditional mean 0 varies from risk to 
risk. We argue that assuming 0 to be continuous is reasonable because in the 
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Bayesian paradigm,  our  uncertainty abou t  0 for any part icular  risk would be 
represented by a cont inuous r andom variable. Also, if r is large, then the variable 
0 can be well approx imated  by a cont inuous  r andom variable. Even if r is not 
large, the collection of  r risks may be a sample from a larger popula t ion of  risks 
whose distribution can be approx imated  by a cont inuous distribution. Assume 
that the experience of  different risks is independent.  

Note  that  our model is a special case of  the one given by Biihlmann and 
Straub (1970). Because X!/is the r andom variable of  an average of  w# iid claims 
Yi, Y2, ..., Y.',i, given Oj, we have that E[X~]O,] = E[ Y]O,] = 0, is independent  of  
the period j .  It also follows that 

Cov[X, ,x,klo,] { v,,.[r[o4 = wij i f  j = k, 
o, i f  j #  #, 

as in the Biihlmann-Straub model. In the literature, E[YIO~ ] is called the hypothe- 
t ical mean and Var[YlO~ ] the process variance. Note that we assume the 
observations for a risk arise as arithmetic averages of  an underlying claim 
random variable YIO, while Biihlmann and Straub (1970) do not assume this in 
their more general model. 

The goal of  credibil ity theory is to predict the future claim y (or an average of  
future claims) of  a risk, given that the risk's claim experience is x and exposure w. 
In this paper, we restrict our attention to credibil i ty formulas that are functions of 
a single statistic because they are easier to estimate and to use. We choose the 

Z~'L__, '"ijx~i 
sample mean as our statistic, 2i - -  ~ " '  I W0 because the claim experience x is a 

vector o f  averages. However ,  we do not restrict a claim es t imator  to be linear. 

To  pick a parametr ic  condit ional  distr ibution for Y]O, we use the following 
criteria: 

• E[YI01 = 0  
• The sample mean is a sufficient statistic for 0. 
• The functional form off (y]0)  is closed under averaging. Tha t  is, if X is an 

average of  w claims that follow the distribution given byJ(y[0),  then the density of  
has the same functional form as f(y]0). 

Three such families of  densities tire common l y  used in actuarial  science to 
model insurance Iosses - - ( I )  the normal ,  with mean 0 and fixed variance o 2, (2) the 

Q, 
gamma,  with mean 0 = ~  and fixed shape paramete r  c~, and ( 3 ) t h e  inverse 

0-' 
gaussian, with mean 0 and fixed A - Va,'[X]O---~]" Indeed, Y]O ~ U(O: o 2) implies 

that if X is an average of  w iid claims YI, Y~, ..., Y,., given 0, then 

probabi l i ty  density function of  YJO is 
QfC~ 

/(yl0) r(o,)0~,- ~ 0, y>o. 
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m 

Finally, if YIO ~ InvG(O, A), then X]O ~ InvG(O, wA) and the probability 
density function of Y[O is 

[ 0'-  o) 
j(ylO) = exp - ~  "y~5 j ,  Y > O. 

We use the family of  gamma conditional distributions in an example in Section 4. 
In practice, one might use the normal conditional if the conditional variance is 
assumed constant across the risks. One might use the gamma conditional if the 
conditional coefficient of  variation is assumed constant across risks or the inverse 
gaussian conditional if one wanted to use a loss distribution with a long tail. Note 
that for these three families, the predictive mean is a function of the sample mean 
for any prior distribution rr. See Young (1997) for examples of credibility 
estimators that are ftmctions of  a one-dimensional sufficient statistic, not 
necessarily the sample mean. 

In the Bayesian spirit, for a given loss function L = L(y, d(.~)) of the future 
claim y and the claim predictor d, we propose that the credibility estimator d be 
the function that minimizes the expected loss 

ElL(y, d(E))], 
in which we take the expectation with respect to the joint density of the sample 
rnean and future claim. In our mixture model, this joint density is 
ff(y]O) f(.-f]O) rr(O) dO Therefore, we require an estimate of the density 7r(O). 

2.2. Kernel Density Estimation 

We use kernel density estimation (Silverman, 1986) to estimate the probability 
density rr(0). A I<erneIK acts as a weight function and satisfies the condition 

K ( , ) d ,  = 1. 
• O O  

l fwe were to observe directly the conditional means 0., 02, ..., 0,., then the kernel 
density estimate of  rr(0) with kernel K would be given by 

I .¢-L.., 1 ~ ( O - O i ~  
7 ~i,/7/K k,----~--j, (2.1) 

in which h, is a positive parameter called the windowwidth, or bandwidth. Assume 
that the kernel is symmetric; therefore, the expectation of 0 is the sample mean. 

Because we observe only data xi and wi and not the true conditional means 0i, 
we rely on the law of large numbers and use the sample mean Ei to estimate 0i 
consistently, i = 1, 2 . . . . .  r, (Serfling, 1980). In the expression in (2.1), one may 
wish to weight the terms in the sum according to the relative number of 
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claims for the i a' risk so that the expectation of 0 is the sample mean 
nl 

x = ~ 2 ,  }--~v=, "',J."0 _ }--]i=, '''~' in which wi = }-~.~, wo. We, therefore, propose the 
X ; L  Z2=, -  2L, .', 

following kernel density estinaator for re(0) 

,(o) =  2L, '"' i 
wtothi ~ hi J' 

(2.2) 

r in which W,o, = ~"--i wi = ~=~  ~ ~ l  w,j. See the Appendix for a discussion of the 
asymptotic mean square consistency of Or(0). 

Two commonly used symmetric kernels are (1) the Gaussian kernel, G, 

I ,2 
a(t) = -- .~e-r ,  -cx:~ < t < cxD, 

~/ 2 rr 

and (2) the Epanechnikov kernel, Epa, 

Ep (l) = 5, , - v ' 3  < I < 

. else. 
(2.3) 

In our example in Section 4, we use the Epanechnikov kernel because its domain 
is bounded, and we can, therefore, easily restrict the support of #(0) to fie in the 
positive real numbers. 
Remark: The Epanechnikov is optimal with respect to mean integrated square 
error (Silverman, 1986). The efficiency of the Gaussian kernel with respect to the 
optimal Epanechnikov kernel is roughly 95°/, (Silverman, 1986), so one does not 
lose much efficiency by using the Gaussian kernel. Silverman, therefore, suggests 
that one choose the kernel according to auxiliary requirements, such as ease of 
computing. D 

There are many techniques for choosing the window width h,.; see, for 
example. Silvennan (1986, Section 3.4) and Jones, Marron, and Sheather (1996). 
In our example in Section 4, we use a (modified) fixed window width selected by 
reference to a standard distribution (Silverman, 1986, Section 3.4.2). The window 
width h that minimizes the mean integrated squared error is given by 

h= { / t 2  K(t) d t} -2 /S{ /K( t )2  d t } ' / 5 { f  ¢r"(O)dO}-USr -'/5. (2.4) 

To approximate this optimal window width It, ones assumes that 7r(0) is say, 
normal, with mean 0 and standard deviation a. In that case, the term fTr"(O) dO 
equals ~Tr-U2a -s. We modify the window width h at each point Ni to ensure that 
the density has support on the nonnegative real numbers. Specifically, we set hi 

equal to/1, if h < - ~  otherwise, we set h i equal to - ~ .  
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3. C R E D I B I L I T Y  USING S Q U A R E D - E R R O R  Loss 

In this section, we use squared-error  loss to determine a credibility estinaator, as is 
used in greatest accuracy credibility theory, (Willmot,  1994) or (Herzog,  1996). 
The squared-error  loss function has the form 

L0, ,  u(.~)) = ( . , , -  a(:v)) 2. 

It is s t ra ightforward to show that the minimizer of  the expected loss is the 
predictive mean (Bfihhnann, 1967), which in this case is the posterior  mean of  0 
given the sample mean .-g which we est imate by 

p(.v) = f E[ YlO]mr(Ol:V)dO = LIOI.V]. 

For  a general kernel K alld bandwidths  hi, this est imated posterior  mean of  0 can 
be written 

f o f(~lO)~(o)uo 
£[Ol:V] = JlOVlO)#(o)~/o 

(v) Z,= ,  ,f O.I(~IO)K UO 
(3.1) 

Recall that 2 is an average of  w iid claims, each of  which follows the density 
/(y[0),  as in Section 2.1. I f we constrain the es t imator  d to be linear, then it is well- 
known that the least-squares linear es t imator  of  E[YiX ~] = El0[2] is 

a(:v) = (~ - Z)EIY] + Z~, (3.2) 

EVa,'[YIO] 
w with k - (Bfihh-nann, 1967). Using our est imate for in which Z = w + k Vhr[O] 

the prior density (2.2), we obtain /7[Y] = /7[0] = x, as noted in Section 2.2. In the 
,.2 

O-~ 
case of  the normal  conditional:  k - _~ in the case of  the g a m m a  condi- 

tional, k = E[02] ; and in the case of  the inverse gaussian condit ional ,  
~ (E'[02] - .~ 2 ) 

k - t [ o ~ ]  
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To  end this section, we show that  as w approaches  cx~, ~(~:) approaches  the 
true expected value 00, for the given risk. Because X]0 has mean 0 and variance 
Wor(YI0) 

under certain regularity conditions,  (DeGroo t ,  1970) and (Walker,  
W 

1969), the densityf(.~[0) approaches  the delta function with its mass concentra ted 
at the point 7g = 00 Then,  

J'Of(~lO)+(O)dO 007i"(00) = 00, w.p.I .  
,!i2~;4:v)--,~i-nL jJ(:~lo)'~( o)do - +( Oo) 

Thus,  as an actuary gets more claim informat ion for a given policyholder (w gets 
large), the est imated expected claim approaches  the true expected claim with 
probabi l i ty  1. 

4. S I M U L A T E D  D A T A  F R O M  A L O G N O R M A L - L O G N O R M A L  M I X T U R E  

The lognormal  distribution is used by actuaries to model the distribution of  claim 
severity. It is also used to model the distribution of  total claims in some lines of  
insurance, such as health insurance. In this section, we assume that we are given 
individual claim data; that is, we = I, for all risks i and policy periods j ,  and X =  
Y. We model the lognormal - lognormal  mixture as follows: 

{ 'I . l ( . , l ~ ) -  exp 7 ~  In , . ,-> 0, 
0-X 

in which a > 0 is a known parameter ,  and 

{ 2} 
,'r(~b) - r exp - 27.----5_ In , q~ > 0, 

in which /J, > 0 and 7-> 0 are known parameters .  Tha t  is, (ln X)]q~--~ 
N(ln 0, a2), and In 0 ,,~ N(ln #, 7"z). The marginal  distr ibution of  X is lognor- 
mal; l n X  ,-~ NOn#, 0 .2 + r2). 

Given claim data for a specific policyholder,  X = x = <  .xl, x2, ..., x,, > 
I[0,.oo]'~., the posterior  distr ibution of  ~l x is Iognormal;  ( lnq~) lx , - -N 

In#  , -r 2), in which 

(0  -2 In # ÷ T2tx~ 

t = Z','=, h,(x,) and 
9 9 

' O - T -  
7"*" = 

O .2 + t77" 2 • 
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Thus, the ,,predictive distribution of X,,+l Ix is Iognormal; 
N(ln/~ *,o-9 that the true predictive mean is a ~ + 7-':3. i t  f o , o w s  

function of t 
/ 

= = + . (4.1) l ,(x) E(X,,+, Ix) exp n7-2 2(or 2 + n7-2 ) j 

We performed 200 simulations of a lognormal-lognormal mixture of  claims. We 
let cr 2 = 0.25, 7 -2 = 0.50, and /L = 2000e -°2s. The marginal expectation of X is 
2267, and the marginal standard deviation is 2395. For each simulation run, we 
simulated claim data from this lognormal-lognormal mixture for r = 100 risks 
(values of  ~b). For each of the 100 risks, we simulated ni = wi = 5 claims. To 
estimate the distribution of the conditional means, we used kernel density 
estimation with the Epanechnikov kernel, as given by (2.3). Also, we used a fixed 
window width h, chosen by reference to a normal distribution with mean 0 and 
standard deviation a. We estimated the standard deviation by the interquartile 
range of the sample means, R, divided by 1.34 (Silverman, 1986, Section 3.4). The 

bandwidth tl was calculated by h=(I)-2/5(O.268)US(O.212)-Us---~--IOO-U5 
1.34 

0.312R as in (2.4). We truncated this bandwidth h for a given risk if, by 
otherwise using it, the prior density would have a negative support. Specifically, if 

2:i 2:i 
h > ~ then we set the bandwidth hi equal to ~ to guarantee that the support 

of  the estimated density of  0 be contained in the nonnegative real numbers, as 
described in Section 2.2. 

Instead of assuming that the conditional is Iognorma[, we assumed that the 
coefficient of  variation is constant from risk to risk and, therefore, fit a gamma 
conditional to each risk. In each simulation run, we estimated the parameter ~ by 

the median of the following sample statistic X:2 We used the 
"-'-I'- Z~=l (Xij -- 2:i) 

estimated prior density along with the gamma conditional to estinaate the 
marginal density of  X. 

We used the estimated mixture model to estimate the predictive mean of X,,+~ 
given claim data x. We also computed the Biihlmann credibility estinaator, 
l i n (x ) ,  for which we estimated the expected process variance by 

, v . , 00  
E P V -  100(5-  1)z....,i=l 

and the variance of the hypothetical means by 

l 5--..,00 EkV 
V H M  - 100----~ L_.,i=l 5 ' 

(Willmot, 1994, Section 5.1). 
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TABLE 4.1 

D E S C R I P T I V E  S T A T I S T I C S  O F  Jl, MSE, MSEB, A N D  R A T I O  

281 

Variable Mean Median SlDev Q I Q3 

h 564.35 561.00 91.64 500.25 623.75 
MSE 16,450 12,111 13,146 7.808 21,623 
MSEB 74,559 69.595 37,539 4.4,466 94,878 
Ratio 0.2984 0.1777 0.3239 0.0890 0.3819 

For  n = w = 1, we compared  the es t imated predict ive mean,  12(x) and the 
Biihlmann credibi l i ty  es t imator ,  l in(x),  with the true predict ive mean,  ~(x).  
To compare  these credibi l i ty  es t imators  numerical ly ,  for each o f  the 200 simu- 
lat ion runs, we calculated the mean squared errors  up to the 95 'h percenti le of  X, 
namely 6,500: MSE = j~6500 (~(x) - # (x ) )2 f (x )dx  and MSEB = f065°° (l in(x)- 
tt(x))2f(x)dr. See Table  4.1 for descript ive statist ics o f  the bandwid th  h; the 
mean squared errors ,  M S E  and MSEB; and the rat io  o f  M S E  to MSEB, Ratio. 

Thus,  we see that  up to the 95 I1' percentile,  on average,  our  es t imated 
predict ive mean per forms much bet ter  than the l inear Biihlmann credibi l i ty  
es t imator .  See Figure 4.1 for a scat ter  plot  of  MSE versus h. Note  the quadra t i c  
re la t ionship  between the two variables and that  the min imum of  M S E  occurs 
near  the average value o f  h, 564. We fit a quadra t i c  to these observa t ions  by 
minimizing the sum of  the absolu te  values o f  the errors  and ob ta ined  the fitted 
model  

MSE = 196,603 - 691.36h + 0.6402h 2, 
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FIGURE 4. I: Scatter Plot of MSE versus h with Quadratic Superimposed. 
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with vertex at 542. See Figure 4.1 for a graph of this quadratic superimposed o,1 a 
scatter plot of the observations. 

We also computed some of the mean squared errors up to the 99 't' percentile 
and found that the estimated predictive mean compared poorly relative to the 
Biihlmann credibility estinaator. We conclude that our estimate of the prior 
density at larger conditional means may suffer. Silverman (1986) suggests a 
variable bandwidth approach for estimating densities with long tails which uses 

- 4  
6"10 

4" 10 -4  

2" 10 -4  

i I I I 

o 1300 2600 3900 5200 6500 

Estimated marginal density of X 

T r u e  m a r g i n a l  d e n s i t y  o f  X 

FIGURE 4.2: Es t ima ted  a n d  T r u e  M a r g i n a l  Densi t ies  o f  Claims.  

larger bandwidths in the regions of  lower density. We tried this method without 
increased accuracy in the upper percentiles of our claim estimator. We suspect 
that the poor fit at the higher percentiles may be due to our using a medium-tailed 
gamma conditional to model a heavy-tailed lognormal. We encourage the 
interested reader to investigate using an inverse gaussian instead of a gamma 
conditional to model the conditional claim distribution. 

See Figure 4.2 for graphs of the estimated and true marginal densities of  X for 
one of  the simulations ~. Of  the graphs we plotted, Figure 4.2 is typical, in that the 
estimated marginal density of X is less skewed than the true density. 

See Figure 4.3 for the corresponding graphs of the estimated and true 
predictive means. Notice bow closely the estimated predictive mean follows the 
true predictive mean, compared with the linear B/,ihlmann estimator for claims 
less than 4000. Also note how the estimated predictive mean diverges upward for 
claims larger than 4000. This phenomenon occurred in all of the several graphs 
that we plotted and is due, we believe, to the fact that we used a gamma 
conditional to estimate a Iognormal. it may also be due to computational errors 

I In this run ,  h = 476, MSE = 12,076. a n d  MSEB = 84,571. Recall  thaT. t~= I a n d  tha t  tile c la im 
a m o u n t  6 ,500 is the 95 '~' percenti le  o f  X. 
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FIGURE 4.3: Credibility Estimators. 

6500 

because there are only a few simulated claims in the right tail. One way to adjust 
the estimated predictive mean to eliminate this divergence is to extend it linearly 
beyond some large value of  the sample mean. Another  solution may be to use a 
conditional distribution with a longer tail, such as the inverse gaussian. Yet 
another  solution may be to apply my method of  blending the criteria of  accuracy 
and linearity (Young, 1997). 

5. SUMMARY AND CONCLUSIONS 

The Bfihlmann-Straub credibility method results in a linear est imator with a 
different slope (or credibility weight) for each risk. Therefore, to apply their 
method to a risk not used to construct  the original model, one would be required 
to recalculate the model to obtain a linear est imator for the new risk. An 
advantage o f  our method is that  it is applicable to risks outside the original d a t a  
set, if one assumes that the average claims and corresponding exposures of  the 
new risk come from the same parent (mixture) populat ion as the data. Another  
advantage of  our  method is increased accuracy over a linear estimator,  as 
demonstrated in the example in Section 4, even when we use an "incorrect' 
conditional density. 

One may wish to use the underlying mixture model and kernel density 
estimation in combinat ion with other loss functions, such as a linear combinat ion 
of  a squared-error term and a second-derivative term to blend the goals o f  
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accuracy and l ineari ty (Young,  1997). Also,  it would be interest ing if one were to 
extend the model  to include a trend componen t ,  as in Hachemeis ter  (1975), and 
apply  kernel densi ty  es t imat ion  in the more  general  model.  
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APPENDIX 

A S Y M P T O T I C  M E A N  S Q U A R E  CONSISTENCY O F  (2.2) 

Let #(0) = ~i=l  w,,,,h, \ I,, ) denote  the kernel densi ty es t ima tor  o f  7r when we 

are given observa t ions  Oi, i = 1, 2, ..., r. Cons ider  the mean squared er ror  o f  the 
densi ty  es t imate  # at a fixed value 0 • 

= E ,=, ,,,,o,/,; L \ h, / - K + U (#(O) - ~-(O)) 2 

= W,o,h~L \ /,~ ) \ /,, ) j  (~(0)- 
+ 2 E  Z i  i ' ' 'i I ~ K ( O - ~ i ~ - K ( O - O i ' ~ ' ~  rr(O))]. 

By the law of  large numbers  (Serfling, 1980), .~, app roaches  Oi, with p robab i l i ty  
one, as wi approaches  infinity. Therefore,  as wi approaches  infinity, the first term 
in the mean squared er ror  goes to zero. By Si lverman (1986) or  Thornpson  and 
Tap ia  (1990), the second and third terms go to zero as r goes to infinity if 
l im hi = 0 and lira rhi = oo. 

r ~ o o  r ~ c ~  
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EXACT C R E D I B I L I T Y  FOR W E I G H T E D  OBSERVATIONS 

BY ROB KAAS,  DENNIS DANNE NB UR G a n d  M A R C  GOOVAERTS ~ 

University of  Amsterdam 

ABSTRACT 

This note generalizes Jewell's theorem on exact credibility from the classical 
B/Jhlmann model to the (weighted) Bfihlmann-Straub model. 

1. INTRODUCTION 

A well-known theorem of Jewell (1974) states that exact credibility, which is the 
concurring of the Bayesian estimator (posterior mean) with the credibility 
estimator of a contract mean, is found for a class of examples which includes 
many common situations. In a nutshell, exact credibility obtains when the 
observations are drawn frorn distributions in the exponential family, with natural 
conjugate prior distributions for the risk parameter. Surprisingly, Jewell's 
theorem pertains only to the classical Bfihlmann model, and does not hold in 
case different variances of the observations are allowed, as in the Bfihlmann- 
Straub model. In this contribution we prove exact credibility to hold for the 
(weighted) Bfihlmann-Straub model as well, thus allowing the observations to be 
averages of  varying numbers of  observations, also in case of  Poisson and 
Binomial distributions. The parametrization used coincides with the one used in 
the theory of Generalized Linear Models. In the original form of Jewell's 
theorem, and in ours as well, rather cumbersome reparametrizations are required 
to prove that ordinary distributions like Poisson and G a m m a  are special cases of  
this theorem. This is remedied in Gerber (1995) by choosing a more convenient 
parametrization. 

Our extension of Jewell's theorem still does not incorporate Jewell's 
hierarchical model. Exact credibility for this model, and also for even more 
complicated ones like Hachemeister's regression credibility model, can, however, 
easily be proven for the normal-normal model, This is because conditional 
expectations of  multinormal random variables are linear in the conditions. 

Consider a portfolio consisting of J contracts, for which we have data of the 
past claims. These observations are assumed to have been generated by a 
Bayesian chance mechanism: first a contract-specific risk parameter 
Oi, j = 1, ..., J, is drawn from a structure distribution with known parameters, 
called hyperparameters. In this contribution, we will concentrate on one 
particular contract j. Since the observations on other, independent, contracts 
do not appear in the estimators of  # (0 i )  used, we will simply write the 
observations as X~, ..., XT, and not incorporate the contract number j in our 

The authors acknowledge the contributions of  Rm Kuzee. 
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notation. The unobservable random variable O represents the risk characteristics 
of the contract in question. These characteristics may be unobservable, or if they 
are, unusable for reasons such as social acceptability. The observations, 
conditionally given O, are independently drawn from some distribution of which 
the mean is a function of the parameter O. The quantity of interest is not (3 itself, 
but the risk premium for contract j, traditionally denoted by/~(O) = E[X[O]. The 
risk variable O acts as a parameter of the distribution of the risks X~, X2, ..., Xr; 
conditionally on O, the risks will be independent with mean /z(O). They are not 
necessarily identically distributed, since the conditional variance of 2", is taken 
inversely proportional to some known weight wl, just as in the Bfihlmann-Straub 
model. 

The best estinaator of F~(O), in the least squares sense, in the class consisting of 
all random variables of type g(Xt, )(2, ..., XT) where g(.) is any function, is the 
one with minimal mean squared error E[{g(Xi, X2, ..., X r ) -  ~(O))2]. It is 
obtained by taking g = g* with 

g*(X,, X2, ..., X r ) =  E[j (O)IX,, X2, ..., xT] (1) 

Thus, we see that the best predictor of #(O) is just the conditional mean of/_~(O), 
given the observations, or in the idiom of Bayesian estimation, the posterior 
mean. These posterior means may have a rather unpleasant form, which is the 
reason why in credibility theory the restriction to linear functions of the 
observations is imposed. The estimator thus obtained is not only the best 
approximation to/_L(O), but it is also closest to the posterior mean (l). It can be 
shown that if the simultaneous distribution of O and Xi, ..., XT is of particular 
type, g*(.) happens to be a linear function of the data already, and thus is the 
credibility estinaator. In the second section of this note, we investigate conditions 
for which this holds. 

