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ABSTRACT 

This note generalizes Jewell's theorem on exact credibility from the classical 
B/Jhlmann model to the (weighted) Bfihlmann-Straub model. 

1. INTRODUCTION 

A well-known theorem of Jewell (1974) states that exact credibility, which is the 
concurring of the Bayesian estimator (posterior mean) with the credibility 
estimator of a contract mean, is found for a class of examples which includes 
many common situations. In a nutshell, exact credibility obtains when the 
observations are drawn frorn distributions in the exponential family, with natural 
conjugate prior distributions for the risk parameter. Surprisingly, Jewell's 
theorem pertains only to the classical Bfihlmann model, and does not hold in 
case different variances of the observations are allowed, as in the Bfihlmann- 
Straub model. In this contribution we prove exact credibility to hold for the 
(weighted) Bfihlmann-Straub model as well, thus allowing the observations to be 
averages of  varying numbers of  observations, also in case of  Poisson and 
Binomial distributions. The parametrization used coincides with the one used in 
the theory of Generalized Linear Models. In the original form of Jewell's 
theorem, and in ours as well, rather cumbersome reparametrizations are required 
to prove that ordinary distributions like Poisson and G a m m a  are special cases of  
this theorem. This is remedied in Gerber (1995) by choosing a more convenient 
parametrization. 

Our extension of Jewell's theorem still does not incorporate Jewell's 
hierarchical model. Exact credibility for this model, and also for even more 
complicated ones like Hachemeister's regression credibility model, can, however, 
easily be proven for the normal-normal model, This is because conditional 
expectations of  multinormal random variables are linear in the conditions. 

Consider a portfolio consisting of J contracts, for which we have data of the 
past claims. These observations are assumed to have been generated by a 
Bayesian chance mechanism: first a contract-specific risk parameter 
Oi, j = 1, ..., J, is drawn from a structure distribution with known parameters, 
called hyperparameters. In this contribution, we will concentrate on one 
particular contract j. Since the observations on other, independent, contracts 
do not appear in the estimators of  # (0 i )  used, we will simply write the 
observations as X~, ..., XT, and not incorporate the contract number j in our 
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notation. The unobservable random variable O represents the risk characteristics 
of the contract in question. These characteristics may be unobservable, or if they 
are, unusable for reasons such as social acceptability. The observations, 
conditionally given O, are independently drawn from some distribution of which 
the mean is a function of the parameter O. The quantity of interest is not (3 itself, 
but the risk premium for contract j, traditionally denoted by/~(O) = E[X[O]. The 
risk variable O acts as a parameter of the distribution of the risks X~, X2, ..., Xr; 
conditionally on O, the risks will be independent with mean /z(O). They are not 
necessarily identically distributed, since the conditional variance of 2", is taken 
inversely proportional to some known weight wl, just as in the Bfihlmann-Straub 
model. 

The best estinaator of F~(O), in the least squares sense, in the class consisting of 
all random variables of type g(Xt, )(2, ..., XT) where g(.) is any function, is the 
one with minimal mean squared error E[{g(Xi, X2, ..., X r ) -  ~(O))2]. It is 
obtained by taking g = g* with 

g*(X,, X2, ..., X r ) =  E[j (O)IX,, X2, ..., xT] (1) 

Thus, we see that the best predictor of #(O) is just the conditional mean of/_~(O), 
given the observations, or in the idiom of Bayesian estimation, the posterior 
mean. These posterior means may have a rather unpleasant form, which is the 
reason why in credibility theory the restriction to linear functions of the 
observations is imposed. The estimator thus obtained is not only the best 
approximation to/_L(O), but it is also closest to the posterior mean (l). It can be 
shown that if the simultaneous distribution of O and Xi, ..., XT is of particular 
type, g*(.) happens to be a linear function of the data already, and thus is the 
credibility estinaator. In the second section of this note, we investigate conditions 
for which this holds. 

2. EXACT CREDIBILITY 

When the optimal Bayes estimator (I) is linear, it is obviously equal to the 
credibility estimator, since they both minimize the mean squared error. In this 
case we say that the credibility estimator is exact Bayesian, or equivalently, that 
exact credibility holds. Jewell (1974, 1975) showed that exact credibility is found 
when the observations X~, ..., XT, given the value of the structure parameter O, 
are an iid random sample from the exponential family of distributions; moreover, 
the prior distribution of t9 must be the so-called natural conjugate prior, which 
ensures that the posterior distribution of O, given ,k'l, ..., XT, is of the same type 
as the prior distribution. In Jewell's original theorem, the Xr are lid, given (3, as is 
the case in the original B/.ihlmann model. To be able to apply the theorem to the 
more general Biihlmann-Straub model, we have to account for the observations 
having different variances (weights). For definitions and assumptions of these 
credibility models, consult e.g. Goovaerts et al. (1990). 