2. EXACT CREDIBILITY 

When the optimal Bayes estimator (I) is linear, it is obviously equal to the 
credibility estimator, since they both minimize the mean squared error. In this 
case we say that the credibility estimator is exact Bayesian, or equivalently, that 
exact credibility holds. Jewell (1974, 1975) showed that exact credibility is found 
when the observations X~, ..., XT, given the value of the structure parameter O, 
are an iid random sample from the exponential family of distributions; moreover, 
the prior distribution of t9 must be the so-called natural conjugate prior, which 
ensures that the posterior distribution of O, given ,k'l, ..., XT, is of the same type 
as the prior distribution. In Jewell's original theorem, the Xr are lid, given (3, as is 
the case in the original B/.ihlmann model. To be able to apply the theorem to the 
more general Biihlmann-Straub model, we have to account for the observations 
having different variances (weights). For definitions and assumptions of these 
credibility models, consult e.g. Goovaerts et al. (1990). 

The well-known exponential family of distributions contains many frequently 
used distributions. Prominent members are the Normal, Poisson, Binomial, 
Gamma and Inverse Gaussian distributions. The densities in it can be written as : 
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jx,  0, exp[X0  0,+c,x°j,,,l  A ,2, 

The parameter 0 of the distribution of X will be regarded as a realization of a 
structure random variable 0 .  The other parameter q$ is a dispersion parameter, 
like o ̀2 in normal distributions. It may be assumed known or unknown. For one- 
parameter distributions, for example the Poisson, ~b is taken to be I. The weight 
w > 0 is known. Since (2) involves only the ratio ~b/w, we might also say that only 
the relative weights of the contracts are known. Just as in the Bfihlmann-Straub 
model, the variance of X, given @, is proportional to l/w. This is the case when X 
is an average of w elementary claims (natural weight), as we will prove later on, 
but w is not necessarily an integer. The set A,,. consists of possible values of the 
claims. If the elementary risks are for instance Poisson, then 
A,,. = {0, I/w, 2/w, ..}. In the sequel, we assume X to be continuous. In the 
discrete case, integrals over x E Aw below should be replaced by summations. 

The above parametrization of the exponential family is sometimes called 
'natural', in view of the fact that the part of it depending on both x and 0 has the 
form e '°. As we will see later on, it proves that the natural parametrization is not 
always the customary one, which is generally chosen because it is the most 
convenient. The one Gerber (1995) uses makes the reparametrizations much 
easier, but gives problems when incorporating weights. The parametrization we 
use closely resembles the one standard in the theory of Generalized Linear 
Models, see, e.g., McCullagh and Nelder (1989) or Nelder and Verrall (1995). 
Here 4> is, without much gain of generality, replaced by a(q$). 

We can evaluate the moment generating function with density (2) as follows: 

mx(r) = e r'exp [ ~/w +c (x ,  ~/w) dx 

= / exp[ :'{O + rdplw} - b(O + + c(x, cblw)] dx × 

× exp[ b(O+rcb/w)-b(O)']qb/w (3) 

[b(O + rqblw) -- = exPL- ~ b(0)]. 

Note that the second integral in (3) equals one, because it is the integral over a 
density of type (2), with 0 replaced by 0 + rc~/w. Mean and variance of (2) follow 
easily from the cumulant generating function ~x(r) = log rex(r) 

v(0) = E[XlO -- 0] -- ,~,,(0) -- b'(0); 
(4) 

Var[X; O] = ~,(0) = b"(O)c~/w. 
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The function b(O) is somet imes referred to as the cumulant  function. 
Having  found the momen t  generating function, we can show that density (2) 

truly represents the density of  an average X = ~ - , i  Xi of  w iid r andom variables 
Xi, ..., X,,., with the same density (2), but with weight I. Indeed we have 

Assume that  O has a prior density which is the so-called naturalconjugateprior ,  
i.e., o f  which the 0-dependent  part  is the same as in (2), and x0,¢/w0 are 
parameters :  

,] Je(O) = exp + d(x0,4~/w0 • (6) 

The normaliz ing function d(xo, qS/wo) is chosen in such a way that the density, 
which ranges over  some 0-interval, integrates to one. Assume further that, 
condit ional ly given O = 0, the r andom variables Xt are independent  drawings 
from density (2) with parameters  0, ~b and weight wl, t = l, ..., T. Then the 
poster ior  density of  O, given Xi = xl ,  ..., XT = .VT, is found to be, apar t  f rom 
division by a normalizing constant  equal to the integral over  0 of  the resulting 
expressions: 

] JelX, ...... rt(Ol-vl, ..., XT) e:x: fe(O) ~__}exPL +c(x,,¢lw,) 

c~ exp :v,O O) = exp £ ),,,.v,O - w,b(O) = exp .Ox (0 

i"~ t ~/w, j ,=o ~b 
(7) 

7" T 
Z Z Wt where Wo = w, and x.  = - - x l .  (8) 
t=0 1=0 We 

Thus,  poster ior  and prior  distr ibution are of  the same type, but with pa ramete r  x0 
replaced by x .  and w0 by Wo. 

As a corol lary to the above discussion we formulate  the main theorem of  exact 
credibility: 

T h e o r e m  2.1 ( P o s t e r i o r  m e a n  e q u a l s  c r ed ib i l i t y  e s t i m a t o r  o f  e x p o n e n t i a l  fa-  
mi ly  wi th  n a t u r a l  c o n j u g a t e  p r i o r )  
Suppose that, condit ionally on 0 = 0, Xi ,  ..., XT are independent  r andom 
variables with density (2) for fixed ~b and weights w,, t = I, ..., T. Further,  let e 
have a prior distr ibution (6) with parameters  x0 and w0. Then the posterior  mean 
E[#(O)IXi ,  ..., XT] is an inhomogeneous  linear form in Xi, ..., XT provided the 
prior density (6) vanishes at the endpoints  o f  the 0-interval. 
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P roof .  We must prove that the following expression is linear in .q, ..., x r  " 

f   (o)folX, ..... x (Olx,, . . . ,  XT)dO. (9) 

Since ,u,(0) -- if(O) by (4) and the posterior density is proportional to (7), we must 
compute 

#(O)fo(O; f b ( O ) e x p  {~ [0x° - b(0)]} dO We)dO 
J exp {~ [Ox. - b(0)]} dO 

f {x. - if(0)} exp {~  [0Xo - b(0)]} dO 

= x. - f exp {~  [Oxo - b(0)]} dO (10) 

f ~ d  exp { ~  [Ox. - b(O)]} 

f exp { ~  [Ox. - b(O)]}dO = x . ,  
= X° --  

where the numerator  vanishes because by assumption, Oxo - b(O) = - o o  at both 
endpoints of  the integration interval. By (8), this expression is indeed 
inhomogeneous linear in .q, ..., x T. • 

Remark 2.2 (Credibility factor and virtual experience) 
By (8), we may write the estimator X. resulting from (10) as follows: 

X.  = w0xo + ~lT=l wtXt  = zX,,  + (1 - z)m,  
w0 + Ci=, w, 

where z - wzc for  )v~ = Err=] w, is the c red ib i l i t y  factor ,  
WO + WE 

(11) 

T W/ 
X., = Z_.., - - X t  (12) 

t=l |V~ 

and ,,7 = E[#(O)] = x0 (see (10)). 
So the premium is the ratio of  total claims and exposure, where a 'virtual 

experience' o f m  on average in w0 exposure units is added to the actual experience 
of X,. on average, with a total weight (exposure) of  wz. • 

Remark 2.3 (Credibility estimator equals posterior mode) 
Under the same conditions of  the previous theorem, the maximum of the 
posterior density is found when 0 is such that / t ( 0 )=  Xo as well, since the 
derivative of  (7) is zero when x° = b'(O), which equals/z(0) by (4). • 

In the examples that follow, two special cases are given where the credibility 
estimators of  the B/.ihlmann-Straub model are exact Bayesian. The third example 
shows that not all cases of  exact credibility are covered by Theorem 2. I. 
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E x a m p l e  2.4 (Poisson observations with Gamma prior) 
Suppose that the risks X~ represent average numbers of  claims in homogeneous 
cells with w~ policies in it, which, given A = ,k, are Poisson(,k) distributed, for 
some positive structure random variable A. In automobile insurance, this risk 
parameter represents the 'accident-proneness' of  the drivers in the cell considered. 
In general, the G a m m a  distribution proves to describe the spread of A rather well. 
The conditional density is 

.fS,'iA (-'<l,k) - 

e-,',w (,kw) ,,'-~ 
, x E A  = { 0 ,  I/w, 2/w, ...} (wx)! 

= e x p [ w { x  l o g A  - ,k} + w .\" log w -  l o g ( ( w x ) ! ) ] .  

From the last expression we see that this density belongs to the exponential family 
(2), with 

0 = logA, 4b = I, b(O) = e °, c (x ,  qSIw) = w x log w -  log((wx)!). (14) 

By (6), the natural prior of  O = log A is, apart  from the normalization constant 
d(xo l/w0): 

[0x0 - e °] 
J{~(0) °eexp L I lwo  j , , - o o  < 0 < oo, (15) 

for some parameters x0 > 0 and w0 > 0 The corresponding density for A is then 

dO ,k.vo.'o- I e- .\w,~ J)x(,k) - - - j o ( l og ( , k ) )  d,k o<: ,k > O, (16) 

in which we immediately recognize the Gamma(oK,/3) distribution with 
= XOWO~ ~ ~ W O. 

It is easy to verify that the extra condition of Theorem 2.1 is met, since 
Oxo - b(O) tends to - o o  both for 0 ~ - o o  and 0 -+ oo. Therefore we know that 
the original Bfihlmann inhomogeneous credibility estimator of  # ( O ) =  
E[X]O](= exp(O)) is exact Bayesian. As a consequence, the conditional mean 
of/~(O),  given Xi ,  ..., XT, is linear in Xi, ..., XT. Because A is a one-to-one 
function of O, we have also 

~(O) = E[XIO ] = E[Xllog(O)] = E[XiA]. (I 7) 

So we conclude that the conditional expected value of tt(O)---E[XIA], given 
Xi ,  ..., X r ,  is linear as well. This means that if the claims are averages of  Poisson 
distributions with the usual parametrization of the first expression in (13), and the 
prior distribution of A is Gamma,  the inhomogeneous credibility estimator for the 
Bfihlmann-Straub model is exact Bayesian. • 
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Example  2.5 ( N o r m a l  d is t r ibut ion  with N o r m a l  p r io r  in the Bi ih lmann-  
S t raub  model )  
Another example of exact credibility arises if the risks X, are independent and 
N ( 8 , s 2 / w , )  distributed, conditionally given O = 8, where O is an N(m.a) 
distributed random variable. This model arises when X r - - m  ÷ . E +  ._7., for 
independent normal Z-components, with ~ N(O,a)  and .Et ~ N(O, s2 /wO.  
Then O = m + ._7.. To determine the credibility estimator, only the first and second 
order moments matter, and they are just those of the Bfihlmann-Straub model. 
Recall that contracts of other cells appear neither in the posterior mean, nor in 
the inhomogeneous credibility estimator, by the independence between the cells. 

The conditional density of the X, can be written as 

I - ( x ,  - 0) 2 
.fr,10(x,18) = ~ e x p  

~/2'a'S2 / W, 2S2/W, 

{ }] Fx,8-1/282 1/2 + = exp,- - ~  -- " log(2rrs2/w,) , 
L a-/w, 

which is (2) when 

.2 

b(O) = 1/282 , ~b = s 2, c(x,, sZ/w,) = - I /2  { . ~  + log(27r sZ/w,)}. 

(18) 

(19) 

The natural conjugate prior density is again normal, see (6) and (18), so 

1 - ( 8  - 177) 2 8m - 1/282 
r e (8 )  = ~ e x p  2a ~ exp s2 / ( s2 /a  ) , (20) 

which, apart from the normalization constant, equals expression (6) when 
-) 

xo = ,71, O0 = s-, wo = s2/a. (21) 

Because 8Xw - 1//282 again tends to - o c  both for 8 ---, - o o  and 0 ~ oo, we find 
from Theorem 2.1 that the posterior mean equals the Bfihlmann-Straub estimator 

< o l x , ,  x.r] woxo + w,x, 
"'" = wo + ~ 5 = ,  w, 

_ _ E T = I  w , X ,  
~- (I - z)m, 

with z = a Y'~t~l ,v, (22) 
. ~E,T__, w, + s2" 

Other situations, apart from Examples 2.4 and 2.5, in which exact credibility 
holds are (Negative) Binomial data with Beta prior, and Inverse Gaussian data 
with the corresponding natural prior. 



294 ROB KAAS. DENNIS DANNENBURG ET AL. 

E x a m p l e  2.6 (Exac t  credibi l i ty  in n o r m a l - n o r m a l  mode l s )  
Theorem 2.1, which extends Jewell's original theorem to the weighted case, 
cannot be applied to Jewell's hierarchical credibility model, see, e.g., Goovaerts  et 
al. (1990). Written in the same additive components form of the previous 
example, the statistic for sector p, cell j ,  and time period t is 

Xpj, = m + Z t, + Zpj + ZFj,, (23) 

where the Z-components  of  the risks are independent with mean zero and 
variances b, a and sX/wlvt. First we try to consider only one sector p. Then, as is 
required in Theorem 2. I, the observations of  other sectors are independent of the 
ones considered. Conditionally on 0 ,  which in this case is Zt,, the observations in 
sector p have the same mean. They are, however, not independent, since the 
observations in cell j of  this sector have a common risk component  Z~ i. If  on the 
other hand we only look at a specific cel l j  in some sector p, taking O = Z t, + Zpj 
we do have that conditionally given O, the observations are independent and have 
equal mean. But in this case the other observations cannot be disregarded when 
estimating the risk premium of this cell, since observations in cell i -¢ j of sector p 
are dependent on those of cell j through the common component  ~p. 

Still, when-we assume in addition that the - -componen t s  are normally 
distributed, the credibility estimators for the Jewell model can easily be shown to 
be exact Bayesian. This is because for each choice M = m + Z p ,  
M = m + Z p + Z t ,  i and M = X p j ,  T+I, M has a multivariate normal joint 
distribution with the vector of  observations )~. This, as is well-known and can 
be found in any statistics text of  a reasonable level, implies that E[Mt)~is linear in 
Y. 

Also under normality assumptions, the estimators in Hachemeister 's regres- 
sion credibility model can be shown to be exact Bayesian. • 

R e m a r k  2.7 (Var iance  c o m p o n e n t s  o u t l o o k  on  credibi l i ty  theory)  
In the authors '  opinion, credibility is currently taught in an unnecessarily 
complicated way. For didactic reasons, models should not be formulated using a 
hard-to-explain risk variable O, a function t~(O) of which is the variable of 
interest. Setting credibility in a Bayesian framework also isn't exactly helpful for 
the acceptance of credibility techniques by practitioners, especially in Europe. 
Since in most countries actuaries generally are not fully qualified mathematicians, 
formulating credibility estimation as a projection in a Hilbert space, however 
elegant mathematically, is also aiming too high. Rather, one should formulate the 
credibility models as additive independent variance components models such as 
(23). As argued in Dannenburg, Kaas and Goovaerts  (1996), this presents no loss 
of  generality, since only the first and second moments of  the data and (weighted) 
averages thereof are needed for the calculation of credibility estimators. To 
calculate covariances and correlations is almost trivial in this framework, but a 
much more laborious process via the conditional expectations, given O, needed in 
the more usual model. • 
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S I M U L A T I O N  OF R U I N  PROBABILITIES 
FOR S U B E X P O N E N T I A L  CLAIMS 

By S. ASMUSSEN and K. B I N S W A N G E R  

A B S T R A C T  

We consider the classical risk model with subexponential claim size distribution. 
Three methods are presented to simulate the probability of  ultimate ruin and we 
investigate their asymptotic efficiency. One, based upon a conditional Monte 
Carlo idea involving the order statistics, is shown to be asymptotically efficient in 
a certain sense. We use the simulation methods to study the accuracy of the 
standard Embrechts-Veraverbeke [16] approximation for the ruin probability and 
also suggest a new one based upon ideas of  Hogan [21]. 

K E Y W O R D S  

Conditional Monte Carlo, corrected diffusion approximation, ladder heights, 
order statistics, Pollaczeck-Khinchine formula, probability of  ultimate ruin, rare 
events, regular variation, subexponential distribution. 

1. I N T R O D U C T I O N  

This paper is concerned with the simulation of the probability 'g,(u) of  ruin in a 
classical compound Poisson risk process U(t) with initial (large) reserve u = U(0) 
in the case where the claim size distribution B is heavy-tailed. Our main aim is to 
investigate ways to improve upon crude Monte Carlo simulation. 
We assume that the claim arrival process {N(t), t >_ O} (N(O)=O) is a 
homogeneous Poisson process with rate A > O. The claim sizes are assumed to 
independent and identically distributed non-negative random variables ~i(i E N) 
with cumulative distribution function B(x) and finite mean p,8, and independent 
of  {N(t), t > 0}. The net premium is considered to be payable at a constant rate 
c over time, where 

c = (1 + 0) A#B 

and 0 > 0 is the relative security loading. The insurance surplus at time t is U(t). 
The total claim process R(t) = E ~=(1)~i is by the assumptions above a compound 
Poisson process and thus 

u ( : )  = u + ct - R ( O .  

The probability of  ruin is defined as 

~p(u) = P(inf U(t) < 0). 
t_>0 

ASTIN BULLETIN. Vol. 27. No. 2. 1997. pp. 297-318 
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All simulation methods  that we study are based upon representing the ruin 
probabi l i ty  as ~b(u) = z = EZ for some r.v. Z that  can be generated by 
simulation, simulate iid replicates Zi ,  ..., Z., of  Z, est imate ~(u) by _~ = (Zi +.. .  + 
Z,,)/n and use the empirical variance of  the Zi  to produce confidence intervals. 
The  per formance  measure  of  a part icular  simulation method is the relative error 
crz/~p(u) where ¢7 z = var(Z) (when compar ing  different simulation methods  based 
upon Z( I ) ,  Z(2), say, this in only reasonable if the compute r  times needed to 
generate Z( I ) ,  Z(2) are roughly the same; we assume this to be the case without  
further discussion). We face two difficulties: 
I) The ruin problem has infinite horizon so that it is not s t ra ightforward to find 

the desired representat ion ~b(u) = z = E[Z] for some simulatable Z. 
2) Since u is large, the ruin probabi l i ty  ~/J(u) is small and hence we are in the 

f ramework  of  rare events simulation (see Heidelberger [20] or Asmussen & 
Rubinstein [7] for surveys). Neglecting problem I) for a moment ,  assume that  
we can generate Z = l(T(u) < oo) where I(.) stands for the indicator function 
and ~-(u) is the time of  ruin with initial capital u. This procedure  is known in 
the literature as the the crude Monte  Car lo  method and leads to a relative 
error  

crz V/~(u)(l  - '~(u)) 1 
_ _  --- ,  o o ,  u - - - ,  ( 1 )  

In the case where B is light-tailed, a solution to both problems was suggested by 
Siegmund [29] and Asmussen [4] who used impor tance  sampling (Rubinstein [28] 
or Glynn & Iglehart  [18]). One then performs a change of  measure,  replacing 
the given governing probabi l i ty  measure P by a different one P satisfying 
P(~-(u) < o o ) =  1 and takes Z = dP/dP where the likelihood ratio (Radon-  
N ikodym derivative) is computed  on f'~(,,). More  precisely, P corresponds  to an 
exponential  change of  measure  involving the Lundberg  exponent  (adjustment  
coefficient) R, such that the Poisson intensity and the claim size distribution is 
changed in a certain way given by R. Tha t  problem 1) is solved follows from 
P('r(u) < oo) = I. Empirical  evidence strongly suggests that  also problem 2) is 
solved, and the theoretical verification of  this has been the subject of  much 
research. We follow here a s tandard current  criterion (e.g. Heidelberger [20] or 
Asmussen [7]) for calling a rare events simulation es t imator  asymptot ical ly  (or 
logarithmically) efficient: one should have 

lira inf logcrz - -  > I.  ( 2 )  
,,-~o log~(u)  - 

In particular,  it suffices that 

~z, < '¢(u)Zp(llog '~(u)l ) (3) 
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for some polynomial  p, and this is well-known to hold in the setting of  
Siegmund [29], Asmussen [4] with p constant .  Note  that the C M C  method can 
never be efficient according to (2) because it always gives rise to the limit 1/2 
rather  than I there• 
The present paper  is concerned with the simulation of  '¢'(u) in the case where B 
does not have exponential  moments  so that R does not exist and the method of  
Siegmund [29], Asmussen [4] is not applicable.  A m o n g  such distr ibutions we focus 
on the class of  subexponent ial  distr ibutions S. To  be more  precise: 

D e f i n i t i o n  1.1. A non negative random variable X with distr ibulionJunction F is 
ca/led subexponent ial  ( F E S),  i f for  a/In _> 2, 

lira P(Xi + ... + X,, > x) = 1, 
. , - u P ( m a x ( X , ,  ..., x,,) > x) 

where Xi  ... . .  X,, are iid copies o f  X. 

This class is quite broad and contains many  of  the c o m m o n  claim size 
distributions, i.e. longtailed distr ibutions such as Pareto,  Lognormal  or Weibull 
with decreasing failure rate. G o o d  summaries  of  the propert ies of  this class are 
given in Embrechts  and Veraverbeke [16] and Kli ippelberg [23]. 
Our  vehicle to deal with problem I) in this setting is the Pol laczeck-Khinchine 
formula (see Asmussen [5]) 

oo 

• ~(u) = I - (I - p ) ~ p " B ; " ( u ) ,  u > 0, (4) 
t t = O  

where p =-i--~, Bo(u) = f~'b0(s)ds' and b0(s) =-L/~(s )  with /~(s) = I - B(s); 
• l I B  

B;" denotes the n-th convolut ion of  B0 with itself. Note  that  (4) means that 
1 - 'g,(u) is a compound  geometr ic  distribution function, 

~.,(u) = P(Sh. > u), (5) 

where Sh. = X~ +... +... XK, K is geometr ic  with pa ramete r  p, independent  o f  the 
X~'s, and the .¥~, X2 . . . .  are non-negative lid r andom variables with c o m m o n  
density bo. This means that the C M C  method is applicable: ~ ( u ) =  z = E[Z] 
where Z = I (SK > u). The algori thm is as follows: 

1. Genera te  Ki ,,~ geometric  (p) , i.e. P ( K i = k ) =  (1 - p ) p k ( k  = 0, 1, 2 ...). 

2. Genera te  X~, X i from the density b0 and let SK, =X~ + + X i 
• ""  : K ,  " ' "  K , "  

3. I fSK,  > u then Z~= I, otherwise Z~=0.  

4. Repeat  steps I to 3 n times. 
^ _1 ~-.,, 5. Est imate E [Z] by z = ,,z-,i=l Zi. 

As a C M C  algori thm, this procedure (referred to as Algor i thm 1 in the following) 
cannot  be efficient in the sense of  (2). To  deal with problem 2), we suggest (Section 
2) two condit ional  Monte  Car lo  est imators.  The idea is to replace the C M C  
est imator  Z by E(Z ] G) for a suitable a-field ~, which ahvays leads to reduction in 
variance, cf. Rubinstein [28]. We show that  one of  the es t imators  is efficient in the 
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sense of  (2) in the particular case where the tail of  B is regularly varying. This 
result is remarkable since, to our knowledge, it is the first example in the general 
area of  rare events simulation of an asymptotically efficient solution to a problem 
involving heavy tails. It also has the unusual feature that the asymptotic efficient 
solution is not given in terms of  importance sampling. 

In addition to simulation methodology, we also discuss analytic approxima- 
tions, of which the most standard ones are Panjer's recursion (cf. Section 4.1) and 

'~,(u) ~ lB0(u),  u ---, o~ (6) 
O 

(Embrechts and Veraverbeke [I 6] and references therein) which will be refered to 
as ~/3Ev(u) in the sequel. The accuracy of (6) is for instance discussed in Abate, 
Choudhury and Whitt [1]. They computed exact values by transform inversion 
(for a summary of inversion methods and applicability of this approach see Abate 
and Whitt [2] and references therein). In the latter paper, a class PME (Pareto 
Mixtures of Exponentials, see further Section 4) with explicit Laplace transforms 
was constructed and numerical comparisons of exact values and (6) were given 
with rather negative results concerning the accuracy of (6). We present some 
further numerical results along the same lines, computing the exact values by 
simulation also for more general claim size distributions than the ones in PME. 
Motivated by these negative findings, we suggest an alternative approximation, 
essentially an adaptation of the correction due to Hogan [21] of the standard 
diffusion approximation 

where ~ denotes the variance of B. This approximation is introduced and 
discussed in more detail in Section 3. 

2. CONDITIONAL MONTE CARLO ARALGORITHMS 

In this section random variables are mostly denoted with capital letters (e.g. Z, K, 
St,., X i ,  X2  . . . .  ), the realization of simulation i (i = I . . . . .  n) with indexed capital 
letters (e.g. Zi, Ki, X~,X~ .... ). 

Recall that we refer to the CMC method as Algorithm 1 and that a conditional 
Monte Carlo estimator always reduces variance. 

The 95% asymptotic confidence intervals are given by: 

6 
~(u) :t: 1 .96-~ ,  

where ~(u) stands for the estimated ruin probability and ~ = ;;~rE'i~,  (Z i  - 2)  2. 
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2.1. A l g o r i t h m  II .  Write 

~b(u) = P(XI + ... + St," > u) 

= E[P(Xi + ... + XK > ulXi, ..., XK-t)] 

= E [ ~ o ( , , -  x ,  - ... - X , , . _ , ) ] .  

Thus we generate only Xa . . . . .  XK-I, compute  Y =  u - X i  - ... - Xk-i and set 
Z = B0(Y), the probability that the next claim causes ruin. More precisely: 

I. Generate Ki,~ geometric (p) i.e. P(Ki = k) = (1 - p)pk(k = 0, !, 2, ...). 

2. Generate ~ ,  X~.,_, from the density bo and let Yi = u -  X I - - X i 
" " ~  " ' "  K i - I "  

3. Let Zi = Bo(Yi) (Zi = I if Yi < 0) 

4. Repeat steps I to 3 n times. 
.L X-'" Z, 5. Estimate E[Z] by .~ = n z_.,i=l 

Again .~ is an unbiased estimator for "~b(u). However, even i f  the variance must be 
smaller than for A lgor i thm 1, the performance as measured by (2) is not 
asymptotical ly better: 

lira log az  
u-co log g'(u) 

P r o o f  

P r o p o s i t i o n  2.1. Assume that B E S. Then for  Algorithm I!, 

I 

2 

= _ ~ - 2  E [ ~ 2 0 ( . -  X,);K_> 2] (I p- )Bo(u  ) + 

_ - _ p ' ) B 0 ( . )  + p 2 ~ 0 ( , , ) .  p-)B~(u) + E B~(t, X t ) ,X ,  > u, K > 2  ( I -  9 --2 

The last equality follows from the fact that the event (X/ > u) occurs with 
- -9  

probabili ty B0(u) and then B ~ ( u -  X i ) =  I. Since 

2 I - - 2 .  x E[z] 2= g,(,,) ~ ~ B 0 ~ . ) ,  

it follows that a z  is o f  the order o f  magnitude at least .~/2 ~ (O.~(u))Uz. Hence 
log az  cannot  go to - oo faster than log ~(u) /2  so that I/2 is an upper bound for 
]im inf in (2). That  I/2 is also a lower bound for lim sup follows since the 
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algorithm, based upon conditional Monte Carlo, is an improvement of the CMC 
algorithm 

D 

2.2. Algor i thm III .  The third algorithm is slightly more complicated. The main 
idea underlying this algorithm is that for subexponential distributions only the 
largest claim and not the sum of all claims causes ruin as stated in Definition 1. I. 
The following two lemmas will elaborate on this idea. 

L e m m a  2.1. Let Xi,  X2 . . . . .  X,, ,.~ Bo be non negative iid random variables andde- 
note by X(i) < X(2) < ... < X(,,) the order statistic. Furthermore let Jz(,,_j) = 
(r(X(,), ..., X(,,_,)). 
Then 

P(X(,,) > x[ ) x) 

where a V b standsJbr max (a, b) .  

Proof. Suppose XI, ..., Xn iid and Xi's are absolutely continuous, then the order 
statistics form a Markov chain. 

P(X(,,) > x I .T'(,,_,))= P(X(, , )> x[X(,,_,)) 

and 

1 M x < y,  
P(X(,,) > x[X(,,_,) = y )  = f,..lxi.,lx,,,_,,(uly)du, x >_ y, 

where 

f ° ° f  x~,,,ix,._ , (uly)du = 
~o(.,) 

.,. BOO') 

(see for instance Arnold, Balakrishnan and Nagaraja [3], p. 23). Hence 

Bo (X(,,_, V x) P(X(,,) > x I ,T'(,,_,)) = ) 
a0(x(,,_,)) 

R e m a r k :  If the Xg'S are not absolutely continuous a different proof can be given 
using combinatorical arguments. 
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L e m m a 2 . 2 .  L e t S , , = Y l  + ... + X,, and S(k)=X(i)+. . .  + XCt.)(I < k < n). Then 

~0((,,- s~,,_,)) v x~,,_,~) 
P(S,, > u) = E ~0(x(,,_,>) 

Proof  By conditioning, 

P(S,, > u) = E[P(S,, > ul..T'(,,_l))] 

= E [ p ( x ( , , ) +  s(,,_,) > ul &,_,~)]  

= E[P(X(,,~ > , , -  s(,,-,~l & , - , / ) ]  

and applying L e m m a  2. I completes  the proof .  

Algor i thm II1 can then be written as: 

I. Genera te  Ki as geometric  (p), i.e. P[K, = k] = (I - p)pk(k = 0, 1, 2, ...). 
= ' - ...- X i and 2. Genera te  Xil, ..., xix, from the density b0 and set yi u - X(i ) (K,-I) 

i 
Dli = X(K,-  I)" 

Bo( Yi V mi) 
3. Set Zi = 

B0(mi) 
4. Repeat  steps I to 3 n times. 

5. Est imate E [Z] by 2 = .L,, z_,T'"i= ~ Zi. 

The main result o f  the paper  is the following 

T h e o r e m  2.1. Assume that Bo(x) = L(.v)/x('(c~ > I) with L slowly varying (i.e. 
lim~.._~ L(X,-)L(.,.) = l for  all A > 0). Then Algorithm l l lsat is f ies  

. . ~ l o g  a z  
m~mr - -  > 1. 
,,-oo l og~b(u ) -  

In order to p roo f  Theorem 2.1 we first give three Lemmas.  

L e m m a  2.3. For Algorithm II1 we have 

o'~ < E[K 2 / I --~/u'~ ~2 [ u (8) 

Proof  We first derive the condit ional  densityfx(^._,,(x) of  the r andom variable 
X(h' -I )  g i v e n  K: 

P(XK-i _< x) = P(Xo) <_ x, ..., X(K-,) <_ x) 
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+ P(XI _< x, ..., XK-I ~ x, X K ~ x) 

= KBg -I (x)Bo(x) + Bff(x). 

fx(x_,, (x) = K(K - l)B~'-2(x)-Bo(x)bo(x). (9) 

Next we calculate 

B,,(x(,.,>) ] j 

-- e L ~ -~o(X(~._,,) ,. x,~_,> _ 

-I-E[I," X(K_,)>~IK].  (12) 

The first summand (10) can be bounded as follows. If X(K-~)_<~ 
Bo(u - S(K-i)) _< Bo(~,), so that 

~2 { u) f./K .A'~._,~ (x)</r 
-< °kK / Jo B~o(-") 

< 
- J o  Bo(x) 

i,.~2/u~ 

then 
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The second summand (l I) can be bounded in the same way. 
< X(K-,) <_ ~, B o ( ( u -  S(K-,)) V X(K-,)) < Bo(~), yielding 

----2 :u/2 fxca.,l(X)d,~ 

l,~,, \ [,,/2 So(x),.,. 
< K ( K -  ) O~-~) j,,iK Bo(x) 

, ~ ' " '  (,o~o/2)/- lo~/~o/-~/)) = - K ( K -  ) 0~-~) 

TO find an upper bound for (12) we write 

E I ; X ( K _ i )  > i l K  = 

= K ( K -  1) BK-2(x)-Bo(x)bo(x)dx 
2 

t; o < K ( K -  I) (x)bo(x)dx 

1--2 u 
= K ( K - l ) ~ B o ( ~ ) .  

Adding the above inequalities leads to 

[ 1 "~2 --9 U ~I:,~l -~ ~ ,)~ 0(2) ~o(~),o~(~o(2))) 

-(.)) 
_ i Bo .~ + Bg .~ IlogB0 ~1 

and hence 

E[E[Z2IK]] E [ Z ]  2 

< E[K2fll--2/tt\ --2/u\ .~ /u\  
m 
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L e m m a  2.4. /.fBo(.x') = L(x___) L slowly varying then for any e > 0 there exist con- 
A ~  , 

stants C_(~) and C+ (e) such that 

(Y) C-(e)d"-Lv . . . .  • < Bo ~ _< C+(e)d~-ex . . . .  ~, Vx > 0 V d > O. 

Proo£ From Bo(x)x ~-~ = x-eL(x)  it follows that lim.\._0 x-•L(x)  = 0 and that L 
is a continuous function. Since L is slowly varying also l im.\ ._~x-~L(x)= O. 
Hence there exists a constant C+(e) such that L(x) < C+(e).v s for all x and hence 

_ ( ) x  _ _< • 

For the lower bound the proof is similar. Just note that if L is slowly varying 
then also I/l_. is slowly varying. 

[] 

Lemma 2.5. lf-Bo(x) = ~ L slowly varying thenJbr any e > 0 there exis't con- 
stants D l(e) and D2 (g) such that 

E[Z 2] _< (D, ( e )+  D2(e)llog Ut)U 2e-2". 

Proqfi From Lmnma 2.3 we have 

E[Z2] < E[K2(I- -2  (u) - -2(u)  ( u ) ) ]  _ ~B;  5 ÷ B° K I logB0 ~ [ 

Lemma 2.4 yields 

+E[C2+ (e)K 2°-2~+2 u-2"+2~ Ilog(C_ (e)2°-q, -°-• )  I] 

_< (DI (g) + D2(g)I log . I ) .  2¢-2'' 

where D, (e) = E[K 2] ½ C~ (e)2 2`'-2• + E[K 2''-2~+2] C~_(e)llog(C_(e)2 ''-~) 

and D2(g) = E[K 2''-2e+2] C~ (e)(~ + e). 

Now we have all the tools needed to prove Theorem 2.1. 
Proo/'ofTheorem 2. 1. From Lemma 2.5 we get 

log o-z _< log ~(D,  (e) + D2(e)llogul)u 2e-2¢' 

= ½log(D, (e) + D2(e)llogul) + (e - o.)logu 

[] 
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and therefore 

lira l o g a z  > lira ½log(D,(¢) + D2(c)llogul) + (e - o , ) logu 
,,-oo log ~(u) - ,,-oo log ~(u) 

using (6) yields 

! log(Di  (e) + D2(e)llog u[) + (e - ca)log u 
= l i ra  2 

I 
= l i ra  f log (Dr (e )  + D2(e)llog ul) + (e - ~t)log u 

. -oo - l o g  0 + log L(u) - ca log u 

E - - C a  ,~ 

Now let e ~ 0 which completes the proof. 

Remark: 
I. For  lognormal claimsizes Algorithm III| is also asymptotically efficient. The 
p roof  is given in Binswanger [8]. 

TABLE I 

SIMULATED RUIN PROBABILITIES AND THEIR PRECISION MEASURED BY (2) FOR PARETO DISTRIBUTED 
CLAIMS (ALL NUMBERS ARE ROUNDED TO THEIR LAST DIGIT) 

Pareto(1, 2), 0 = O.l, n = 1000 

,~(~,) ± ~.96-~ 
Algor i thm I Algor i thm 11 Algor i thm III ~,'('0 

u = 10 (5.6 ± 0 .3 ) .  10 -~ (6.0 ± 0 .3 ) .  10 -~ (5.5 ± 0 .3 ) .  10 -~ 5 .5 .  10 -~ 
1.21 1.56 1.38 

u = 50 (2.0 ± 0 .2 ) .  10 -I (2.0 ± 0 .2 ) .  10 -I ( I .9  ± 0.2) • 10 -I 1.9.  10 -I 
0.57 0.60 0.72 

u = 100 (8.1 ± 1.7).  10 -2 (9.0 ± 1.7).  10 -2 (8.6 ± 1.2).  10 -2 8 .5 .  10 -2 
0.52 0.54 0.69 

(I .2  ± 0 .7 ) .  10 -2 
0.50 

(1.0 ± 0 .2 ) .  10 -2 (0.9 ± 0 .5 ) .  10 -2 
0.51 

1.2- 10 -2 
u = 500 0.77 

u = 1000 (6.0 ± 4 .8 ) .  10 -3 (9.5 ± 5 .9 ) .  10 -3 (5.3 ± 0 .6 ) .  10 -3 5 . 4 - 1 0  -3 
0.50 0.51 0.88 
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"FABLE 2 

SIMULA'rED RUIN PROBABILI'I'IES AND THEIR PRECISION MEASURED BY [2) FOR PME DISTRIBUTED 
CLAIMS (ALL NUMBERS ARE ROUNDED TO "['IIEIR LAST DIGIT) 

P M E ( 3 ) ,  0 = 0.25,  ~t = 1000 

~,(,,) ± 1 . 9 6 - ~  

I o g ( 6 ) / l o g ( ~ )  A l g o r i t h m  1 A l g o r i t h m  II A l g o r i t h m  I I I  ~b(,u) 

u = 50 (5.0 • 4.4) 10 -3 ( I . 8  + 2.0) 10 -3 (3.0 + 0.9) 10 -3 3 . 1 .  10 -3 
0 .50  0 .54  0.74 

u = 60 (3.0 .4- 3.4) 10 -3 (4.3 ± 3.9) 10 -3 (2.4 -4- 2.0) 10 -3 1 .8 .  10 -3 
0 .50  0.51 0.57 

tt = 70 (2.0 =i: 2.8) 10 -3 (I .8 ± 0.1) l0  -3 (I .0 ± 0.2) 10 -3 1 .2 .  10 -3 
0.50 1.04 0.84 

u = 80 (1.4 ± 0.1) 10 -4 (8.8 ± 2.0) 10 .-4 8 . 2 .  10 -4 
1.05 0.82 

u = 90 ( I . 0  =k 2.0) 10 -3 ( I . 0  :::k 0.1) ]0 -4 (5.6 :t: I . I )  10 ~ 6.1 . 10 -4 
0.50 1.01 0 .84  

u = 100 ( I . 0  ± 2.0) 10 -3 (8.2 ± 0.3) 10 -5 (4.1 =k 0.7) 10 -4 4 . 7 .  10 -4 
0 .50  1.06 0.87 

TABLE 3 

SIMULATED RUIN PROBABILITIES AND THEIR PRECISION MEASURED BY (2) FOR LOGNORMAL 
DISTRIBUTED CLAIMS {ALL NUMBERS ARE ROUNDED TO TIIEIR LAST DIGITI 

L o g n o r m a l ( - I . 6 2 ,  1 . 8 ) . 0  = 0 . l , n  = 1000 

,~(..) ± ~.90-~ 
Iog(6")/Iog(¢') A l g o r i t h m  I A l g o r i l h m  II A l g o r i t h m  111 ,~(~l) 

u = 0 (8.3 ± 0 . 2 ) .  10 -I (8.9 • 0 . 2 ) .  10 -I (9.0 ± 0 . 2 ) .  10 -I 9.1 - 10 -~ 
5.35 I I . I  I 1.4 

u = 100 (3,5 ± 0 . 3 ) .  l0  -I (3.9 ~ 0 . 3 ) -  10 -1 (3.4 ± 0.3) 10 -I 3 . 4 -  10 -I 
0 .70 0.82 0 .84  

u = 1000 ( I . 2  ± 0 . 7 ) .  10 -2 (7.4 ± 4 . 8 ) .  10 -3 (8.0 ± 2 . 2 ) .  10 -3 1.1 - 10 -2 
0 .50  0 .52  0.69 

u = 1 0 0 0 0  0 (3.3 ± 0 . 1 ) .  10 -~' (3.5 ::t: 0 . 4 ) .  l0 -s 4 .  10 -5 
- 1.09 0.93 
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2. If B0 (or B) is a Weibull distribution, 

bo(x) = , , . ¢ - ' :"" ,  ~o(x)  = e-"", 

Algori thm Ill  is not efficient in the sense of  (2). Indeed, we get 

E[Z21K = 2] > [ , / 2  -B~ ( u y ) -  

- . 0  oty  --rT" sx,,,(y).y 

f 
. / 2  _~ 

= 2 B;(u - y)vy"- ldy 
.Io 

:u /2  

_> 2v(u/2)"- ' . /°  "B20(t'- y)d)' 

= 2v(u/2)"- ' .  Bo(Y)dy 
/2 

~/t 11 r --2 > 2 vy - J B o 0') dy 
• / 2  

So we get 

= e -2("/2)' - e -2"' = e-2 '-" '"(I  + 0( I ) )  

£1og(E[Z2IK= 2]P(K = 2 ) -  E[Z2]) 
lira log~7. < l ira2 
,,-~o~ log V~(u) - ,,-oo log(Bo(,)/O) 

21 -~'uv/2 I 
< lira - -  = - -  < I 

Of  course we should ment ion that this does not imply that the a lgor i thm does not 
work well in the Weibull setting; and indeed the numerical  experience is 
convincing. It should be noted that, as a condit ional  M C  algori thm, Algor i thm 
111 is always an improvement  on the crude MC method,  even in the light tailed 
case. (Though here we do not obtain any improvement  of  the asymptot ic  
efficiency and the a lgori thms of  Asmussen [4], Siegmund [29] are superior.)  

3. THE CORRECTED DIFFUSION APPROXIMATION 

The s tandard diffusion approx imat ion  (Iglehart  [22] or Grandel l  [19]) is given by 
(7). For light-tailed r andom walk problems Siegmund [30] derived a correction 
which was adapted  to ruin probabil i t ies by Asmussen [6] and shown to be 
extremely accurate.  An alternative covering also certain heavy-tailed cases was 
given in Theorem 2 o f  Hogan  [21]. As in Asmussen [6], it requires some 
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adaptation to ruin probabilities which we shall next present. The result will be an 
approximation of the type 

where 

qdH(t') = exp( -c ,  u)(l + c 2 u -  c3), 

C I 
20ml 402m~m3 20mlm3 

C 2 - - - ~  C 3 - -  
In2 3m~ 3,n~ 

(13) 

and m~ is the i-th moment of B. Note that formally the conditions of Theorem 2 
in Hogan [21] lead to the requirement that m5 < cxD though our numerical 
experience indicates that this is not crucial. 

To derive (13) from Hogan [21], substitute first v = ~/0 to get 

4T02 v 19Eo,S2T+'~ 
P-o('r,, < cxD) ~ e -2°~ 1 + ~ EoS~+ ,}" (14) 

Next we consider a RW with drift -IL and 0.2 = EoX~ not necessarily = I, and r .  
The normalized RW S,,/cr has drift - 0  = -/_L/0., 7 = EoX1/0 3,'u = u/a. Similar 
substitutions for the ladder height moments yield 

P_t,(7",, < oo) ,-~ e -2' ' ' /~ ( I  4 
4EoX~/cr 3. #2/o2. u/o" #/~[EoS~+/o2"~ 

3 EoS,+/0. J 

e_(_,/o_), , 4EoX~/fl ttEoS;+ "~ 
= l +  " g:G37 2 (15) 

In the next step, we take the RW as a discrete skeleton of  the risk process. 
S,,=R(nh)- cnh. Then 

eL = hOAnq, 0.2 = ham2, Eo,g~ = ham3. 

Further the risk process corresponding to 0 = 0 has ladder height distribution Bo 
so that 

EoS~+ ,[~,,o x2Bo(dx) 2m3 h ~ O. 
EoST+ * j ~  x Bo(dx) -- 3m2' 

Taking the limit h ,L 0 in (15) we thus get 

'~(u) ~. e -(2°'\''''/'x'''-')'' ( I  + 
4)m13 (O,,~ml )2 

3A3m~ 
2m30Am I 

=e-< '"( I  + c z u - c 3 ) .  
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Various other approximations and bounds for ~b(u) are known. For an overview 
see Embrechts and Kl/.ippelberg [15], Feilmeier and Bertram [17], Panjer [26], 
Buchwald, Chevallier and KI/ippelberg [9] and references therein. 

4. NUMERICAL RESULTS 

In this section we present the numerical evaluation of the algorithms for the PM E, 
the Pareto and the Lognormal case. For the PME distributions Abate, 
Choudhury and Whitt [I] have calculated the exact values of  the ruin 
probabilities. Therefore we choose the parameters in such a way that we can 
compare the simulation and the exact results. For the Pareto and the Lognormal 
case only few exact values are available. The Panjer approximation ~be(u) (see 
below) is chosen as a benchmark. 
The simulation has been done with MATLAB 4.2a. To construct Bo distributed 
random variables we used the inversion method for the Pareto case and the 
inversion/rejection method by Newton-Raphson iteration for the other two. For 
more details see for instance Devroye [11]. 

4.1. The  Pan je r  recurs ion .  Panjer [27] suggested to use a recursion formula for 
calculating the probability of  ultimate survival q~ = 1 - ,~b. The recursion formula 
is based on a discretisation of the density ~b' which we denote by q~* leading to 

1 
~~gO,) (a*(u-  y) u = 1, 2, ... 

4 , * ( u )  - I + 0 - g ( 0 )  v = ,  

with 

0 
& ' ( 0 )  - 1 + 0 -  g ( 0 )  

where g is a discretised version of the density bo. Finally we get 

~ ( u ) ~  l - ~ * O : )  u = O ,  I, 2, ... 
y=O 

The time to evaluate this procedure increases for large u since the recursion 
always has to start with u = O. A great advantage of this method is that it leads to 
upper and lower bounds for '~(u) by choosing g in such a way that gl(x) < bo(x) 
for the lower bound and g . ( x ) >  bo(x) for the upper bound. Since b0 is a 
decreasing function we can set g / ( x ) =  B0([x]+ 1) -B0([x] )  and g , (x)=-  
B0([x]) - B0([x] - 1) (Ix] stands for the integer part of  x). For the approximation 
of ~b(u) denoted by "~,e(u) we choose g,(x)  = B0([x] + 1/2) - B0([.,-] - I /z) .  
Panjer's recursion method has meanwhile become the standard tool for actuaries; 
see for instance Dickson [13] for a comprehensive review. 
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4.2. P a r e t o  D i s t r i b u t i o n  ( P A R ( a ,  b)). The distribution function of  the Pareto 
distribution is given by: 

((°)+)  B(x) = 1 -  ~ l (x  > a) where a > O ,  b >  I, and x > O .  

The mean is #a  = ab/(b - I), and the density bo and the cdf  Bo of  the integrated 
tail distr ibution are respectively 

+-,( (+)+ ) = l (x  > a) , b0(x) ~ ; ( x < a ) +  x - 

( +, c°)+-,) 
a0(x)  = x I ( x  < a) + I - ~x t(.~ >__ a). 

For  the simulat ion with the inversion method we also need Bo I (x) which is 

° + ( +  ,) + c,>+ ,) 
e~'(x)=~-=-i-x I .~ < @ +(b(l_x))~_÷/ _ @  . 

4.3. P a r e t o  M i x t u r e  o f  E x p o n e n t i a l s  D i s t r i b u t i o n  (PME(r ) ) .  This class of  
distr ibution was defined in order  to have subexponent ial  distr ibutions with an 
explicit Laplace t ransform.  Start ing from a Pareto distribution the P M E  is 
defined as follows. 

D e f i n i t i o n  4.1. Let for r > 1 

/ ( x )  = r x - ( r + ~ / I ( x  > - - )  
I' 

be the density function o f  a Pareto distribution with mean 1. Then the density o f  a 
Pareto Mixture o f  E.wonentials is defined as 

h(x)  := f ( y )  o x p ( - x ) a y  = x-( '+~)v r +  l, ' 
y r - I  x '  

where ~(a, u) = t,,-l o x p ( - t )  dt is the incomplete Gamma fimction. 

The tail behavior  o f  the density of  a P M E  distribution is the same as for the 
Pareto distribution, namely ,--, CrX -(r+I) (Cr a constant  depending only on r). The 
distribution function Bo(x) can be calculated explicitly for some values of  r, for 
example  for r = 3: 

' (  ) B o ( x ) =  1-9--r2 8 - ( 8 + 1 2 x ) e x p ( - ~ )  . 
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4.4. L o g n o r m a l  Dis t r ibu t ion  (LN(m, s)). The density of a Lognormal distri- 
bution is given by 

_', 
b(x) - svT~.~exp(--~ ) i(x > 0) 

and the k-th moment #~ )=exp(km+½k2s2 ) .  B ( x ) = ~ ( w ( x ) )  where O(.) 
denotes the c.d.f, of a standard normal distribution and w(x) = ~ (log(x) - m). 
For efficient programming the following representation of Bo(x) is useful: 

If" Bo(u) = #-7Jo (I - B(x))  dx 

=-[- ( u--[-  f'' ['''l''l exp(-y2/2)dv v'T~.lo ~,-o~ 

I 
= - -  ( u  - u , ~ ( w ( u ) )  + # n ' ~ ( " ' ( "  - s ) ) .  

#n 

10 0 

I X  EV 

I 

10-' 

1 0  - 2  . . . . . . . .  i . . . . . . . .  I . . . . . . .  

10 ~ 10 2 10 3 10 4 

FiGUrE I: P A R ( I . I . 5 ) ,  0 = 0.3. 
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Thorin and Wikstad [31] have calculated the exact ruin probabilities for some 
values of  u and 0. Therefore we cornpare our estimates with those values. 

4,5. Resul ts .  The Tables I-3 contain the estimates for different initial reserve u de- 
rived from the three algorithms together with their confidence intervals and the 
precision meast.red by (2). The estimates for PAR(I,2)  distributed claims with se- 
curity loading 0 = 0. I are presented in Table I. The results for PME(3) distributed 
claims with t9 --- 0.25 are shown in Table 2 and for Lognormal (-1.62, 1.8) claims 
with 0 = 0.1 in Table 3. 
In the Figures I-5 we give the simulated values from Algorithm ill based upon n 
= 200 replications, the approximation "thEy(u) and ~/:H(U) (if the third moment  
exists). These values are compared with the estimates, lower and upper bound 
derived fi'om Panjer's approximation, Figure 1 shows the values for PAR(I,I .5) ,  
0 = 0.3, Figure 2 for PAR(I,2),  0 = 0.1 and Figure 3 for PAR(I,5),  0 = 0.1. For 
the Weibull distribution we give the figure for v = I/2,  0 =  0.2 and for 
v =  I/3,  0 = 0 . 1 .  

5. CONCLUSION 

Below we give an overview of the most important properties of the algorithms 
and approximations we considered. The key observations from the above tables 
and figures as well as other examples, see Binswanger [8], are: 
OI Algorithm I works fine for 'small '  initial capital and underestimates ~b(u) 

when u is 'large'. 
02  Algorithm II usually overestimates ~,(u) for "small' u and underestimates for 

' large' u. 
03  Algorithm Ill is always of the right order of  magnitude. 
0 4  The precision measured by (2) is usually around ½ for Algorithm 1. For 

Algorithm II it is also around ½ as long as the estimates are valid and around 
I when the estimates are wrong. The precision of the third algorithm is 
always around I even when the claim size distribution is Weibull. 

05  The corrected diffusion approximation (13) gives very satisfactory results for 
"small' initial capitals and is poor for 'large" initial reserves. The less heavy 
tailed the distribution of the claims is, the better the approximation is. 

0 6  The asymptotic approximation (6) often requires u to be so large that the 
resulting ruin probability becomes extremely small, in fact much smaller than 
typical values of  practical interest. The approximation turns out to be better 
the more heavy-tailed B is. In particular, it is much better for Pareto then for 
Weibull distributed claims. 

Of  course it would be nice to know what ' large' and "small" initial capitals mean. 
The interpretation of "large' or 'small" depends on the kind of distribution and on 
the choice of  its parameter as well as on the security loading 0. 
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A comparative study of the accuracy of the various bounds and approxima- 
tions in De Vylder and Goovaerts  [10], Dickson [12], Omey and Willekens [24] 
and Omey and Willekens [25] is given by Binswanger [8]. In the latter, also 
alternative variance reduction techniques, like the use of regression-adjusted 
control variates, are to be found. 

We point out also that Algorithm 111 applies to the total claims as well. That is, 
rather than the ruin probability, one wants to compute 

) G(x) = P t > x 

by simulation where M is the number of  claims in a given period. The simplest 
case is where M is Poisson with parameter A, say, and one can proceed just as for 
the ruin probability, generating M as Poisson rather than geometric. One again 
obtains the efficiency property (2). More generally, M could be allowed to have 
any distribution with finite second moment.  For example, one could treat risk 
processes where the arrivals occur according to some Cox process in this way. 

Besides Panjer's recursion also transform inversion via FFT offers an 
interesting estimation method. See for instance Embrechts, Griibel and Pitts 
[14] and Buchwald, Chevallier and Kliippelberg [9] for a discussion in the context 
of  insurance. 

For a broad overview of the application of numerical methods in risk theory, 
see Feilmeier and Bertram [17]. 
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S U M M A R Y  

The operation of a bonus-malus system, superimposed on a premium system involving 
a number of other rating variables, is considered. To the extent that good risks are 
rewarded in their base premiums, through the other rating variables, the size of the 
bonus they require for equity is reduced. This issue is discussed quantitatively, and a 
numerical example given. 

KEYWORDS 

Bonus-malus, experience rating. 

1. INTRODUCTION 

A system of bonus-malus (BM) calculates the premium applicable to particular con- 
tract as a base premium, adjusted by a quantity (the bonus or malus) which depends on 
previous claims experience. 

Consider a BM system in which the BM has J possible values, called the BM levels. 
These may be labelled 1, 2 . . . . .  J, called the BM classes. The system is defined by the 
classes, levels, and the rules according to which claims experience is mapped to tran- 
sitions between classes. 

The collection of classes, together with their associated levels, will be referred to as 
the BM scale. 

Over time, the portfolio will be distributed over the BM classes. In a typical BM 
system the distribution will ultimately stabilise. Because occupancy of each BM class 
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is a function of claims experience, the individuals in the portfolio with low claim fre- 
quency parameters will tend to gravitate to the BM classes characterised by light 
claims experience. Conversely, for individuals with high claim frequencies. 

The ultimate average claim frequency in each BM class defines the level to which 
that class is theoretically entitled. This, and related issues, have been dealt with many 
times in the literature. The two books of Lemaire (1985, 1995) provide a summary of a 
number of  relevant matters. 

It is common in such writings to assume that BM is the only means by which pre- 
miums are differentiated. In other words, all contracts are subject to the same base 
premium. 

In practice, some portfolios, e.g. motor, are rated on a comparatively large (perhaps 
10 or so) other variables. These will also differentiate individuals according to claim 
frequencies. 

Consider the distribution of the portfolio over risk classes in the presence of these 
other rating variables. If they are used effectively by the premium system, then those 
BM classes with low average claim frequencies will tend to have low base premiums 
also. 

In this event, the justifiable BM levels need to recognise the differentiation of un- 
derlying claim frequency by experience, but only to the extent that this differentiation 
is not a l ready recognised within base p remiums .  
Subsequent sections of this paper examine the detail of this issue. 

2. NOTATION 

Let: 
0 = vector of covariates (e.g. age, sex, etc.) with risk premium of an individual; 
A = an individual's true underlying risk premium. 

It is asumed that, for given 0, there is a distribution of values of A. Suppose that the 
pdf of A, conditioned on 0, takes the form: 

f ( ~  I 0) = g(2  1 ~(0)),  (2.1) 

for some pdf g(.) and where 

~(0)  = E[A 10]. (2.2) 

The parameter 0 will vary from one contract to antother, and hence so does p(0). Let 

h(/.t) = pdf of/.t over the whole portfolio. 

Now introduce a BM system with classes I, 2, ..., J, and let 

tr~')(;t) = probability that a policy owner with underlying risk premium K occupies 
BM class j  in the t-th period since commencement  of  the system. 

Note that 
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J 

X/r~ ' ) (2 )  = 1 for each t ,2. 
j= l  

(2.3) 

The system is initialised at t = 1. It is assumed Markovian.  
For most realistic BM systems, the vector [~ ' (2 )  . . . . .  ~')(2)], representing the dis- 

tribution of BM levels in period t of risks characterised by 2, will approach a s teady 
state with increasing t. It will be assumed here that such a steady state exists, and that 
convergence to it occurs over time. Let aq(2) = the steady state value of ~")(A). 

One can define the Bayesian posterior expectations: 
2) t) = E[A IBM class in t-th period =j] ,  (2.4) 

u~ t) = E[~I BM class in t-th period =j] ,  (2.5) 

and let 2/,/.tj be the steady state versions of ~'~, #~'. 
One way of viewing these quantities is as follows. The portfolio consists of two le- 

vels of heterogeneity: 
• different risk classes defined by different/.t(0); and 
• within these different risk classes, different individuals characterised by their per- 

sonal values of 2. 

The quantities/JJ'~ indicate the extent to which the BM system differentiates the risk 
classes over time. The quantities ~'~ indicates the extent to which the BM system dif- 
ferentiates individuals over time. 

3. SETTING THE B O N U S - M A L U S  S C A L E  

The Bayesian expectation X~ t) can be represented as: 
t 

2~ ) = j ' 2  p(t)(2,j) d2/~pO)(2,j) d2, (3.1) 

where p(.) will be used generically to denote a pdf and in this case p~'(.) is a pdf in the 
t-th interval. 

Now the joint pdf in (3.1) can be expanded: 

p(t) (2, j )  = ~}')(2) pC,)(2) (3.2) 

= 7r~')(2) J 'g(2 I/./) h(/.t) du. 

By (3. I) and (3.2), 

~ ' )  i ' d#  d,g 2 try')(2) g(21 ~) h(p) 

J = J'dl.t d2 7r~0(2) g(21/J)  h(/.O 
(3.3) 

Similarly, 
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"J Sdp air/r~')(A) g(Z I p) h(p) 
(3.4) 

Define 
(t) . (t) r) ') = Zj  / p j  . (3.5) 

As in Section 2, the absence of the time index indicates the steady state, i.e. 

rj = 2 j  / ]dj (3.6) 

To interpret r~', first consider the degenerate case in which h(.) concentrates all mass 
at a single value p. That is, the portfolio contains only one value of 0; there is no vari- 
ation of risk covariates, which in turn means that all policy owners are indistinguisha- 
ble before the accumulation of claims experience. This is the case most commonly 
considered in the literature. 
In this case (3.4) gives 

hence (3.5) becomes 

u(t) j = p, (3.7) 

rJ t) = Z~ t) / p .  (3.8) 

The number 2~ '), is effectively the Bayesian revision of p taking into account the in- 
formation that BM level is j in the t-th period. Thus rJ/), is the factor by which the 
Bayesian revision adjusts the policy owners '  prior expectation. Equivalently, ~') is the 
factor by which t years of experience revises the prior risk premium in BM classj .  
The situation involving general h(.) is similar. However, in this case the composition 
of BM class j with respect to the prior expectation p(0)  will change over time. For 
example, there will be a tendency for the contracts with the lowest priors to migrate to 
the BM class with lightest claims experience. Thus,/.t) '), tracks the average prior in BM 
level j over time. 

Despite this change, ~'>, still denotes the factor by which experience revises the 
average prior risk premium in BM levelj. 

The relevance of this is as follows. The average prior/..t) '~ is the average "standard 
premium rate" (i.e. the rate before recognition of experience) applicable to BM class j  
in the t-th year. Thus 100 [r) ' ) -  I] is the BM percentage justified by experience in 
classj .  

Suppose that BM class K receives these standard rates. Then the factor which can 
be justified as relating BM class j to standard rates is r~ '1 / r~). These factors can be 
summarised in the vector 

r. ~t) = r (') I r~ '1, (3.9) 

where r "J is the vector with components r} '). 
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The conclusion is that the maximum differentiation between premiums for different 
classes will be according to a factor 

mjax rj / ,nin rj, (3.10) 

with ~ defined by (3.6), i.e. a factor of 

m . a x ( 2 j / p j ) / n ~ ! n ( ~ . j / p j ) .  (3.1 I) 
J 

If the differentiation of priors #j over BM classes is left out of account, the differentia- 
tion of  premiums wil be according to a factor of  

mjax ~j l n~in ~,j, (3.12) 

which will usually be substantially larger than (3.11). 

4. NUMERICAL EXAMPLE 

A specifically structured portfolio of  risks, subject to a particular BM system, has been 
simulated and values of  ~'1, 11~ '1 recorded. 
The portfolio consists of 10 groups of individuals structured as follows. 

TABLE 4.1 
PORTFOLIO STRUCTURE 

Risk Group Mean cell average Coefficient of variation Proportion 
claim frequency of within-cell claim of portfolio 

frequency 
% % % 

1 6.5 75 4.0 
2 8.9 65 18.9 
3 I 1.4 60 15.8 
4 13.7 55 20. I 
5 16.1 50 12.0 
6 20. I 45 11.6 
7 24.9 40 10.3 
8 29.7 40 4.5 
9 36.0 40 2.1 
l0 50.5 40 0.6 

TOTAAL 15.7 100 

This structure was obtained by constructing a multiplicative model of claim frequency 
according to a number of  covariates (but excluding BM), and then counting the num- 
bers of policies in bands of modelled claim frequency, 5-7.5%, 7.5%- 10%, etc. 

The coefficient of variation of each band was chosen largely by informed guess- 
work, but subject to the criterion, again guesswork,  that within-cell variance should 
increase in absolute terms with increasing frequency, but decrease in relative terms. 



324 GREG TAYLOR 

Individuals within a particular risk group are sampled from a certain gamma distri- 

bution with the parameters set out in Table 4. I, as will be described later. There are 9 

BM classes, of which Class 6 is the standard. A higher class number indicates a higher 

premium. The rules for transition between the classes are as follows. 

TABLE 4.2 

BM TRANSITION RULES 

Closing class after a year i f  
Opening 

Class 3 or more 
0 claims I claim 2 claims claims 

9 8 9 9 9 
8 7 9 9 9 
7 6 8 9 9 
6 5 7 8 9 
5 4 7 8 9 
4 3 6 7 8 
3 2 5 7 8 
2 1 4 6 7 
1 1 3 5 7 

Appendix A gives the technical detail of  the simulation 

The claims experience of this portfolio is simulated over 30 years. At the beginning of  

year I all insureds are assumed to be in Class 6. The distribution appears to stabilise 

by about the end of  Year 24. Consequently, the following results are averages over 

years 24 to 30. 

TABLE 4.3 

SIMULATION RESULTS 

BM Class Average True claim Cell claim Ratio: true~cell 
j Proportion of  frequency ~ frequency I.ty claim frequency 

portfolio 
% % % ~o 

9 1 46 26 175 
8 1 38 24 156 
7 2 32 22 145 
6 3 30 22 139 
5 4 23 20 116 
4 4 21 19 I11 
3 10 18 17 103 
2 9 17 17 102 
! 66 12 14 85 

The table shows that, if base premiums reflect cell claim frequencies accurately, the 

BM scale should vary by a maximum factor of  about 2 [cf (3. II)]. If the variation of  

the base premiums were left out of  account, the BM scale would vary by a factor of 

nearly 4 [cf (3.12)]. The BM scale justified by the middle columns of Table 4.3 in the 
case K = 6 is as follows. 
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TABLE 4 .4  

PREMIUMS FOR BM CLASSES 

Premium as % 
BM Class of standard 

J 
recogn~ing covariates igno~ng covaria~s 

9 126 152 
8 112 125 
7 104 107 
6 I00 I00 
5 83 77 
4 80 71 
3 74 59 
2 73 57 
1 61 40 

If these premiums had been computed from the column of  X~ in Table 4.3, ignoring 
the effect of the covariates, quite different, and misleading, results would have been 
obtained, as shown in the final column of  Table 4.4. 

It is of interest to examine how results of  this type vary as the BM system varies. 
Consider the case in which Table 4.2 is replaced by a simple set of rules which provi- 
de for: 
• 1 step forward for each claim-free year; 
• 4 steps back for each claim. 

This is much more severe than Table 4.2 which is largely a l-forward/2-back set of  
rules. 

The new system replaces Table 4.4 by Table 4.5. 

TABLE 4.5 

PREMIUMS FOR BM CLASSES IN MORE SEVERE SYSTEM 

Premium as % 
BM Class of standard 

J 
reco~nising covariates ignoring covariates 

9 123 150 
8 113 125 
7 104 109 
6 IO0 100 
5 92 83 
4 91 81 
3 86 75 
2 83 72 
1 73 55 

If the ratio of  the two columns in Table 4.5 is regarded as an "error ratio", measu- 
ring the error in ignoring covariates, the following comparison is noteworthy. 
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TABLE 4.6 

ERROR RATIOS FOR DIFFERENT B M  SYSTEMS 

Error Ratio 
BM Class 

j Original BM system Severe BM system 
(Table 4.4) (Table 4.5) 

% % 

9 121 122 
8 112 111 
7 103 105 
6 100 100 
5 93 91 
4 89 89 
3 79 88 
2 78 86 
1 66 75 

Although the BM systems are very different, and so are the levels of bonus justified 
by them, there is a good deal of similarity between their error ratios. 

APPENDIX A 

TECHNICAL DETAIL OF SIMULATION 

1 Individual claim frequency 

Consider an individual in BM class j with ~jtJ m given by Table 4.1 . Let wj be the asso- 
ciated coefficient of variation in Table 4. I. The value of A for this individual is assu- 
med to be 

A =/.t}l)[l + w (XI2-1) . j  ], (A. I) 

where X ~ Z2 2. 

Since 7d is gamma with mean 2 and standard deviation 2, (A. I) gives E[A] = u! I~ r~j  , 

= ,9)  as required. s.d. [A] w./~j , 

Values of X are simulated as: 

X = X~ + X 2 , (A.2) 

where X~, X z are independent, and 

X i --- N(0,1), i = 1,2. (A.3) 

2 Claim inter-arrival times 

For the individual discussed in Appendix A.I,  it is assumed that the number of claims 
in a year is distributed Poisson (A). Hence inter-arrival times are exponentially distri- 
buted with mean I/A. These inter-arrival times have been simulated as: 

T = - [ log0  - U ) ] / A ,  (A.4) 
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where U is uniform [0,1 ]. 
Note that (A.4) is equivalent  to: 

U = 1 - e x p ( - A T ) ,  (A.5) 

from which exponential i ty of T is easily proved. 
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APS R E I N S U R A N C E  

By BRUNO KOLLER, NICOLE DETTWYLER 

ABSTRACT 

This paper presents a new reinsurance product, called 'Adaptive Pivot 
Smoothing'  (APS). It is designed to reduce the variance of the risk reinsured 
without affecting the mean. Investment theories have provided the idea for the 
product. 

KEYWORDS 

Reinsurance, Financial Reinsurance, Smoothing. 

1. THE NEED OF A NEW REINSURANCE PRODUCT 

'Adaptive Pivot Smoothing',  APS for short, is a new reinsurance product. Why 
do we need a new reinsurance product? Do existing products not already provide 
safe cover  for all of the needs of  insurance companies? We believe that traditional 
reinsurance treaties have three shortcomings in practice. 

Firstly, traditional reinsurance products do not take account of  the ideas of  
modern portfolio theory. Inves tors  and insurance company managers alike aim to 
maximise the returns on their portfolios and, at the same time, minimise the 
volatility of the results. We have come up with a reinsurance product which does 
not alter the expectation of the claims distribution but which manages to reduce 
the variance to a level defined by the direct insurer. 'Pivot '  in the acronym APS 
hints at this feature. 

Secondly, there is more and more demand for reinsurance with potential risk of  
misuse. Health insurance policies spring to mind here most notably. Generally 
speaking, health insurance portfolios are quite homogeneous, without significant 
fluctuations in terms of loss load. In most cases reinsurance is not necessary. The 
actual problem facing health insurance companies is how to adapt premiums on 
time to the rapidly growing costs of  health care. This is not always possible for 
political reasons. Consequently, insurers might be tempted to pass poor loss 
performance on to the reinsurer. If the reinsurance company, in turn, insists on 
increasing the premiums, the health insurance companies cancel their reinsurance 
policies. An experience rating component  in our new product greatly reduces the 
potential for misuse of  the cover. The term 'Adaptive '  in APS reminds of this 
cha racteristic. 

The third shortcoming often comes to light when a new insurance product is 
launched. In response to increased pressure from their competitors, insurance 
companies must develop covers and set rates with only very sketchy statistical 

material available sometimes. A reinsurance program would be advantageous 
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which a) offered temporary financing in cases where premiums are too low and 
b) skimmed off profits in cases where premiums are too high, setting these funds 
aside to be used later on. This gives the insurance company time to analyse 
business trends and to adapt  premiums accordingly. Our new reinsurance product 
allows profits and losses to be carried forward to later years - the term 
'Smoothing'  in APS was chosen for this reason. 

2. TRADITIONAL REINSURANCE 

In technical terms, reinsurance means splitting a risk in two. One part of the risk 
(the retention) rests with the insurer, while the other part is ceded to the reinsurer. 
The split is determined by the payment function h(S), which specifies how much 
the reinsurer is required to pay towards every claim S (S is a random variable). 
Thus, the insurance company carries the retention, S - h(S), the reinsurer the risk 
h(S). 

The expected wflue of the retention distribution is 

E [ S -  h(S)] = E[S]-  E[h(S)], 

and the expected value of the ceded distribution is 

Elk(S)]. 

The variance and the standard deviation of the claims distribution of S are 
labelled VAR i S ]  and S D V [ S ]  respectively. The variance of the retention 
distribution, VAR [S-h (S ) ]  is: 

VAR[S - h(S)] = VAR[S] + VAR[-h(S)] + 2. COV[S,-h(S)] 

= VA R[S] + VA R[h(S)] - 2. CO V[S, h(S)]. 

Writing K for the correlation coefficient we get: 

V A R [ S -  h(S)] = VAR[S] + VAR[h(S)] - 2K. SDV[S] . SDV[h(S)]. 

If we make the obvious assumption that the correlation between S and h(S) is 
positive, the value K must be between 0 and I, which enables us to make the 
following estimate: 

(SDV[S] - SDV[h(S)])2< VAR[S - h(S)] < VAR[S] + VAR[h(S)]. 

If there is complete linear correlation (K= I), the following equations apply: 

I/A R[S - h(S)] = (SD V[S] - SD V[h(S)]) 2 

S D V [ S -  h(s)] + SDV[h(S)] = SDV[S]. 

Thus, the reduction of the variance can be achieved most effectively by means of a 
linear payment function! 
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The situation o f  the cedent buying reinsurance can be quantified by 

S - P[S] - h(S) + Q[h(S)]; 

here P represents the premium income and Q the reinsurance premium. If  we 
assume that Q[h(S)] > E[h(S)], consequently 

E [ S -  P[S] - h(S) + Q[h(S)]] > E[S - PIg]]. 

In other words, reinsurance increases the mean burden on the cedent. 
However,  if reinsurance is unable to lower the mean burden at all, it is difficult 

to see how a payment  function h can be used with E[h(S)] > 0. (Common  to all 
traditional forms of  reinsurance - proport ional  and non-propor t ional  - is 
E[h(S)] > 0.) This merely amounts  to an exchange in premiums and losses 
without  giving rise to any economic benefit. It would be much wiser for the cedent 
to agree on a payment  function with E[h(S)] = O. 

The reinsurer obviously cannot  be expected to lower the cedent 's  burden. The 
benefit offered by reinsurance is that it brings about  a reduction in volatility or, if 
volatility is measured in terms of  variance, a precisely quantified reduction o f  the 
variance. Consequently,  the cedent should be asking the reinsurer to reduce the 
variance of  the claims distribution by x per cent; the service provided by the 
reinsurance company  can then be assessed accurately. 

To sum up, an insurance company would be best advised to take out a rein- 
surance policy in which E[h(S)] = 0 and SDV[h(S)] = c.  SDV[S], where 0 < c < 1. 

This view of  reinsurance is very much in accordance with modern portfolio 
theory. The investor is aiming to maximise expected returns, whilst at the same 
time minimise volatility. The risk manager  at an insurance company  endeavours  
to achieve precisely the same effect, stabilising profits on a high level with small 
fluctuations. 

3. APS REINSURANCE 

The above analysis clearly shows that the new product  should display a linear 
payment  function, whereby the ceded distribution should have an expected value 
o f  zero. 

Assuming a linear payment  function of  

h(S) = c.  ( S -  E[S]),where 0 < c < 1, 

we can derive the following relations: 

E[h(S)] = 0 

E [ S -  h(S)l  = E[S] 

v x  R[I,(S)I = c: . VAR[S] 

V A R [ S -  h(S)] = (I - c) 2. VAR[S]. 
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The point (E[S],0) where the linear payment function intersects the x-axis has 
been called the ' P i v o t ' i n  order to emphasize that both losses and profits are 
affected by reinsurance. If the claims ratio is higher than the pivot, the reinsurer 
pays the cedent. However, if it is smaller, the cedent pays the reinsurer. 

It is crucial to the success of  this design that the payment ftmction intersects the 
x-axis at the expected value of the claims distribution. Of  course the ' true'  
expected value is hardly ever known. What is more, the expected value can shift 
with time. Therefore, we have to consider a mechanism which automatically 
adapts the payment function, or to be more precise the pivot, to current claims 
experience. This is a vital component of APS Reinsurance. 

The adaptation mechanism must be defined in the treaty to ensure that the 
cedent and the reinsurer do not disagree on the 'correct '  pivot. If the adaptation 
mechanisrn is to work properly, it must be unambiguous, simple and efficient. 

It is important to understand that we are faced here with a forecast problem. 
We have to forecast the pivot for the coming financial year - not assess the pivot 
for the previous period. The cedent needs to know the exact terms of the 
reinsurance treaty in advance. Section 5 examines an adaptation mechanism, 
based on credibility; other methods are possible and may be even better, 
depending on the situation. 

With our choice of  the payment function, the expected value of claims being 
ceded is zero. Therefore the premium, calculated as 'expected claims plus 
loading', will be much lower than the premium for traditional reinsurance 
products. The choice of  the premium calculation principle needs to be given very 
careful consideration. Thc 'expected value principle', for instance, is pointless 
here. The variance principle or the standard deviation principle are possible. 
However, we recommend that the principle of  zero utility be used (cf. GERBEr 
(1979), page 67) because also higher moments should be taken into account, given 
the dominance of the loading. 

4. IMPLEMENTATION 

APS Reinsurance is based on the c l a h n s r a t i o r  of a certain portfolio. The claims 
ratio for financial year t is defined by 

,', (t) = - S ( t ) / P ( t ) ,  where S(I)  _< O, P(t)  > O. 

S( t )  represents the claims during financial year t, and P(t)  represents the premium 
income during the same period. When calculating rl (t), premium income, claims 
and claims reserve must be allocated to the correct year. 

The p a y m e n t f i , T c t i o n h  becomes a function of claims ratio rt: 

h(,'l (t)) = a .  ("l (t) - E[,'t (t)]), where 0 < a < 1. 

The parameter a is referred to as the smoo th ing  fac tor .  It defines the reduction in 
standard deviation brought about by the reinsurance. 
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The claims ratio after reinsurance, r2, becomes 

r2(t) = rl(t) - h(rt(t)) = (1 - a) .r l ( t )  + a. E[rl(t)] 

r2 lies between rl and E[r~(t)], thus damping the volatility of  ft. 
At the end of the financial year t, the claims ratio r2(t) is calculated from rl (t) 

on the basis of  the above equation, r2 serves to calculate the amount of  money to 
be paid, called the smoothing benefit L (t): 

L(t) = - , ' : ( t ) .  P ( t )  - S ( t ) .  

It is important to understand that if L is positive (the observed claims ratio being 
higher than the expected value), the reinsurer pays benefit to the cedent. 
Otherwise, the cedent pays the reinsurer. In practice, the reinsurer generally 
incorporates (upper and lower) limits to the smoothing benefit into the terms of 
the contract. 

The target of the smoothing procedure, i.e. the pivot b (t),  is the expected value 
of the random variable rl(t). Therefore, the equation for the claims ratio r2 can 
also be written as: 

, . , ( t )  = (I  - , 0  + b ( t )  = b ( t )  + (I - (,., ( t )  - b ( t ) ) .  

At the start of  the reinsurance, the pivot is fixed on the basis of calculations or 
obserwltions. Subsequently the pivot is automatically adapted on the basis of  the 
most recent claims experience. One obvious choice for the adaptation mechanism 
is to use a credibility approach: 

b(t + I) = g(t) - rl(t) + (1 - g(t)) . b(t) 

g(t) is called the credibility weight, or credibili O, for short. The advantage of this 
type of formula is that it incorporates all of  the past experience, though with an 
exponential decrease in weighting, g is generally regarded independent of time. 
The above approach, in which weighting is time-related, is referred to as 'adaptive 
exponential smoothing'  in time series analysis (cf. ABRAHAM and LEDOLTER 

(1983), page 377). In section 5 we propose a formula for g(t) which has proved its 
worth in simulations of  business procedures. 

Thanks to the adaptation mechanism, profits andlosses can be carried forward 
in APS Reinsurance. The smoothing benefit is carried over to the next year either 
in full or in part, and is offset against earlier payments. When the treaty is 
terminated, the accrued balance is paid back in full or in part over a predefined 
period of time. The adaptation mechanism guarantees that the (positive or 
negative) balance cannot grow without limits. Technically speaking, the profits 
and losses carried forward belong to the insured party and attract interest 
(positive or negative). 

Depending on whether the balance is carried forward and/or settled at the end 
in full or only in part, APS Reinsurance becomes more or less a financialrein- 
s t l r a t l c e .  
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In some cases it may be advisable to ask the cedent to pay a d e p o s i t  at the start 
o f  the year. The deposit is offset against the smoothing benefit at the end of  the 
year. 

The ceded distribution can be calculated from the distribution o f  the aggregate 
claim amount  and the payment  function. If  profits and losses are not being 
carried forward,  the calculation o f  the p r e m i u m  is based on this distribution. If  
profits and losses are carried over and the final balance is not fully settled, we 
have to deal with a sum of  random variables and the premium calculation is based 
on the folded distribution. Due account  must be taken of  the precise terms and 
condit ions regarding termination of  the treaty. 

If the profits and losses are carried over in full and the final balance fully 
settled, there is no longer any technical risk. In this event, c o m m i s s i o n s  should be 
requested instead o f  premiums. The commissions should be based on the 
difference between the premiums for risk rl and risk r2 (cf. section 5), as this 
difference reflects the benefit which the cedent derives from the reinsurance. 

5. EXAMPLE 

In this section we will make assumptions about  the claims distribution, specify the 
premium calculation principle and discuss a pivot adaptat ion mechanism. 

We regard the claim S as being stochastic, whereas we view the cedent 's  income 
from premiums P as being deterministic. Let the claims be normally distributed. 
(Other distributions might be more realistic, but the normal  distribution is better 
suited to illustrate the important  points.) The standard deviation of  the normal 
distribution is fixed, whereas the expected value is a function o f  time. 

It follows that the claims ratio ,'l is also normally distributed. Thanks to the 
linear payment  function, the ceded distribution o f  r ~ -  r2 and the retention 
distribution of  r2 are also normal with: 

E[,2]  = E [ ( I  - a )  . , . ,  + E[,- ,]]  = El , . . ]  

El,', - rz] = E[r, - (I - a ) . r ,  - a .  E[r,]] = 0 

S D V [ , 2 ]  = S D V [ ( I  - ,., + o .  E[,- ,]]  = ( I  - a ) .  

S D V [ , ' ,  - , ' 2 ]  = S D V [ r ,  - I - e l ) . , ' ,  - a . E[r,]] = el-SDV[r,] .  

The premium calculation principle which we select is the exponential principle 
(cf. Gerber  (1979) for instance) with risk aversion d. Instead o f  defining the utility 
o f  money, we regard it as a function o f  the claims ratio. Consequently,  when we 
apply the exponential principle we obtain a premium rate instead o f  a premium 
amount .  The premium rate is then calculated as 

Q[,'] = I o g ( E [ e d r ] ) / d ,  where d > O. 

Our  approach  is theoretically not quite correct. To a company  sums of  money are 
important ,  not ratios. Nevertheless, it provides us with a reinsurance premium 
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which is proportional to the cedent's premium income the simplest approach in 
practice. It is advisable to adapt the risk aversion d depending on the size of the 
reinsured portfolio. 

For a normal distribution the above formula becomes 

Q[r] = E[r] + 0.5. d.  VAR[r]. 

Consequently, the reinsurer has to charge the following premium rate for the APS 
Reinsurance product: 

a i r ,  - r2] = 0.5. d.  a 2. VAR[,',] 

and the A P S p r e m i u m  is calculated as Q[rl - r2] . P. 
If we compare the APS premium rate with the rates for ,'t and "2, 

E[,',] + 0.5. d. VAR[r,] 

El,',] + 0 . 5 - d .  (l - a)-'. VA R[r,], 

we see that the value Q[rl - r2 ]  is smaller than the difference between the two 
rates. In other words, the benefit which the cedent derives fi'om the reinsurance 
product is higher than the reinsurance premium. 

We discuss the following pivot  adaptat ion mechanism: 

b(t + I) = g(t)  . ,'j(t) + (1 - g ( t ) ) .  b(t). 

It certainly makes sense that g is a function of rl, b and S D V [ r j ] :  
g(t; rt (t),b(t), SDV[rl]).  The greater the diflbrence between rt (t)and b(t),  the 
higher the probability that the old estimate b(t - I) is obsolete and that greater 
weighting should be allocated to the claims ratio currently observed: the 
credibility g(t)  should increase. Furthermore, the difference between the old pivot 
and the new observed value is all the more significant if the standard deviation is 
low: the credibility g(t)  should also increase in this case. The simplest quantity 
which meets these requirements is 

I", (t) - b ( t ) l / S D  V[,., ]. 

The above expression can have values between 0 and infinity, while g(t)  must be 
between 0 and I. Therefore, we need a strictly increasing function which maps the 
positive real numbers on the interval [0, I]. 

The above expression has a standard normal distribution; remember that b is 
thc expected value of r~. An obvious choice for the required transformation 
function is the probability of the interval 

(-I , ' ,  (') - b( t)I/ S D  v[,-,], +1",  (t)  - b( , )I/  S D  V[,., ]). 

The credibil i ty is then calculated as 

g(t) = 2 .  [SND(Ir, (t) - b ( t ) l /SDV[r , ] )  - 0.5], 

where S N D  stands for the standard normal distribution function. 
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6. APPLICATION OF APS REINSURANCE 

APS Reinsurance is generally suitable for covering portfolios which entail a 
relatively high frequency of claims. Health insurance portfolios typically fulfill 
these requirements. If, on the other hand, claims are very rare like for instance in 
catastrophe reinsurance, the adaptation mechanism will not provide any suitable 
results. 

APS Reinsurance is specially designed to suit sectors which are faced with in- 
creasing claims costs. The claims ratio typically rises over a period of a few years 
until the premiums are adapted. The claims ratio then drops and the cycle starts 
all over again. APS Reinsurance is ideal as a smoothing instrument in a case such 
as this. 

The product can also play an important role when a new product is being set 
up. Statistics often prove to be unreliable at the start. With the aid of APS 
Reinsurance, results which are poor or which are (overly) good during those first 
few years can be carried over to later years, giving the cedent time to adapt the 
premiums. 

Quota share reinsurance achieves the same goal as APS Reinsurance: it reduces 
the variance of the aggregate claims distribution to a certain percentage. 
However, the cedent is required to pay a considerable share of its premiums to the 
reinsurer. This is most of the time undesirable, so quota share reinsurance is no 
longer common. 

Surplus Reinsurance also reduces the variance of the aggregate claims 
distribution. But the extent of the reduction is very difficult to calculate, whereas 
in APS Reinsurance the reduction percentage is part of the treaty. Stop loss 
reinsurance, which also serves to reduce the variance, has the disadvantage of a 
heavily loaded premium. This can be avoided in APS Reinsurance by 
implementing it as a financial reinsurance. 

In spite of having a linear payment function, APS Reinsurance is not a 
proportional reinsurance. Proportional reinsurance is defined as being an 
agreement where the cedent and the reinsurer share premiums and losses in the 
same proportion. It is important to tmderstand why this is not the case. APS 
Reinsurance does not carry losses - it reduces the volatility! 

One of the advantages of APS is that it can be turned into a financial 
reinsurance. The dilemma with financial reinsurance is to provide enough risk 
exposure so that the supervising authorities class the treaty as an insurance and 
not as a banking transaction. If treated as a banking transaction, the smoothing 
effect disappears because of the profits and losses carried over show up in the 
balance sheet. There are an t ,  mber of ways of including more risk, which have 
been discussed above (section 4). Another possibility not yet mentioned would be 
to limit the smoothing benefit and cover the excess by a conventional stop loss 
reinsurance; the stop loss reinsurance would then be part of the APS treaty. 



APS REINSURANCE 337 

REFERENCES 

ABRAHAM, B. and LEDOLTER, J. (1983) Statistical Methods Jot Forecasting. John Wiley & Sons, New 
York. 

GERBER, H.U. (1979) An Introduction to Mathematical Risk Theory. S.S. Huebner Foundation 
Monograph 8, University of Pennsylvania, Philadelphia. 

BRUNO KOLLER 
Dinkelbergstr. 21 
CH-4125 Riehen 

NICOLE DETFWY LER 

Petersgraben 21 
CH-4051 Basel 





AN INTEGRATED DYNAMIC FINANCIAL ANALYSIS 
AND DECISION SUPPORT SYSTEM FOR A 
PROPERTY CATASTROPHE REINSURER t 

By STEPHEN P. LOWE 

Tillinghast- Towers Perrin 

JAMES N.  STANARD 

RenaissanceRe Holdings, Ltd. 

ABSTRACT 

This paper describes the dynamic financial analysis model currently being used by 
a property catastrophe reinsurer to manage its business, The model is an integral 
part of the day-to-day operations at the Company, and is used as a decision 
making tool in the underwriting, investment, and capital management processes. 
The paper begins by describing the framework that the Company uses for risk 
management. This includes a classification of the risks facing the Company, 
which is used to define and prioritize their implementation in the model. Also 
included is a description of the conceptual approach the Cornpany takes to 
evaluate the tradeoff between risk and return. The paper then goes on to describe 
the structure and operation of the dynamic financial analysis model and provides 
examples of its use at the Company, along with illustrative examples of the 
various types of output it produces. 

KEYWORDS 

Asset/Liability management; Capital adequacy; Dynamic financial analysis; 
Expected policyholder deficit; Modern portfolio theory; Property catastrophe 
reinsurance; Risk management; Simulation models; Underwriting cycles. 

I. INTRODUCTION 

The Company that is the subject of this paper is a major property catastrophe 
reinsurer, writing excess of loss coverage on a world-wide basis. It was formed in 
Bermuda in 1993 to provide additional capacity to the market, capitalizing on the 

I An earlier version of this paper was prepared for tile Casualty Actuarial Society's 1996 Call for 
Papers on Dynamic Financial Models of Property/Casualty Insurers. An updated version was 
presented at the XXVII ASTIN Colloquium in Copenhagen. 

ASTIN BULLETIN, Vol. 27. No. 2. 1997. pp. 339-371 
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market dislocation following Hurricane Andrew. Since that time the Company 
has grown to be one of the largest specialist writers in the catastrophe reinsurance 
market. 

Since its formation in 1993, a core strategic premise of the Company has been 
that an increased level of precision in the measurement and management of risk 
can be translated into a competitive advantage. 
• Improved measurement of underlying exposure and modeling of losses allows 

underwriters to build a superior insurance portfolio, one that is less risky and/ 
or more profitable than that of peers. 

• Improved measurement of financial risk allows management to make more 
efficient use of capital, leading to superior returns on that capital. 

The Company has developed systems and processes to support and implement 
this premise. Taken as a whole, these are used to facilitate ongoing dynamic 
financial analysis (DFA) of the enterprise. Perhaps most importantly, dynamic 
financial analysis activities are not restricted to technical staff operating apart 
from management. DFA has been integrated directly into the ongoing 
underwriting and financial management processes of the Company. Every senior 
manager is trained on the use of the system: thus, it is a practical and immediate 
resource for decision making. 

The development of these capabilities has been a collaborative effort between the 
Company and an actuarial consulting firm (hence this co-authored paper). In 
addition to the authors, who co-led the development effort, many other people in 
both organizations contributed to the conceptualization, design, programming, 
and testing of the system. 

Development of the system and its modeling capabilities is an ongoing activity; 
its design continues to evolve as experience with its use develops. Initially, the 
model was relatively simple, and focused only on measuring the principal risks 
facing the Company. As confidence in the model has grown, new features and 
additional risk components have been added. While this paper generally describes 
the model as it exists today, a few features are described that are tinder active 
development at the time of this writing, with the full expectation that they will be 
on linc by the time of publication. A major goal of current development activity is 
to integrate the various components of the system more completely, strengthening 
the linkages between the risk elements in the process. 

Finally, while the output exhibits presented in the paper are illustrative of those 
actually produced by the model, they are stylized versions of that output, and use 
figures that have been altered. The exhibits are included only to illustrate the 
varied uses of the model, and represent only a small sample of what has been 
produced. Many of the output exhibits, as well as the details of the systern's 
implementation, are considered proprietary by the Company (key parts of the 
system are copyrighted). In preparing this paper it has been necessary to balance 
those interests against the goal of providing readcrs of the paper with useful 
insight into the structure, capabilities, and uses of the system. 
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The paper has four major sections: 
• Section I provides an introduction and overview. 
• Section 2 begins by describing the risk framework that was developed to guide 

the development of  the model. The various types of  risks facing an insurer are 
outlined and defined. The approach taken to evaluate the tradeoff between risk 
and return is then described. 

• In Section 3, the structure of  the dynamic financial analysis model is presented. 
This includes a system schematic and a description of the various inputs, 
variables, and calculation steps. 

• Finally, in Section 4 the uses of  the model are described and the output is 
illustrated. 

Two appendices are included. The first provides a discussion of currency risk, 
which is present on both the asset and the liability side of the multinational 
insurer's balance sheet. The second provides a brief description of the expected 
policyholder deficit, a concept that is particularly relevant to the measurement of 
insurer risk and to the management of capital. 

2. CONCEPTUAL FRAMEWORK 

A necessary first step in the development of  a dynamic financial model is 
establishing a conceptual fi 'amework to serve as a guide. The structure of  the risks 
to be modeled must be defined in general, and then prioritized on the basis of  the 
business profile of  the company. Appropriate measures of  risk must also be 
defined, and threshold values for the risk measures must be chosen. 

2.1. Classification of Risk 

The risks faced by an insurance enterprise have been classified in a variety of  ways 
in the published literature on the subject. For example, see HARTMAN, et. al. 
(1992). There are three basic elements of  risk, each of which must be considered in 
a dynamic financial analysis model. The three basic elements are: 
I. Liability Risk: the risk that the cost of settling the insurance liabilities will be 

greater than expected (also referred to as obligation risk). 
• Claims on coverage already provided cost more to settle than anticipated. 
• Cost of claims generated on future coverage is greater than anticipated. 

2. Asset Risk: the risk that the realizable value of assets will be less than 
anticipated, 
• The market value of invested assets declines. 
• Invested assets become non-performing. 
• Receivables from outward reinsurers become uncollectable. 
• Receivables fi'om customers become uncollectable. 

3. Business Risk: the general business risks faced by all enterprises. 
• Competitors will force market prices below costs to preserve their position/ 

share. 
• Competitors will gain a competitive advantage, taking customers away. 
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I Regulators or legislators will interfere in the market in a harmful way. 
• The company will be victimized by a crime. 
• Operations will be adversely affected by a disaster at company premises. 

The bullet points above are intended to be illustrative of  the types of  risks 
included in each element; these lists are not necessarily exhaustive. 

As will be seen, the Company 's  dynamic financial analysis model is structured 
around this risk framework, explicitly incorporating each of these three major 
risk elements. 

2.2. Liability Risk 

Liability risk (or obligation risk) is viewed as the predominant risk element by 
most property/casualty insurers. As indicated, it includes existing claim 
obligations (whether known or not) on coverage provided in the past, as well 
as new claim obligations arising from future coverage provided on policies 
currently in force or written in the future. From the perspective of  the actuary, 
liability risk includes what may loosely be referred to as reserving and pricing 
risk. It is the actuary's responsibility to estimate the cost of  claims in each of 
the two contexts. Liability risk stems from the uncertainty of  those estimates. 

In the definition of liability risk, cost is expressed in terms of present value. 
Liability risk inclt, des the timing of the claim cash flows, as well as their nominal 
amounts. It also includes the expenses of  settling the claims, as well as the claim 
payments themselves. 

Uncertainty of  liabilities includes both process risk, which arises from the 
random nature of claim events, and parameter risk, which arises from the 
inability to know the claim frequency and severity distributions from which the 
events are drawn. These distributions cannot be known in advance, because they 
are dependent on future social and economic conditions that cannot be predicted 
with certainty. 

For most lines of insurance, a company can write sufficient volumes of business 
to diversify away process risk. In these cases parameter risk will be the dominant 
component  of liability risk, with process risk considered de minimis. However, in 
property catastrophe reinsurance process risk is not diversifiable by volume. Even 
on a world-wide market basis the covered events are too few to achieve a stable 
annual result. (We will have to wait for the market to expand to include a few 
other worlds beyond earth to achieve diversification by volume.) For this line, 
both process and parameter risk must be accommodated in a dynamic financial 
analysis model. 

Finally, a complicating factor for an international insurer is the issue of 
currency. Insurance contracts are typically issued with claims to be settled in a 
specific currency, typically the local currency of the contract. However, from the 
perspective of the owner, claim costs are ultimately measured by their impact on 
equity as measured in the owner's currency. Thus the cost of liabilities includes 



AN INTEGRATED DYNAMIC FINANCIAL ANALYSIS 343 

the cost of  converting them from the local contract currency to the owner's 
currency, and liability risk includes movements in exchange rates that affect 
conversion costs. 

2.3. Asset Risk 

By definition, assets are capable of  generating an expected positive cash flow. The 
positive cash flow may be contractual (e.g., a bond), or may stem from the 
potential sale value in the market (e.g., home office real estate). Asset risk deals 
with the uncertainty associated with the realization of the cash flow. This 
uncertainty stems from two fundamental sources. One is the risk of non- 
performance of the obligor, such as the default of  a bond or the insolvency of a 
reinsurer. The other is a change in conditions that affects the value or 
performance of the asset. Examples of  the latter would include a recession 
causing a decline in the stock market, or a rise in mortgage interest rates that 
lowers the rate of  refinancing on a Collateralized Mortgage Obligation. 

The inclusion of reinsurance recoverables with asset risk aligns the risk 
classification structure with contemporary GAAP thinking, and not with 
traditional U.S. statutory accounting where the financial presentation suggests 
that obligation risk be measured on a net basis. 

As is the case with liabilities, much of the risk associated with individual assets 
is diversifiable. Thus the movement of  individual stock prices or the default of  
individual bonds is not usually relevant to asset risk, unless the individual holding 
is material. Instead the primary focus is on the non-diversifiable components of  
risk associated with each asset class. 

Asset risk also has a currency dimension. To the extent that assets are held in 
currencies different from that of the owner, changes in exchange rates contribute 
to asset risk. The influence of currency on asset and liability risks is discussed 
more fully in APPENDIX A. 

2.4. Business Risk 

General business risk has been given relatively little attention in the actuarial 
literature. This is unfortunate, because it is a significant source of risk in 
insurance. Business risk contributes significantly to underwriting risk in ways that 
cannot be described by simple random processes. Severe underwriting losses at 
the bottom of the U.S. property/casualty underwriting cycle are neither random 
nor unforeseen events. They aren't  caused by claim costs being higher than 
expected (i.e., by liability risk), but rather by market price levels being set below 
the level of expected costs. During a down-cycle many companies are aware that 
their prices are too low and that underwriting results will be poor. 

A variety of forces acts on price levels in the insurance marketplace, most 
notably the level of overall capacity in relation to demand. Prices will fall when 
capacity exceeds demand, and will rebound only when capacity is withdrawn. The 
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operation of these forces depends on the structure of the market and external 
conditions at the time. External economic conditions can play a reinforcing role, 
particularly such factors as the level of  interest rates. 

Competitive position is also important to the business risk of individual 
companies operating within the market. One example would be the cost of  
distribution. Companies with a high-cost distribution system should not expect to 
achieve adequate returns, unless that distribution system offers enough value to 
them or their customers to warrant its excess cost. In a competitive market, the 
companies with the lower distribution costs will simply set the market price at a 
level that produces sub-par returns for their high-cost competitors. 

Competitive advantage is not only about distribution costs. It includes the 
effectiveness of  the company 's  marketing, underwriting, claim, and capital 
management functions. While the overall industry results over the last few years 
have generally been lackluster, many individual companies have produced 
attractive returns during this period by superior execution in one or more of the 
above areas. Conversely, the disappearance of several national multiline 
companies over the same period can be attributed to their inability to perform 
successfully in these areas. Competitive risks are both significant and real in this 
industry. 

Business risks arising from market competition are not at all unique to 
insurance. One only has to look as far as the U.S. airline industry to witness the 
same risks playing themselves out in a non-insurance context. There, too, an 
excess of capacity in relation to demand has forced a blood-letting as competitors 
vied to retain market share. Airline managements knew that fares were 
inadequate, but market forces were beyond their control. 

From a dynamic financial analysis perspective, the authors believe that 
underwriting risk must be broken down into business risk and liability risk 
components,  with each component  modeled separately. While the two types of 
risk are not entirely unrelated, the drivers of each are different. Modeling them as 
a single risk (i.e., modeling underwriting risk via loss ratios) is therefore an 
inherently weak approach. 

2.5. Measuring Risk and Return 

Application of dynamic financial analysis requires that financial constraints be 
delined. For example, while the results of  an analysis might indicate that there is 
an x% probability of impairment, defined as the loss of  y% or more of capital, 
those results alone do not tell management what actions to take. To translate 
analysis results into action, management (or the board of directors) must decide 
whether or not the indicated level of impairment probability is too high. Also, 
while impairment probability might be an appropriate constraint, it is probably 
not the only constraint relevant to the enterprise. In fact, a variety of  constraints 
are relevant, depending on the question the analysis is designed to answer. 
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Dynamic financial analysis also requires the definition of financial performance 
objectives. I f a  reinsurance program were offered to the company that reduced its 
probability of  impairment from xl% to x2%, management can only judge the 
benefit of that reduction in relation to the cost of the reinsurance. This issue 
becomes particularly relevant when there are several alternative reinsurance 
programs, each with different ruin reductions and different costs. The issue is 
further complicated when the cost of a particular program is variable, or when its 
effects are spread into several future accounting periods in a multi-year deal. 

In developing its dynamic financial analysis model, the Company has adopted 
the Asset/Liability Efficient Frontier (ALEF TM) as a basic framework for 
resolving these issues in a logically consistent manner. ~ (Additional discussion of 
ALEF can be found in BUFF (1990) and DOLL, et. al. (1994).) 

The efficient frontier concept is taken from modern portfolio theory, and is 
attributed to MARKOWITZ (1959). In its most basic formulation, the investor is 
presented with several alternative classes of  assets in which he can invest. For each 
class of  asset, the investor knows the expected return, the risk associated with that 
return (as measured by its standard deviation), and the correlation of returns with 
all other classes of  asset. His problem is to choose a portfolio by specifying the 
mix of assets by class. Markowitz 's  contribution was to recognize that not all 
asset mixes are optimal: alternative mixes can be found for which either a higher 
return can be achieved for the same level of  risk, or the same return can be 

UJ 

B C 

Current 
Portfolio 

Risk = Standard Deviation of Return 

FIGURE I: In the classical efficient frontier of Modern Portfolio Theory, 
asset mixes A, B, and C are efficient; the asset mix of the current portfolio is not, 

ALEF is a registered service mark of Tillinghast - T o w e r s  Perrin. 
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achieved for a lower risk. There is, however, a frontier to the set of  possible asset 
mixes consisting of those portfolios that are efficient in the sense that one cannot 
improve upon them. Figure I illustrates these concepts. 

The investment portfolios on the efficient frontier are all good choices; 
choosing among them is a matter of the investor's risk/return preferences. 

ALEF is a generalization of the efficient frontier to the optimization of more 
general business strategies. The definition of both of the two axes in the chart 
above are generalized. In the ALEF approach the X-axis is labeled generically as 
"level of risk" and the Y-axis is labeled generically as "expected performance". 

W 

//__,... 
Level of Risk 

FIGURE 2: Usil~g the Asset/Liability Ellicicl~t Frouuer, StrategLes ca~ be evaluated in a 
generalized risk/reward framework. 

The user must define each of these terms. Similarly, the strategies to be analyzed 
are generalized from asset mix to any set of  decision variables relevant to the 
enterprise. Once the problem is specified in these terms, the dynamic financial 
analysis rnodel call be used to find the efficient frontier from the available choices. 

In contrast to the classical efficient frontier objective, in which performance is 
measured exclusively by single-period economic returns, the ALEF performance 
objective can be any financial or economic measure that management believes is 
most important,  or any combination of such measures. Generally, the measure 
should be consistent with the maximization of shareholder value, but it can be 
reflective of any specific component  (such as reported profits, change in statutory 
surplus, or revenue growth). In the case of  multiple measures, management must 
specify the relative weight assigned to each so that they can be combined into a 
single index. (The function combining the measures need not be linear.) The 
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measures can be based on economic or accounting values, since both are relevant 
to the operation of the enterprise. The measures can be expressed in terms of 
absolute dollars, returns in relation to capital employed, or relative performance 
when compared to peers. Finally, the measures can reflect any chosen time 
horizon. 

The only overriding requirement of the performance measure used is that it 
must be consistent. Management must always want to choose the strategy that 
maximizes the measure's expected value, all other things being equal. 

As a measure of  risk, standard deviation has been the subject of ample 
criticism. Much of this criticism stems from the fact that standard deviation 
focuses only on the dispersion of the outcomes, without any special recognition of 
the greater disutility of  the adverse outcomes. While most people equate risk with 
uncertainty of  outcomes, they also equate risk with the likelihood and severity of  
adverse outcomes. In the ALEF framework, risk can be any measure of adverse 
outcomes that management feels is most relevant. Examples would include: 
• Probability of ruin over the next ten years 
• Probability of  combined ratio above 110% next year 
• Expected policyholder deficit ~ on current business 
• Probability of suffering a net decline in surplus of 20% or more in three years 
• Probability of  failing an RBC test at any point in the next five years 
• Probability of a ratings downgrade by A.M. Best 
• Probability of  a combined ratio two points or more worse than the industry 

average 
• Probability of  revenues being 25% or more below plan. 

As was the case with the measure of performance, several different measures of  
risk can be combined to produce an overall index of risk, with weights reflective 
of  their relative importance. Figure 2 illustrates the generalized ALEF frame- 
work. 

ALEF is a powerful and flexible tool for managing an insurance company. It 
can be customized to mirror the business philosophy of the company, both the 
financial objectives to be maximized and the risks to be controlled. 

The Company uses the ALEF framework in conjunction with its dynamic 
financial analysis model to evaluate a variety of  strategic issues. The Company 
has developed a vector of multiple risk constraints that collectively capture its 
appetite for risk. This vector is used consistently in each analysis. While the types 
of  strategic issues analyzed are discussed in subsequent sections of  the paper, the 
Company considers its risk constraint vector to be confidential. 

3. DESCRIPTION OF THE MODEL 

A conceptual schematic of the Company 's  dynamic financial analysis model is 
presented in Figure 3. The model consists of the following basic components: 

Appendix B provides a description of the expected policyholder deficit ,and discusses its `application 
in this context. 
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• A liability scenario generator, which produces distributions of aggregate 
underwriting results for the insurance portfolio. 

• All asset scenario generator which, when combined with the liability generator, 
produces a distribution of operating results for the combined insurance/ 
investment portfolio. 

• A multi-period financial model, which extends the distributions over a longer 
time horizon. 

Each of these components produces dynamic output that is used to manage 
different aspects of  the business. 

As can be seen from the schematic, the model is not a single system, but a 
linked set of  programs and databases that can be used in a variety of  
combinations to facilitate the needs of  any given analysis. A key attribute of  
this structure is flexibility. While the core calculation engines are written in high- 
order programming languages to achieve efficiency, many of the inputs and 
outputs of  each component  are held in spreadsheets to facilitate their 
manipulation "on the fly" by the user. The spreadsheets also facilitate the 
creation of graphical output for analysis of  results. 

3.1. Liability Scenario Generator 

Because the Company ' s  core business is property catastrophe reinsurance, a 
heavy emphasis is placed on detailed modeling of the volatile claim experience 
inherent to that line. The models are used extensively in the underwriting of 
individual contracts. In the context of  this paper, however, the focus of  
presentation is on their use as an input to the enterprise-level DFA model. Tile 
advantage of this tightly integrated approach is that the effect of  any one 
underwriting decision on the key corporate DFA objective functions can be easily 
determined by the underwriter, and therefore taken into account at the point of  
decision in the underwriting process. 

For each peril in each region of the world a set of catastrophic events has been 
developed. The events vary according to their location, size, and intensity as well 
as to tile ensuing insured damage they would generate. Relative probabilities are 
also assigned to each event in the set, based on the likelihood of that particular 
combination of event parameters occurring at once. The probabilities for each set 
of  events sum to one. in conjunction with the insured losses associated with each 
event, they represent a sample severity distribution for the particular peril. 
Similarly, for each peril in each region a frequency distribution is specified, 
reflecting the likelihood of a given number ofevents  happening within a year. For 
example, a frequency distribution is specified for the number of  landfall 
hurricanes hitting the U.S. over the course of  a season. 

Within the system, the frequency and severity distributions for each peril are 
convoluted to produce annual aggregate catastrophe losses. In the current 
configuration, 40,000 scenarios of annual losses are created, which are deemed 
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sufficient for analysis purposes. (The sampling process is stratified, not Monte 
Carlo, so that the tails of the resulting aggregate distribution are considerably 
more robust.) 

Catastrophe II Peril 
Events Frequencies 

I I 

1 
Annual 

Catastrophe 
Loss Scenarios 

Annual 
Non-Cat~trophe 

Scenarios 
Contract 
Terms 
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Annual 
Underwriting 

Result 
Distributions: 

Primary Industry 
Reins. Industry 

Company 

Economic 
& Asset 
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1 
Portfolio 
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Annual 
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Market 
Behavior 

Rules 

Company 
Response 

Rules 

Multi-Period 
Return 

q Distribution 

FIGURE 3: Conceptual Schematic of the Dynamic Financial Analysis Model 
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At this juncture in the system, the losses in each scenario are those of  the 
primary ceding company. The primary losses are then run through the applicable 
reinsurance contract terms to obtain the corresponding losses to the reinsurance 
contract. A database containing the actual terms of all catastrophe reinsurance 
contracts in the portfolio is maintained, so that world-wide aggregate under- 
writing results for the entire portfolio for each scenario can be obtained and 
analyzed. The system is on-line, so that portfolio results can be obtained at any 
time. A complete portfolio run takes about two hours to process through the 
system on a Silicon Graphics workstation. Analysis of  the marginal impact of  
adding a contract to the portfolio takes less than five minutes. In addition to 
ongoing ad hoc portfolio analysis, portfolio results are produced and analyzed in 
detail in a formal underwriting meeting each quarter, after the latest cycle of  
contracts have been written. 

The Company writes small amounts of other types of reinsurance from time to 
time, which are incorporated into the system using a less formal modeling 
approach. A spreadsheet containing the estimated underwriting distributions 
applicable to this business is maintained, and is incorporated into the overall 
results as a "'last step" in the overall process. This assures that the complete 
underwriting portfolio is modeled within the system. 

The principal output of  this component  of the system is a distribution of 
underwriting results for the Company.  The distribution reflects all elements in the 
underwriting result that vary directly with losses: reinstatement premiums, losses, 
brokerage, and federal excise taxes/premium taxes. 

These elements are calculated on a contract-by-contract basis, reflecting the 
actual applicable terms and conditions. Other elements such as operating 
expenses may be added as a last step in the process. 

In addition to Company underwriting experience, supplemental industry-wide 
information is produced showing the corresponding losses for the primary 
industry and the estimated portion of those losses that would be ceded to the 
property catastrophe reinsurance industry. 

Since the Company 's  functional currency is the U.S. dollar, all transactions 
relating to contracts involving other currencies are converted to their U.S. 
equivalent. Within the system, exchange rates can be varied to test the impact of  
adverse movements on underwriting results. 

Each of the underlying catastrophe events has an associated day of the year. 
Thus, each underwriting scenario generated by the model has a pattern of  losses 
throughout the year. At the present time, the models do not consider the 
variability in the timing from event occurrence to claim payment. Such risk is 
considered fairly immaterial. Neither is there any consideration of "reserving 
risk", in the sense that actual payments might be greater than estimated in the 
financial statements. 

Parameter risk is not explicitly included within the modeling process itself. 
Instead, the parameters are sensitivity-tested in a variety of ways and the results 
are used to introduce conservatism into the final parameter assumptions. These 
sensitivity tests take two forms: 



AN INTEGRATED DYNAMIC FINANCIAL ANALYSIS 351 

• First, output can be generated using event files created by different vendors. In 
addition to developing its own event files for various perils and regions, the 
Company has developed relationships with many of the primary catastrophe 
modeling consultants, including Applied Insurance Research, RMS, Dames & 
Moore, EQECAT, and Tillinghast - Towers Perrin. Event files have been 
constructed and incorporated into the system using the catastrophe models 
developed by these firms. Comparing the results generated by these different 
event files, reflecting the different approaches and assumptions of each firm, 
provides a measure of the impact of varying the underlying event parameters, 
and helps to assure that the results obtained are not dependent on the specific 
catastrophe model used. 

• Second, sensitivity testing is performed by altering the underlying frequency 
and severity distributions. Results are routinely tested using higher peril 
frequencies. This is particularly relevant in light of the research being done by 
global climatologists (such as that published by GRAY (1990) and popularized 
in the media), and the record level of ht, rricane activity experienced in 1995. 
The generated peril severity distributions have also been adjusted to consider 
various factors such as the demand-driven inflation that occurred after 
hurricane Andrew. 

Finally, results can be produced for the entire portfolio of reinsurance contracts 
or any defined subset. This facilitates analysis of sources of risk, and also can be 
used to analyze the value of potential retrocessions. Hypothetical portfolios can 
be run to test alternative underwriting strategies as well. 

3.2. Asset Scenario Generator 

The Company uses the Global CAP: Link system to obtain scenarios for various 
economic and investment variables for several different currencies. On request, a 
CAP:Link output file containing 1,000 scenarios is provided to the Company, 
with each scenario reflecting a future path of interest rates, inflation rates, 
currency exchange rates, and rates of return by asset class for each of five major 
currencies. Each scenario is a plausible path of the annual movement of the 
variables; taken together the scenarios describe the range of variation in each of 
the variables. 

The CAP: Link system uses a stochastic diffusion model to generate economic 
and capital market scenarios on a global basis. Scenarios are generated on the 
basis of a cascading set of stochastic differential equations, structured so that the 
proper relationship between the modeled variables is maintained over time. These 
include serial correlation effects, reinvestment risks, and path volatility 
characteristics. The top of the cascade is a yield curve scenario generator, based 
on a variant of the two-factor yield model proposed by BrENNAN and SCHWARTZ 
(1982). These yield results are then passed down to generators for other variables 
such as inflation and stock returns, which are conditionally related in the cascade. 
The developers of the CAP:Link system believe that it is superior to other popular 
approaches such as Iognormal models, time series models based on ARIMA or 
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Box-Jenkens, or models based on Vector AutoRegression. A more detailed 
description of the stochastic diffusion model, and a discussion of its perforrnance 
relative to other models can be found in MULVEY and THORLACIUS (Forthcoming 
in 1997). 

The asset scenarios from CAP:Link are convoluted with the liability scenarios. 
Each individual annual scenario consists of: 
• Economic conditions: annual inflation rates by currency and exchange rate 

movements for the year 
• Capital market conditions: interest rates and annual rates of return by asset 

class and currency 
• Catastrophic conditions: a set of catastrophic events and primary and 

reinsurance industry losses ensuing from those events. 
The Company underwriting result distribution is combined with investment 
results reflecting the cash flows and investment returns for each scenario, so that 
an annual operating result distribution for the Company can be obtained. Note 
that both the liabilities and the assets are dynamically adjusted for changes in 
exchange rates. The operating result distribution can be produced either for the 
current mix of investments, or for any hypothetical alternative mix (as well as for 
different insurance portfolios). This facilitates the testing of alternative invest- 
ment portfolio strategies, including the mix of investments by currency. 

At the time of writing, the catastrophe losses at the detailed scenario level are 
not dynamically linked directly to the economic scenarios (hence the dotted line in 
the schematic diagram). This is an enhancement that is currently under 
development. Once it is completed the losses will vary according to the inflation 
rates in each scenario. 

3.3. Multi-Period Model 

Up to this point, the description of the model has focused on the short-term, 
annual time horizon. The liability and asset legs of  the model focus on annualized 
results in the context of the current business environment. The multi-period 
model extends the analysis to a longer-term horizon (currently five years) and 
introduces key elements of  business risk into the analysis. Underwriting results in 
future periods will be influenced by loss experience (liability risk) and market 
price levels (business risk). 

The first step in this process is to encapsulate the behavior of  the market in a 
set of  rules. The critical question is how market price levels will move over the 
five-year time horizon, and what factors will affect that movement. In this area 
the Company has an advantage over the large multiline insurers, for whom this 
would be a vast and daunting question. Such insurers would need to specify the 
market behavior and drivers for each product line they offer in each market, as 
well as the interrelationships across the different product lines and markets. In the 
Company 's  case only one product line and market, property catastrophe 
reinsurance, must be addressed. 
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The fundamental behavior of prices in the property catastrophe reinsurance 
market can be stated succinctly. 
• If results are good, prices will decline from their current level. 
• Prices will continue to decline until results are poor, at which point they will 

rise. 
• The rate of decline is related to how good the results are; the rate of increase is 

related to how poor results are. 
• Rises in prices include nominal increases in rates-on-line, and also implicit 

increases through higher retentions and other coverage reductions. 

Since the market has exhibited this general behavior over an extended period, it is 
reasonable to assume the behavior will continue. The difficult part of the problem 
is translating the qualitative behavior rules into quantitative terms. While the 
historical responsiveness of prices to results can serve as a guide, changes in the 
market's structure that influence its behavior must also be considered. For 
example, one could argue that the new capital provided to the reinsurers in 
Bermuda may be less forgiving, and will be withdrawn more rapidly, if and when 
results are bad. Similarly, the growing use of catastrophe models by the reinsurers 
in underwriting may inject a greater degree of discipline, reducing the rate of price 
decline in the face of favorable results. 

The approach taken by the Company is to relate catastrophe reinsurance price 
levels in each subsequent year to the industry-wide catastrophe experience in 
several preceding years. A market price index has been constructed, the 
movement of which is dependent on emerging industry experience. The market 
price index is based on information from several sources: the actual price 
movements observed by the Company since its formation; historical price 
movements over a longer time period, derived from information from several 
sources; discussions with brokers and other experts in the market; and judgment. 

The responsiveness of price levels to experience over several years involves 
significant parameter risk. The Company has performed in-depth sensitivity 
testing of  this element of  the model to gain insight into how alternative 
assumptions influence results. 

The starting point in the multi-period simulation is the current distribution of 
annual underwriting results. Using a Monte Carlo approach, a first-year scenario 
with the associated underwriting result for the Company is chosen from that 
distribution. On the basis of the corresponding industry-wide result, the 
movement in the price level index for year two is determined. The annual 
underwriting result distribution is then modified to reflect the effect of the change 
in price level to obtain a distribution for the second year. A second-year result is 
then chosen from the modified underwriting result distribution. This stochastic 
process continues until five years of results have been generated. 

In addition to the market behavior rules, company response rules reflecting the 
actions of Company management must also be defined. These actions fall in three 
areas. 
• Market share actions must be defined, reflecting the Company's willingness to 

write business at the prevailing price level. Depending on the perceived 
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adequacy of prices, the Company will either seek to grow, hold steady, 
decrease, or severely reduce its market share. This decision feeds back into 
Company results as follows: the price level on the Company 's  portfolio relative 
to the market price level improves/degrades as the Company 's  market share 
declines/grows, due to more/less selective underwriting. 

• Capitalization actions must be specified, reflecting the changing needs of the 
Company over time. For example, at some threshold level a portion of excess 
capital is returned to shareholders. Similarly, if actual capital falls below 
specified requirements, market share is forced down to the level allowed by the 
requirements. Both normal and extraordinary dividend policies must be 
defined. 

• Debt/capital levels over the five-year period must be specified, and debt actions 
in relation to operating losses must be defined. 

The multi-period model starts with an opening balance sheet, simulates the 
underwriting result for the first-year, translates that result into a first-year 
operating result, determines the market behavior for the next year, and 
implements the company responses. This process continues iteratively until the 
full five years have been generated. Typically, 20,000 trials are run to produce a 
distribution of five-year returns to shareholders, which is based on the stream of 
dividends and the final equity at the end of the fifth year. In addition to return 
measures, appropriate risk measures are also generated. The model can be run 
using different company response strategies; the risk and return associated with 
each strategy can be compared by placing it in an ALEF context. 

The multi-period model successfully captures the liability and business risk 
elements which, taken together, comprise underwriting risk for a property 
catastrophe reinsurer. Other types of business risk, such as regulatory interference 
or fraud, are not directly incorporated into the model. 

4. MODEL USES AND SAMPLE OUTPUT 

One of the key advantages of  a highly integrated system such as the one described 
is that many different types of decisions can be tested against a consistent risk/ 
return "yardstick",  which is based on a common set of  underlying probability 
distribution assumptions. These include: 
• Ongoing evaluation of the adequacy of capital to support the current risks 

undertaken 
• Evaluation of the value of retrocessional coverage offerings 
• Analysis of  alternative capital structures 
• Development of asset mix investment policy 
• Analysis of currency risk 
• Studies of  alternative market and underwriting strategies 
• Individual underwriting decisions reflecting the marginal effect of  a given 

contract on risk and return constraints. 
Exhibit I is an example of output from the liability scenario generator. It shows 
graphically the right-hand tail of an underwriting result distribution for a 
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Worldwide Portfolio as of xx,xx,xxxx 
Based on Peril/Assumption Set 23 

I I Return I ] Industry Portfolio 
Description Interval Peril Loss Gross Loss 

(billion) (million) 

] Slortheast/NY l/xxx H xxx xxx 
'",nheast/MA llxxx H xxx xxx 

I / x x x  H x x x  x x x  

~ . ~  I / x x x  H xxx xxx 

• 1 I/xxx H xxx xxx 
'-,~t H x x x  x x x  

- . -x  x x x  

]South CA I 

Ir~o.h CA I I . .  
[South CA [ I/XXX 
North CA I/xxx E 
[New Madri~JTN I/xxx E x^.. 
New Madrid/MO I/xxx E xxx I 
Hawaii l/xxx H xxx [ xxx 

JNorthwest/WA l/xxx E xxx xxx 

N Europe/UK 
IN Europe/UK 
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N Europe/GER 
Japan Wind 
lapan Wind 
lapan Quake 
lapan Quake 
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New Zealand 
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Northrid~,e/CA 
Lama Priet,JCA 
Great NE Hurricane/NY 
Andrew/FL 
'Hu~,c/SC 

llxxx W xxx xxx 
I/xxx W xxx xxx 
l / x x x  W x x x  x x x  

I/xxx W xxx xxx 
I/xxx H xxx xxx 
I/xxx H xxx xxx 
I/xxx E xxx xxx 
llxxx E xxx xxx 
I/xxx H xxx xxx 
I/xxx E xxx xxx 
I/xxx H xxx xxx 

P0A - Daria/Europe 
~0G - Vivian/Euro~ 
~OD - Herta/Europe 
87J - StormY[Europe 
76B - Capella/E.urope 
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l/xxx W xxx xxx 
]/XXX W XXX XXX 
[]XXX W XXX XXX 
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E X H I B I T  2 
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US Primary and Retro Business 
Inforce Date - xx,xx,xxxx 

O c c u r r e n c e  D i s t r i bu t ion  

357 
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EXHIBIT3 
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Operating Profit Distribution 
Impact of Shifting to 10% Stock Asset Mix 
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portfolio. As indicated previously, this information (along with accompanying 
risk and return statistics) can be generated for any vendor/peril scenario, and any 
segment of  the portfolio of reinsurance contracts. 

Exhibit 1 is a relatively simple graphic, but when it is coupled with the risk/ 
return measures it is a powerful management tool. For example, distributions can 
be generated with and without a retrocessional cover that is being considered. 
Comparison of the two allows management to evaluate the marginal impact of 
the cover on underwriting risk and return, and ultimately to assess the value of 
the cover. Alternatively, reinsurance accounts that have a particularly detrimental 
impact on the distribution can be isolated for potential re-underwriting at 
renewal. 

Management can also track changes ill thc distribution over time, as a measure 
of  underwriting performance. 
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Expected Annual Return on Surplus 
Employed 

(Worldwide Portfolio As of Date 
400/0 . Shown) 

35% • All figures 
30% - m are illustrative 

I m I l mmm | 
1 5 %  h ~ - m - m - ~ - -  

0 % ' ,  ', . . . .  ', [ l . . . .  , 

C o m p a n y  "XYZ" 

EXHIBIT 5 

A variety of routinely produced diagnostic exhibits allows management to gain 
insight into the sources of adverse underwriting scenarios: perils, regions, 
reinsurance layers, etc. Comparative information on primary and reinsurance 
industry losses is also included. Exhibits 2 and 3 are illustrative of these types of 
exhibits. 

Exhibit 2 displays industry and portfolio experience on a standard defined- 
event set. The defined events reflect a range of different likelihoods for various 
perils and regions. (The "break" in the exhibit indicates that it is longer than 
actually shown; only the beginning and end of the exhibit is shown in the 
illustration.) Exhibit 3 displays percentiles of severity distributions for the 
portfolio by (illustrative) geographic zone, and the Company'  s share of  the 
industry loss at that percentile. 

In addition to underwriting profit distributions, operating profit distributions 
reflecting investment as well as underwriting risk are produced by the model, such 
as those shown on Exhibit 4. These can be used to translate underwriting risk into 
operating profit terms, or to test the effect of introducing various levels of asset 
risk via changes to the mix of investments. 
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Multlperlod FTnanclal Planning Model 
Expected Operating Performance by Strategy 
Baseline Market Behavior Assumption 

Operating DebtJCapltal Company Reslx~nse 
Leverage: 50% Ratio: 0% To Market: Modest 

Year I Year 2 Year 3 Year 4 Year 5 

Written Premium 191 207 209 210 170 
Net Operating Profit 120 129 126 124 g8 
Diwdonds 16 60 73 176 

Surplus 381 486 555 608 556 

Operating Oebt/Cap41al Company Response 
Leverage: 50% Ratio: 30% "To Market: Mzxiast 

Year 1 Year 2 Year 3 Year 4 Year $ 
Written Premium 190 207 211 214 180 

Net Operating Profit 110 114 110 107 84 

Dividends 35 56 64 129 

Surplus 381 489 572 638 608 

Operating Oebt/Capztal Company Response 
Leverage' 65% Ratio: 30% TO Market: Modes1 

Year 1 Year 2 Year 3 Year 4 Year 5 

Wdtten Premium 267 290 295 302 270 

Net Operating Profit 153 158 152 148 123 
Dividends 70 94 87 131 

Surplus 381 501 594 687 714 

Op~mlLng Oebt,/C~pit e,I Gomp~.ny Re ~,o~,,~ 
Leverage: 80% Ratio' 30% To Markel' Modest 

Year 1 Year 2 Year 3 Year 4 Your 5 
Written Premium 305 332 332 333 270 
Net Operating Profit 177 181 171 158 138 
DIvldon ds 89 113 111 131 

Surplus 381 509 607 708 743 

EXI-IJI~II 6 

Many of  the risk measures suggested in Section 2 can be translated into 
boundary constraints, reflecting their maximum level o f  acceptability. For 
example, one possible risk measure is the probability of  suffering a surplus 
decline of  20% or more. If that were a chosen risk measure, management would 
presumably seek to minimize that probability for a given level o f  return, and 
would only be willing to accept an increase in that probability in exchange for a 
higher return. Management might also impose a boundary constraint that in no 
event will management allow that probability to exceed 3%. 

One can invert the boundary constraint relationship to obtain an implied 
surplus requirement. For example, if the current annual operating profit 
distribution for a hypothetical company indicates that there is a 3% chance of  
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Multiperiod Financial Planning Model 
Asset Liablflty Efficient Frontier 
Baseline Market Behavior 

50% 

40% 

E 
300/0 

i 2 0 %  

10% 

L 

• K • J •1  R 
H e, • e O  • • C  

t O  D • 
Ge ~ e p e  e E 

• A 
M 

F 

0% i I i 
0.00/0 0.5% 1.0% 1.5% 2.00/0 

Level of Risk 

Operating Debt/ Dividend Response 
Strategy Leverage Capital Policy to Market 

A 85% 20% Standard Level 
B 100% 20% Standard Level 
C 115% 20% Standard Level 
D 85% 40% Standard Level 
E 100% 400/° Standard Level 
F 115% 40% Standard Level 
G 85% 20% Standard Modest 
H 100% 20% Standard Modest 
I 115% 20% Standard Modest 
J 85% 40% Standard Modest 
K 100% 40% Standard Modest 
L 115% 40% Standard Modest 
M 85% 20% Standard Aggressive 
N 100% 20% Standard Aggressive 
O 115% 20% Standard Aggressive 
P 85% 40% Standard Aggressive 
Q 100% 40% Standard Aggressive 
R 115% 40% Standard Aggressive 

EXHIBIT 7 

su f fe r ing  an  o p e r a t i n g  loss o f  $70 m i l l i o n  o r  g rea te r ,  t hen  the m i n i m u m  r e q u i r e d  

su rp lus  f o r  the c o m p a n y  is $350 m i l l i o n .  A t  t ha t  leve l  o f  su rp lus ,  i t  w i l l  be j us t  

ins ide  the  b o u n d a r y  c o n s t r a i n t .  



362 STEPHEN P LOWE, JAMES N. STANARD 

C o n t o u r  M a p  S h o w i n g  I m p a c t  o f  V a r y i n g  

Cap i ta l  S t r u c t u r e  o n  Ri sk  a n d  R e t u r n  

,: - ~ / "-.\55% 
• ~ 130% - ~0~ 

~ ~ -0 85% 
120% 

= ~ 0.60% ~ " 5% " ,  

110% 

• ,, ~, 1 0 0 %  

: \ - . .  

~a ", 0.10% 

70% " ', Dot.ted.Lines are Ris 
'L Sohd Lines are Return ] ~ . , . . , . 1 . . . . . , . . . . . . . , . . ~  
I 

60% I I I 

0% 10% 20% 30% 40% 50% 

D e b t / C a p i t a l  R a t i o  

EXHIBIT 

The Company has established several such boundary constraints, and uses 
them to measure surplus employed on an ongoing basis, on the basis of the 
operating profit distributions generated by the model each quarter. This approach 
is not only directly useful in the capital management of  the company, but also 
facilitates the measurement of  expected returns on surplus employed. Exhibit 5 
illustrates this type of information. In addition to Company results, the model 
generates the results for an "index fund" of a cross-section of the entire excess 
property catastrophe market (for certain regions) labeled as 'XYZ' ,  so that 
comparative performance can also be measured. 

A variety of  exhibits can be generated from the multi-period model, since it can 
be used to test so many different strategy variables: operating leverage, debt/ 
capital ratios, dividend strategies, and responses to changing market conditions. 
Exhibits 6, 7 and 8 are illustrative of  the types of output generated by this analytic 
tool. Exhibit 6 shows the Company 's  expected results as generated by the model 
for four sample strategies. In actual practice, basic exhibits like these have been 
generated for hundreds of  alternative strategies and assumptions sets. 
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Exhibit 7 is an illustration of an asset/liability efficient frontier for 18 different 
strategies, which are listed on the lower half of the exhibit. In this example, the 
Company is considering raising or lowering its operating leverage by 15% from 
current levels, varying its debt/capital ratio from 20% to 40%, and altering its 
response to changes in market price levels from '~modest" to either '~flat'" or 
"aggressive". While the exhibit is a highly stylized version of such an analysis, it is 
indicative of the approach actually taken. 

Finally, Exhibit 8 is a supporting exhibit to Exhibit 7, showing the trade-off 
between risk and return associated with the operating leverage and debt/capital 
variables. Risk and return measures from the multi-period planning model have 
been used to construct a contour map for a range of values of each variable. The 
contour map shows how risk and return rise and fall in each region of variable 
values. (The actual contour lines are more involved than shown, with multiple 
inflection points.) To find an efficient frontier point, one follows a particular 
return line, looking for the region where the line also achieves minimum risk. 
Exhibits such as these are used as diagnostics in the efficient frontier analysis. 

In addition to using different decision variables, the model is run with va ry ing  
assumptions to test how the resulting frontiers and contour rnaps are affected. 

5. CONCLUSION 

To make the dynamic financial analysis system described in this paper useful in 
the decision making process, a significant continuing investment is required in: 
• Maintaining the underlying databases current and error-free 
• Including all types of business and perils to which the company is exposed 
• Training all professional staff in the details of the model 
• Designing the system so that the DFA results are produced quickly, with easily 

understandable output reports 
• Selecting employees and establishing a culture where decision making in this 

framework is considered natural and practical. 

The substantial investment in building and maintaining the system has clearly 
been justified - but only because of its usefulness in many of the practical 
decisions facing the company. 

A final challenge is for employees using this admittedly complex system to 
develop good judgment as to how much weight to give its results in their actual 
decision making. This requires a thorough understanding of the theory and the 
practical details of the system, and an appreciation of the limitations and 
assumptions underlying the results. A good sense of how to weigh system results 
with unmodeled factors is the essence of the amorphous term "'underwriting 
judgment". 
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APPENDIX A - CURRENCY RISK 

The Company is an international reinsurer writing contracts covering exposures 
in many different countries. Since it operates in multiple currencies, the resulting 
revenues, assets, and liabilities are affected by currency movements. It is 
instructive to observe the interplay of currency movements on asset and liability 
risks. 

The measurement of  performance and risk in the ALEF framework must take 
the perspective of  the owner. While assets and liabilities may be held in a variety 
of currencies, ultimate returns and settlement costs must be measured in terms of 
their impact on equity, as measured in the owner's currency. For this reason, the 
Company ' s  DFA model expresses all results in terms of U.S. dollars, reflecting 
gains and losses at the time of conversion as part of  the cost or benefit. 
Specifically: 
• The cost of  future claim liabilities includes the cost/benefit of  converting them 

to U.S. dollars at future exchange rates. 
• The benefit of  future reinstatement premiums includes the cost/benefit of  

converting them to U.S. dollars at future exchange rates. 
• The total return on non-U.S, investments includes the gains/losses due to 

currency movements during the period. 
Thus, currency risk is treated as an embedded element of  asset and liability risks, 
and not as a separate risk element. 

If potential investors have a principal currency other than U.S. dollars, they 
may be interested in measuring risks and relurns from the vantage point of 
another currency. Since the Company 's  stock is traded only on a U.S. exchange, 
the U.S. dollar perspective to risk and return in the model appears reasonable. 
Investors from outside the U.S. must overlay the risk/return associated with 
holding a U.S.-denominated asset to the risk/return as measured by the model. 

International reinsurance contracts can pose particularly complex currency 
risk issues, for the following reasons. 
• The underlying exposures  may  be in one or several  currencies. The primary 

insurer will be paying claims in the local currency. It is even possible that the 
primary insurer could be paying claims from a single event in more than one 
currency (for example, French francs and Danish kroner). 

• The reinsurance contract  terms (i.e., retentions, Ihnits, e tc . )  may  be in one or 
more  currencies, poss ibly  different f r o m  the currency o f  the underlying claims. 
In such an instance the contract may specify that underlying claims be 
converted, using a specified currency exchange rate or the rate prevailing at the 
time of the event. 
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• The reinsurance contract  may  also spec i fy  se t t l ement  by the reinsurer in a p a r t #  
cular currency.  

The ultimate cost (in U.S. dollars) of  claims on such reinsurance contracts is 
dependent on the interaction of the underlying claims with the prevailing 
exchange rates and the contract terms. 

l 
Claims in Loss in Reinsurer's 

Local Contract Cost 
Currency Currency (Dollars) 
(Kroner) (Sterling) 

FIGUI,U£ 4: C o n v e r s i o n  ol" unde r ly ing  loss in local c u r r e n c y  IO u.s. Do l l a r  cost to re insurer .  

To illustrate, consider the simple (and admittedly unrealistic) example 
illustrated in Figure 4 below. The contract involves underlying exposures in 
Danish kroner, with contract losses settled in U.K. sterling, the cost of which 
must ultimately be expressed in terms of U.S. dollars. Given the underlying losses 
shown in the left-hand bar, the reinsurer incurs the cost shown in the right-hand 
bar. To measure its loss, the underlying losses (5 units in kroner) must be 
converted from their original cost in kroner to sterling at the prevailing exchange 
rate (6/5 in the example); the retention of 3 units (expressed in sterling) must be 
applied; and the resulting loss to the layer must be converted from sterling to 
dollars at the prevailing exchange rate (4/3 in the example). Thus an underlying 
loss of  5 units in kroner creates a cost of  4 units in dollars to the reinsurer. 

To illustrate the interplay of currency risks on the contract, consider an 
alternative scenario involving adverse movements in all currencies. This 
alternative scenario is presented in figure 5. First, a higher-than-anticipated 
Danish inflation rate causes the underlying loss in kroner to be greater (the left- 
hand bar is now 6 units, rather than 5). Next, adverse movement  in the kroner-to- 
sterling exchange rate causes the loss to be even greater when measured in the 
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contract currency (the exchange rate has moved from 6/5 to 8/6). The increase is 
leveraged by the fixed retention (3 units of sterling in either scenario). Finally, 
adverse movement in the sterling-to-dollar exchange rate causes the U.S. dollar 
loss to the layer to be greater still (the exchange rate has moved from 4/3 to 7/5). 

As a result of adverse movemnents in inflation and exchange, the reinsurer's cost 
has grown fromn 4 units of dollars to 7 units of dollars. 

I"I 

 PII 

Retention 

I I  

Claims in Loss in Reinsurer's 
Local Contract Cost 

Currency Currency (Dollars) 
(Kroner) (Sterling) 

FIGURE 5 Alternative scenario showing the impact of currency movements. 

The example neatly divides the currency portion of liability risk into three 
components: inflation risk, which affects the magnitude of the underlying losses in 
their original currency; contract exchange rate risk, which affects the conversion 
of losses from original to contract currency; and settlement exchange rate risk, 
which affects the conversion of losses from contract currency to dollar terms. All 
three components need to be incorporated in the pricing and underwriting of 
reinsurance contracts. 

The example is contrived and also unrealistic in its assumed exchange rates. In 
addition, the adverse scenario is particularly unrealistic in that purchase power 
parity would imply that an increase in kroner inflation would generally be 
expected to be associated with a favorable movement in the kroner-to-sterling 
exchange rate (the kroners would have less purchasing power, so it would take 
relatively fewer pounds sterling to buy them). Of course, the direction of 
movements in the illustration could certainly happen in the short run. 
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A particularly strong feature of  Global CAP:Link is its ability to model 
inflation and exchange rates between multiple currencies in a logical and 
consistent manner, so that unreasonable purchase power parity relationships are 
not created. Each scenario generated by the system is plausible, with variability in 
parity occurring over short intervals and a greater tendency towards parity over 
longer intervals. By integrating the CAP:Link scenarios into the generation of 
both the liability scenarios and the asset return scenarios, the overall risks posed 
by operations in multiple currencies can be managed. 

While the illustration above describes the risks as working from left to right on 
the chart, in reality they work in the opposite direction. The Company must 
exchange U.S. assets for sterling to settle the claim. Some readers may question 
whether settlement exchange risk is real, and not created by currency mismatch. 
In other words, if the Company is holding some of its assets in sterling, it can 
settle the claims on sterling-based contracts without suffering any gains or losses 
due to exchange rate fluctuations by simply paying the claims out of  its sterling 
funds. Thus, it might be argued that settlement exchange risk only exists to the 
extent that insufficient sterling assets to pay the claims are available. 

However, the above line of  reasoning confuses the existence of risk with its 
immunization. For liabilities that are fixed and certain, the Company can 
immunize itself against overall currency risk by holding a matched set of  assets 
equal to the liabilities in the same currency. In such a case, any change in the 
exchange rate will cause the decline in asset value to be offset by an equal decline 
in liability value (both measured relative to U.S. dollars); conversely, an increase 
in asset value will be offset by an equal increase in liability value. Thus, although 
settlement exchange risk and asset currency risk are both present, they are 
negatively correlated, facilitating the immunization. 

If liabilities in each currency were fixed, known anaounts, the minimum risk 
position would appear to be to hold funds in each currency sufficient to settle the 
liabilities. (This pre-supposes that no arbitrage opportunities exist and that the 
investment risks and expected returns are the same in each currency.) But when 
liabilities are uncertain as to anaount, timing, and currency, it is not quite so clear 
how to minimize currency risk. This is where effective modeling can be an 
invaluable tool. 

APPENDIX B - RISK MEASURES AND THE EXPECTED POLICYHOLDER DEFICrF 

In the ALEF framework risk can be any measure of  adverse outcomes that 
management believes is most relevant to the enterprise. One such measure is the 
expected policyholder deficit (EPD), a term developed as part of the U.S. risk- 
based capital initiative and attributed to BUTSlC (1994). Since some readers may 
not have been exposed to the concept, a brief description is included herein. 

All insurers face the possibility that, at some point in the future, their 
obligations may exceed their assets. The magnitude of this risk is a function of the 
asset, liability, and business risks faced by the insurer, and the level of  capital held 
to support those risks. Insolvency risk has traditionally been measured in terms of 
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the probability of  ruin. However, from the perspective of the policyholder this 
measure is insufficient because it fails to take into account the severity of the 
insolvency. 

TABLE 1, taken from 8UTSJC, illustrates this point. In this simple example, two 
insurers have identical balance sheets. Each insurer has assets of  $13,000, 
liabilities of  $10,000, and capital of  $3,000. Although the assets of  each company 
are certain, the liabilities (unpaid claims) are uncertain, subject to the probability 
distributions shown. 

TABLE I 

CALCULATING THE EXPECTED POLICYHOLDER DEFICIT 

Asset Probability of Liability Capital Claim Deficit 

Amount Outcome Amount Amount Payment 

Insurer A 

Scenario I 13,000 0.2 6.900 6,900 

Scenario 2 13,000 0.6 10,000 10,000 

Scenario 3 13,000 0.2 13,100 13,000 

Expectation 13,000 I 0,000 3,000 9,980 

I00 

20 

Insu re r  B 

Scenario I 13,000 0.2 2,000 2.000 

Scenario 2 13.000 0.6 I 0,000 I 0,000 

Scenario 3 13,000 0.2 18,000 13,000 5,000 

Expectation 13,000 10,000 3,000 9,000 1,000 

In this simplest of  examples, there are no expenses or taxes, no time value to 
money, and no other business transactions to consider. For each company, the 
ultimate outcome will be one of the three scenarios shown. Due to the corporate 
form of the enterprise (assumed to be a non-assessable stock corporation), the 
payments to policyholders are limited to the available assets. Each insurer is 
subject to an equal probability of  ruin, with a 20% chance that obligations will 
exceed resources, claim payments will be limited, and the insurer will be forced to 
go out of business. Both insurers exhibit the same bahmce sheet leverage. 

However, the claim payment column in the chart clearly indicates that the 
policyholders of  Insurer B are significantly worse off than those of Insurer A. 
While policyholders of  Insurer A receive only a minor reduction in claim 
payments in one of the three possible scenarios for their liabilities, policyholders 
of Insurer B may suffer a substantial underpayment, receiving only 13/18 of their 
indicated claim payment. Overall, policyholders of  Insurer A expect apriori to 
recover all but $20 of the expected claim payments, while policyholders of Insurer 
B expect to recover only $9,000 of the expected $10,000 liability. 
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The expected policyholder deficit is defined as the expected value of the 
difference between the amount of  the claim obligation and the actual clairn 
payment. For Insurer A, the EPD is $20, or 0.2% of expected obligations. For 
Insurer B, the EPD is $1,000, or 10.0% of expected obligations. 

While the ruin probabilities and reported financial leverage ratios of  Insurer A 
and Insurer B are the same, the value of coverage afforded by each is clearly 
different. Insurer A offers considerably greater real value, from the perspective of 
the policyholder; expected recoveries are a substantially greater proportion of 
expected losses than is the case with Insurer B. In comparing the security offered, 
Insurer A's EPDratio of 0.2% is stronger than Insurer B's 10.0%. To offer the 
same level of  security, Insurer B would need to increase its capitalratio frorn the 
current 30% of expected losses to 79% of expected losses (i.e., raise its assets to 
17,900, so that it could pay all but $100 of the losses in Scenario 3). 

The expected policyholder deficit concept can easily be adapted to consider 
asset risks as well as liability risks, by expanding the scenarios to include changes 
in asset values as well as liability values. For each scenario, the realized value of 
the assets is compared to the settlement value of the liabilities to determine 
whether or not there is a deficit. 

From a financial standpoint, the EPD is the value of the put option held by the 
shareholders of a corporated enterprise. In the event that aggregate obligations 
exceed total assets, the shareholders can put the obligations to the regulators in 
exchange for the assets. When customers purchase insurance from a particular 
company, they implicitly give this option to the company. 

O 

f ~  © 

< 

Capital 

Cumulative Probability 

FIGURE ~,: The distribution of annual aggregate operating losses for the enterprise, 
and the level of capital, determine the expected policyhokter deficit 
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BUTSIC and others have argued that capital requirements for different lines of  
business should be set by equating EPD ratios (as opposed to ruin probabilities or 
leverage ratios). For each line of  business the capital requirements should be set 
so that the expected deficit is the same percentage of expected losses. This 
approach is most relevant in a pricing context, when the cost of employed capital 
is being considered. Since all policyholders give up the same option, setting 
returns on capital that is apportioned in this manner assures equity alnong 
policyholders. 

The expected policyholder deficit concept can be extended to consider all types 
of risks, to the extent that they call be incorporated into the dynamic finaucial 
model. The key model output is the distribution of aggregate operating losses for 
the enterprise. Different strategies can then be evaluated in terms of their impact 
on the EPD ratio. Alternatively, for a given target EPD ratio, different strategies 
can be evaluated in terms of their impact on the capital required to achieve that 
ratio. 

It tutus out that the concept of expected policyholder deficit is not at all new. 
Ill a paper published in 1868, HATTENDOkF refers to "mittleres Risiko", the mean 
risk, as defined by WITTSTEIN and KANr, JER (1867). HA'rTENDORF discusses the 
concept in the context of mortality risk in life insurance; excerpts of  that 
discussion are loosely translated below. 

Because it is not possible to calculate an absolutely correct mortality table for 
an infinite number of observations, and because ill reality the number of  
insureds with the same age is always finite, an insurer must accept that results 
will deviate from the expected level. Such a deviation can be favorable for the 
insurer, but it can also require greater payments than expected. And so, the 
company takes a risk in that it promises the payment of  all insured sums under 
any conditions, bnt its remuneration from the insured is based on the expected 
c a s e .  

If one defines risk as the financial loss which one accepts, then it is clear that a 
narrower definition of the concept is required. One call speak of the largest and 
the smallest risk. The smallest is clearly equal to zero. The largest is the entire 
insured sum on all policies, less the available funds in reserves and premiums. 
Far more inaportant is the mean risk. By this onemeans thesum ofallpossible 
operating losses, each multiplied by its probability. This definition is well- 
defined, permits no uncertainty, and with it one can cornpute the mean risk for 
a given insurance portfolio. 

Tile HATTENDORF paper develops a methodology for estimating WITTSTEIN and 
KANNER'S mean risk for a portfolio of life insurance contracts. While WITTSTEIN 
and KANNER had proposed the concept, they had not developed a practical means 
of manually calculating rnean risk ttbl" large numbers of contracts. 
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BOOK REVIEWS 

D.R. DANNENBURG, R. KAAS, M.J. GOVAERTS (1996): Practical Actuarial Credi- 
bility Models. IAE (Institute of Actuarial Science and Econometrics of the 
University of Amsterdam), 157 pages. 

The courageous foreword of this book caught my interest. The authors made 
three points about existing credibility literature: 
1. Credibility is currently taught in a needlessly complicated way. 
2. Credibility is emphatically set in a Bayesian framework. 
3. Often advanced mathematics is applied, even in situations where more elemen- 

tary methods could be used. 
These statements raise high expectations about the book, but I was not 

disappointed. In an accessible language the authors provide an extensive and rather 
complete guide to credibility. The theories are well documented with verbal 
motivation, practical considerations and numerical examples. Many readers will 
appreciate the fact that the book does not neglect the ties to statistics, such as 
analysis of variance and regression. The book has the following eight chapters: 
1. Introduction, 
2. The Buhlmann-Straub model, 
3. Jewell's hierarchial model, 
4. General properties of credibility estimators, 
5. Credibility and Bayes estimators, 
6. The two-way cross classification model, 
7. Credibility models applied to IBNR problems, 
8. The Hachemeister model. 

By writing this text, the authors have rendered a service to the international 
actuarial community: the book can be recommended to practitioners as well as to 
advanced actuarial students and their teachers. 

Inlbrmation how to order the book can be obtained from Rob Kaas, either at his 
IAA Yearbook address, or at RobKaas@fee.uva.nl by e-mail. 

H A N S  U .  G E R B E R  
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D.G. HART, R.A. BUCHANAN, B.A. HOWE (1996): The Actuarial Practice of  
General Insurance. Institute of Actuaries of Australia, Sydney. 591 pp. ISBN 
0-85813-055-6. 

This book is the general insurance textbook used by students of the Institute of 
Actuaries of Australia. In broad terms, its coverage can be broken down into the 
following three areas: 
• The nature and operation of general insurance (chapters 1-5). 
• Actuarial techniques for general insurance (chapters 6-16). 
• Actuarial practise of general insurance (chapters 17-40). 

The first part provides a thorough, but very readable introduction into the nature 
of general insurance. Starting with a description of the risks covered by different 
classes of insurance and a brief historical overview, it then rnoves into the area of 
insurance law and insurance regulation. Having dealt with these issues at consider- 
able length, the authors then discuss the actual operation of an insurance company, 
including underwriting and claims management, coinsurance and reinsurance, and 
financial reporting. The last two chapters of the first part cover the data 
requirements of a general insurer and, briefly at this stage, the role of the actuary in 
general insurance. 

By necessity, the first part of this book is steeped in Australian legislation, which 
can be a bit daunting to a reader t, nfamiliar with the federal structure of Australia. 
Of somewhat greater concern is the fact that the authors attempt to give an 
up-to-date presentation of several state-based statutory insurance schemes such as 
Workers' Compensation. As such schemes are constantly being modified, frequent 
revisions of this book will be inevitable. The reviewer's hope is that a future edition 
will be written with a view to being less ephemeral. For the current reader, 
however, this part of the book provides a wealth of information on how to operate 
an insurance company in any country. 

Tile second part provides an overview of important actuarial and statistical 
techniques for the general insurance actuary. The following areas are covered: 
claim frequency and size distributions leading to aggregate claim distributions; 
basic risk theory leading to methods for optimising capital, profit and reinsurance; 
experience rating and risk classification; forecasting and run-off techniques; 
premium rating. 

This part is very comprehensive and provides many useful quantitative methods. 
All the methods presented are clearly motivated and described with numerical 
examples. Due consideration is given to situations with less-than-perfect data, such 
as incomplete run-off triangles (the assumption of perfect data is a fiustrating aspect 
of many theoretical textbooks). 

Naturally it has been impossible for the authors to. cover all the available 
methods, or to provide more than an outline of the theoretical derivation and 
statistical properties of the methods presented : for this, the interested reader must 
consult other sources. 
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The third part of the book covers different aspects of the actuary's role and tasks 
in general insurance. Areas of actuarial involvement covered include: 
• Rating and design. 
• Reserving. 
• Financial control. 
• Reinsurance. 
• Appraisal. 
• Compensation schemes. 
• Risk management. 
• Statutory supervision. 

Within each area, the authors provide a wide-ranging discussion of the relevant 
practical, professional and legal issues that need to be addressed by the general 
insurance actuary in the performance of his or her duties. 

The authors of a book as comprehensive as this one must make a number of 
compromises. Thus one could point out a number of topics that are treated in 
greater depth by dedicated theoretical texts. However, within the limitation of 
almost 600 pages, the authors have succeeded remarkably well in balancing the 
general discussion of issues, with a presentation of quantitative techniques that has 
an acceptable degree of mathematical rigour. 

In the opinion of this reviewer, The Actuarial Practice of General Insurance is an 
excellent introduction to actuarial work in general insurance. 

WALTHER NEUHAUS 





ICIAM 99 IN EDINBURGH 

The Fourth International Congress on Industrial and Applied Mathematics (ICIAM) 
will be held in Edinburgh from 5th to 9th of July 1999. More than 2,000 delegates 
are expected to attend. Previous ICIAM congresses were held in Paris 1987, 
Washington 1991, and Hamburg 1995 and this event is now firmly established as 
the premier international conference in applied mathematics. The last mathematical 
congress of comparable importance and size to be held in the U.K. was the 
International Congress of Mathematicians held in 1958. This, too, was held in 
Edinburgh. The success of that congress bodes well for ICIAM 99. 

The congress will focus worldwide attention on the importance of mathematical 
and computational methods in the solution of real-world problems. The main 
features of the programme will be: 
• 25 general lectures by leading international experts on current developments of 

industrial, computational and applied mathematics. Mathematical methods for 
the qualitative and quantitative analysis of models will be presented and 
important practical applications will be discussed extensively. Particular themes 
will include : 
- Financial Mathematics, Insurance, Investment and Banking 
- Mathematical Modelling in Industry 
- Mathematics of Medicine 
- Geophysical and Oil Sciences 
- Large Scale Computation 
- Environmental and Climate Science 
- Cryptography, Coding and Computer Security 

• 300 mini-symposia and organised discussion sessions to provide integrated 
presentations and discussion by international panels on the latest mathematical 
and computational techniques. Research on industrial, commercial and environ- 
mental applications will be discussed as well as other issues including applied 
mathematics education, public perception of mathematics, and the organisation 
of applied mathematics societies. 

• Special all-day sessions will be run in conjunction with learned societies and 
other organisations discussing new research in the mathematical and computa- 
tional sciences and outlining novel applications. 

• End of Conference Session with a panel overviews and perspectives, drawing 
conclusions from lectures and mini-symposia, and looking forward to the 
challenges and problems of the next century. 

The U.K. actuarial profession will be organising mini-symposia for the Con- 
gress. 

O r g a n i s a t i o n  o f  t h e  C o n g r e s s  

The Joint Patrons of the Congress are H.R.H. The Prince Philip, Duke of 
Edinburgh, K.G., K.T. and The Right Hon. The Lord Mackay of Clashfern. 
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The scientific programme and, in particular, the selection of invited speakers lies 
in the hands of an international Scientific Programme Committee chaired by 
Professor J. R. C. Hunt, Horonary Professor at University of Cambridge and, until 
recently, Chief Executive of the U.K. Meteorological Office. The committee has 
30 rnembers from 16 different countries. 

Other U.K. organisations involved include the British Computer Society, Royal 
Statistical Society, Institute of Mathematics and its Applications, International 
Centre for Mathematical Sciences, London Mathematical Society, Operational 
Research Society, Royal Society, Royal Society of Edinburgh, Engineering and 
Physical Sciences Research Council. 

Information about ICIAM 99 

Further information on the Congress can be found on the World Wide Web under 
the address 

http ://www. maths, ed. ac. uk/conferences/iciam99/ 

where the current information is constantly brought up to date and you can 
preregister for the meeting following the easy instructions. 

If you do not have access to the World Wide Web, further information carl be 
obtained by writing/telephoning/faxing/emailing 

ICIAM '99 Congress Secretariat 
c/o Meeting Makers 
50 George Street 
Glasgow GI 1QE 
U.K. 
Telephone: +44 (0)141 553 1930 
Fax : +44 (0)141 552 0511 
email : geninfo.iciam @ meetingmakers.co.uk 



THE 30TH INTERNATIONAL ASTIN COLLOQUIUM 

Tokyo, Japan, 22-25 August, 1999 

The 30th International ASTIN Colloquium will be held in Tokyo, Japan from the 
22nd through the 25th of August 1999. The Colloquium will cover the following 
areas related to most non-life actuaries. 
• Sound management of non-life insurance companies 
• Rating system and method 
• Statistical analysis of insurance 
• Miscellaneous 

1999 marks the centennial anniversary of the Institute of Actuaries of Japan (IAJ). 
The AFIR Colloquium and IAJ's Centennial Celebration Convention are scheduled 
to follow the 30th ASTIN Colloquium in Tokyo. The final day of the 30th ASTIN 
Colloquium, August 25th, will be "Joint Day" with AFIR. IAJ considers it a 
privilege that Japan will be the first Asian country to host the ASTIN Collo- 
quium. 

While a detailed schedule of the Colloquium is still being developed, we hope 
many ASTIN members from overseas will be able to attend and present research 
papers. Active participation in this event will be most appreciated. 

Tokyo is not only one of the largest cities in the world, but it is also a city that 
retains Japanese tradition and culture. Excursions would include areas around 
Tokyo that will allow you to visit many famous places and historic sites. In 
addition, a two-hour bullet train ("Shinkansen") ride can take you to Kyoto or 
Nara. In these ancient cities, you can fully appreciate historical Japan. We would 
like to invite you to attend the Colloquium in Tokyo and to take advantage of the 
opportunity to enjoy Japanese tradition and culture. 

1AJ has formed the ASTIN Scientific Committee (Chairman Dr. Yoshizoe, 
Professor of Aoyama Gakuin University) and the Organizing Committee, for 
preparation and management of the Colloquium. Committee members are eargerly 
anticipating the Colloquium. 

Further information and details will follow shortly. 
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The 28th ASTIN International Colloquium and the 7th International AFIR Collo- 
quiurn were held in the same week from August I lth to August 15th 1997, in the 
Cairns International Hotel, North Queensland, Australia. This first ever joint 
meeting cuhninated in a "joint day" on the Wednesday, recognising the fact that 
AST1N and AFIR delegates have an increasing number of interests in common and 
that both actuarial and financial skills are necessary to cope with the new challenges 
of today. The CNN announcement of the merger of the Winterthur Insurance 
Company and the Cr6dit Suisse Group, news of which spread rapidly among 
delegates, emphasised this point. 

The joint meeting was also an excellent opportunity to celebrate the 100th anniv- 
ersary of the Institute of Actuaries of Australia. The first gathering of Australian 
actuaries to discuss the formation of an institute took place on August 12th 
1897. 

This historic meeting (and possibly also the chance to visit the Great Barrier Reef 
and the tropical rainforest, two of Australia's World Heritage Areas) attracted a 
large audience: 193 people registered for ASTIN and 209 registered for AFIR; both 
numbers include 126 people who took the opportunity to register for both colloquia. 
The delegates came front 31 different countries with groups of at least ten delegates 
from Australia, Belgium, Canada, Denmark, Germany, Japan, Netherlands, Norway, 
Sweden, Switzerland, United Kingdom and the USA. 

Eight internationally recognised keynote speakers gave lectures during the week; 
21 speakers presented papers during the two ASTIN days, nine during the afternoon 
of the joint day ; 31 speakers presented their research, partly in concurrent sessions, 
during the two AFIR days. The combined proceedings of both colloquia have an 
approximate length of two thousand pages. Obviously, we can only mention the 
general themes and some highlights of the colloquia, which reflect our personal 
tastes and understanding. 

The ASTIN colloquium opened with a session on the topical subject of 
catastrophe risk. Bruce Harper held an entertaining invited address on the modelling 
of wind hazards and insurance risks in Australia. This talk was impressive in 
showing how, in the absence of reliable data on the losses caused by tropical 
storms, insurance events could be simulated using physical models for storms and 
for the damage caused by storms with different characteristics. 

In the second invited address Prof. Paul Embrechts, ETH Ziirich, outlined the 
possibilities offered by extreme value theory in the modelling of catastrophic losses 
in the situation where some data are available. The basic message of extreme value 
theory is that there are natural probability distributions and models for extremely 
large observations in the same way that there are natural models for average values 
(such as the well known Gaussian normal distribution). Further contributed talks on 
extreme values by Alexander McNeil and Dietmar Pfeifer indicated that this 
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interesting branch of probability theory is now coming to the attention of practising 
actuaries. 

A second major topic on the first day was classification of risks, and this session 
showed the broad palette of statistical techniques now being used in insurance 
research. Talks ranged from the application of cluster analysis in the formation of 
tariff classes using neural network-based implementations to the evaluation of 
occupational risks using methods from survival analysis. Greg Taylor, who later in 
the week became the recipient of the first ever gold medal of the Institute of 
Actuaries of Australia, submitted two papers in this section, one on the use of 
Whitaker spatial smoothing to obtain good estimates of risks which vary geograph- 
ically, the second on the setting up of a bonus-malus scale of premiums in the 
presence of additional rating factors. 

The final session of the day consisted of papers on the subject of premium rating 
in which one identifiable theme was the use of Markov state models. Papers 
presented by Jose Garrido and by Ermanno Pitacco addressed the use of such 
models in disability and health insurance tarification. The day ended with delegates 
enjoying dinners at one of two exotic locations. One party sampled traditional 
Queensland fare at the Riverstone Homestead, a historical sugar plantation house; a 
second group dined at the luxury Paradise Palms Golf Course. 

in view of the copiousness and excellence of the food and wine it was all the 
more remarkable that attendance had not declined on the second morning when 
delegates reconvened to hear talks in two sessions entitled statistics and reserving. 
In the former session David Dickson described an alternative to the classical 
compound Poisson risk process; he derived results for the probability and the extent 
of ruin when claims occur as more general renewal processes. In the latter session 
two papers looked at different aspects of the calculation of development factors, or 
link ratios, in the loss development problem. The first paper by Glen Barnett and 
Ben Zehnwirth focused on the use of diagnostics in the selection of competing 
models for loss development; the second paper by Erhard Kremer looked at a 
robust version of the classical chain-ladder model. After these short but intensive 
scientific sessions delegates spent the afternoon on an enjoyable excursion with the 
Kuranda historical railway from the coast up to Kuranda, passing the Barton Falls, 
and down again with Skyrail above the canopy of the tropical rainforest. This 
provided a most unusual but congenial backdrop for the important conference 
activity of catching up and networking with colleagues. 

The joint ASTIN/AFIR day was mainly devoted to the securitization of insurance 
risk, the issue which best represents the convergence of ASTIN and AFIR interests. 
The first keynote lecture by Jarnes A. Tilley addressed the securitization of 
catastrophic property risks, the second by Prof. Nell Doherty, University of 
Pennsylvania, was about financial innovation in the management of catastrophe 
risk. 

For ASTIN delegates the first talk followed nicely from the discussion of 
catastrophe risk on day one. The interest in securitization arises because of 
increased exposure to catastrophes and the empirical observation that frequency and 
severity of large losses are on the increase. Insurance companies alone may not 
have the capacity to handle the mega-catastrophes of the future. 
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A possible way to pass the insurance risk to investors (in return for a 
corresponding risk premium) are catastrophe bonds. Investors can use these bonds 
to diversify their portfolios because natural disasters, for example, have a very small 
correlation with financial market risk. Catastrophe bonds can be classified as: 
- -  pure catastrophe bonds, when the principal and the coupons are at risk: 
- -  principal-protected catastrophe bonds, when only the coupons are at risk; 
- -  deferred catastrophe bonds, when no payment as such is at risk, but the date of 

the payments can be deferred, leaving the issuer of the bond an interest gain in 
case of a catastrophe. 

James Tilley described some products which have so far been developed, such as 
the California Earthquake Authority risk bonds (an example of the second type of 
bond above), and looked at reasons why the market for securitized products has 
generally developed slowly. Among these reasons are the favourable catastrophe 
experience since 1994, the rehabilitation of Lloyds and the weaknesses of proposed 
securitization structures. However, he suggested there was still a potential need for 
cost efficient products with flexible annual renewal possibilities and more of the 
simplicity which makes traditional reinsurance arrangements appealing. 

In the afternoon presentations of the joint day, several points raised in the 
keynote lectures were studied more deeply. The correspondence of catastrophe 
bonds and defaultable bonds was discussed, both leading to an incomplete market 
setting which causes difficulties in the pricing methodology. An approach, advo- 
cated by Prof. Martin Schweizer, is to decompose the risk of say a catastrophe bond 
into a hedgeable part and a residual part, which is treated by standard actuarial 
methods to obtain a price. This leads to a bid-ask price spread for the catastrophe 
bond. A specific principal-protected catastrophe bond, the Winterthur Insurance 
convertible bond with WinCat coupons "hail" ,  was considered by Uwe Schmock 
and several methods for the estimation of the coupon values were presented ; model 
risk for the statistical analysis and the corresponding pricing of the bond were 
investigated. Further talks addressed selected topics of asset liability modelling, 
risk-based capital allocation, risk-adjusted performance management and reserving 
for future claims taking stochastic interest rates into account. 

The joint day ended with a lavish ASTIN/AFIR colloquia banquet in the Great 
Hall of the Cairns Convention Centre, where a gold medal of the Institute of 
Actuaries of Australia was awarded to Greg Taylor, the chairman of the ASTIN 
scientific committee. 

The first pure AFIR day started with Prof. Phelim Boyle's keynote lecture on 
quasi-Monte Carlo methods for numerical integration. He showed that deterministic 
low discrepancy sequences outperform crude Monte Carlo methods in low dimen- 
sions, but that this superiority diminishes for high dimensions or discontinuous 
integrands. Randomisation of low discrepancy sequences and reduction of the 
effective dimension of the integration problem can come in handy in these cases. 

After morning tea, the AFIR prize winning papers were presented and the 
certificates awarded. The first prize was given to Glen R. Harris, AMP Society, 
Australia, for his paper on "Regime switching vector autoregressions: a Bayesian 
Markov chain Monte Carlo approach". The second prize was divided between 
D.J.F. Nonnenmacher and Jochen Russ, University of Ulm~ Germany, for their 
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paper "Equity-linked life insurance in Germany: quantifying the risk of additional 
policy reserves" and Ken Seng Tan and Prof. Phelim Boyle, University of 
Waterloo, Canada, for their paper "Applications of scrambled low discrepancy 
sequences to exotic options". 

Prof. Stanley Pliska, University of Illinois, gave his keynote lecture on a model 
for risk-sensitive dynamic asset allocation. For measuring the performance of the 
model, he presented various infinite-horizon criteria: expected growth rate of the 
portfolio, expected utility growth rate of the portfolio and a risk-sensitive growth 
rate criterion. A major aim of this model was to combine the statistical work for 
parameter estimation with the forecast for asset management. Applied to a historic 
data set, the corresponding management strategy showed an impressive perfor- 
mance. 

Several contributed talks also presented and compared asset/liability management 
strategies for various settings such as continuous-time pension fund models or 
portfolios of defaultable assets. Some further themes ranged from inflation 
modelling to an axiomatic classification of usurious loans and tax-efficient, 
option-based compensation packages for employees. 

The last day of the colloquium started with the keynote lecture by Prof. J. David 
Cummins, University of Pennsylvania, about the use of financial derivatives in 
corporate risk management, participation and volume decisions in the insurance 
industry. According to this talk, the main reasons for the use of derivatives in the 
insurance industry are to avoid: 

- -  financial distress costs like bankruptcy costs, additional regulatory restrictions 
and reputational losses affecting relationships with key employees, suppliers and 
customers ; 

- -  duration problems in the asset/liability management, including the liquidity risk 
of private placements or real estate; 

- -  foreign exchange risk, and 
- -  losses due to the convexity of income tax schedules. 

In the contributed talks on Friday, partly in concurrent sessions, Peter Antal 
applied ideas mentioned on the joint day to the pricing of regular options, arguing 
that option prices should contain a risk premium in any case because a dynamic 
hedge as in the Black-Scholes model is not possible in practice. Godfrey Perrott 
presented policyholder considerations for the demutualisation of a company. David 
Wilkie showed that different prices of risk and different portfolios cause a failure of 
the capital asset pricing model in a multi-currency world. Robert Clarkson critically 
discussed the financial risk in the Markowitz and Black-Scholes worlds, explaining 
that investors would not accept a certain level of risk (bankruptcy for example), no 
matter how high the offered risk premium is ; a comparison with the risk of death in 
some dangerous sports made his point clear. Further talks concerned the fitting of 
the term structure, pricing rate of return guarantees, the use of genetic algorithms, 
the Italian pension plan or the social security system in Indonesia, for example. 

The final keynote lecture was given by Dato'Abdul Khalid bin lbrahim, currently 
the Group Chief Executive of Kumpulan Guthrie Berhad. He gave an overview of 
the Asian capital markets with special focus on the development of the capital 
markets in Malaysia and Singapore, and he encouraged the audience to invest in 
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these markets. The colloquium closed with the annual general meeting of the AFIR 
section. 

We close with a glimpse of future events. The 8th International AFIR Collo- 
quium will take place in Cambridge, United Kingdom, 15th to 17th of September 
1998. Write to David Golder, AFIR 1998 Colloquium Secretariat, Institute of 
Actuaries, Staple Inn Hall, London, WCIV 7QJ, United Kingdom, for information. 
The next General Insurance Convention & ASTIN Colloquium will take place in 
Glasgow, Scotland, 7th to 10th of October 1998. For information write to Linda 
Pritchard at the above address. The next joint International ASTIN and AFIR 
Colloquia are scheduled to take place in Tokyo, Japan, from 22nd to 25th of August 
1999, followed by the Centenary Convention 29th to 31st of August. 

ALEXANDER MCNEIL and UWE SCHMOCK 
Department of Mathematics 
ETHZ, Ziirich 
Switzerland 





ACTUARIAL VACANCY 

DRAKE UNIVERSITY ACTUARIAL SCIENCE POSITION 

Position : A tenure track position in actuarial science in the College of Business and 
Public Administration, to begin August, 1998. Rank and salary based on qualifica- 
tions. 

Duties." Ph.D. in actuarial science or a related area along with Associateship in the 
CAS or SOA is preferred. Applicants with a Fellowship and Master's degree will be 
considered. 

Applications : Submit a curriculum vitae and arrange for three letters of reference to 
be sent to Professor Stuart Klugman, FSA; CBPA; Drake University; Des Moines, 
IA 5031 I. Applications will be accepted until the position is filled. 

Drake University is an equal opportunity/affirmative action employer and actively 
seeks applications from women and minority group members who are qualified for 
this position. 

Stuart Klugman, FSA 
Principal Financial Group Professor of Actuarial Science 
Drake University 
2507 University Avenue 
Des Moines, IA 50311 USA 

Phone : 515-271-4097 
e-mail: Stuart.Klugman @drake.edu 
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