The well-known exponential family of distributions contains many frequently 
used distributions. Prominent members are the Normal, Poisson, Binomial, 
Gamma and Inverse Gaussian distributions. The densities in it can be written as : 



EXACT CREDIBILITY FOR WEIGHTED OBSERVATIONS 289 

jx,  0, exp[X0  0,+c,x°j,,,l  A ,2, 

The parameter 0 of the distribution of X will be regarded as a realization of a 
structure random variable 0 .  The other parameter q$ is a dispersion parameter, 
like o ̀2 in normal distributions. It may be assumed known or unknown. For one- 
parameter distributions, for example the Poisson, ~b is taken to be I. The weight 
w > 0 is known. Since (2) involves only the ratio ~b/w, we might also say that only 
the relative weights of the contracts are known. Just as in the Bfihlmann-Straub 
model, the variance of X, given @, is proportional to l/w. This is the case when X 
is an average of w elementary claims (natural weight), as we will prove later on, 
but w is not necessarily an integer. The set A,,. consists of possible values of the 
claims. If the elementary risks are for instance Poisson, then 
A,,. = {0, I/w, 2/w, ..}. In the sequel, we assume X to be continuous. In the 
discrete case, integrals over x E Aw below should be replaced by summations. 

The above parametrization of the exponential family is sometimes called 
'natural', in view of the fact that the part of it depending on both x and 0 has the 
form e '°. As we will see later on, it proves that the natural parametrization is not 
always the customary one, which is generally chosen because it is the most 
convenient. The one Gerber (1995) uses makes the reparametrizations much 
easier, but gives problems when incorporating weights. The parametrization we 
use closely resembles the one standard in the theory of Generalized Linear 
Models, see, e.g., McCullagh and Nelder (1989) or Nelder and Verrall (1995). 
Here 4> is, without much gain of generality, replaced by a(q$). 

We can evaluate the moment generating function with density (2) as follows: 

mx(r) = e r'exp [ ~/w +c (x ,  ~/w) dx 

= / exp[ :'{O + rdplw} - b(O + + c(x, cblw)] dx × 

× exp[ b(O+rcb/w)-b(O)']qb/w (3) 

[b(O + rqblw) -- = exPL- ~ b(0)]. 

Note that the second integral in (3) equals one, because it is the integral over a 
density of type (2), with 0 replaced by 0 + rc~/w. Mean and variance of (2) follow 
easily from the cumulant generating function ~x(r) = log rex(r) 

v(0) = E[XlO -- 0] -- ,~,,(0) -- b'(0); 
(4) 

Var[X; O] = ~,(0) = b"(O)c~/w. 
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The function b(O) is somet imes referred to as the cumulant  function. 
Having  found the momen t  generating function, we can show that density (2) 

truly represents the density of  an average X = ~ - , i  Xi of  w iid r andom variables 
Xi, ..., X,,., with the same density (2), but with weight I. Indeed we have 

Assume that  O has a prior density which is the so-called naturalconjugateprior ,  
i.e., o f  which the 0-dependent  part  is the same as in (2), and x0,¢/w0 are 
parameters :  

,] Je(O) = exp + d(x0,4~/w0 • (6) 

The normaliz ing function d(xo, qS/wo) is chosen in such a way that the density, 
which ranges over  some 0-interval, integrates to one. Assume further that, 
condit ional ly given O = 0, the r andom variables Xt are independent  drawings 
from density (2) with parameters  0, ~b and weight wl, t = l, ..., T. Then the 
poster ior  density of  O, given Xi = xl ,  ..., XT = .VT, is found to be, apar t  f rom 
division by a normalizing constant  equal to the integral over  0 of  the resulting 
expressions: 

] JelX, ...... rt(Ol-vl, ..., XT) e:x: fe(O) ~__}exPL +c(x,,¢lw,) 

c~ exp :v,O O) = exp £ ),,,.v,O - w,b(O) = exp .Ox (0 

i"~ t ~/w, j ,=o ~b 
(7) 

7" T 
Z Z Wt where Wo = w, and x.  = - - x l .  (8) 
t=0 1=0 We 

Thus,  poster ior  and prior  distr ibution are of  the same type, but with pa ramete r  x0 
replaced by x .  and w0 by Wo. 

As a corol lary to the above discussion we formulate  the main theorem of  exact 
credibility: 

T h e o r e m  2.1 ( P o s t e r i o r  m e a n  e q u a l s  c r ed ib i l i t y  e s t i m a t o r  o f  e x p o n e n t i a l  fa-  
mi ly  wi th  n a t u r a l  c o n j u g a t e  p r i o r )  
Suppose that, condit ionally on 0 = 0, Xi ,  ..., XT are independent  r andom 
variables with density (2) for fixed ~b and weights w,, t = I, ..., T. Further,  let e 
have a prior distr ibution (6) with parameters  x0 and w0. Then the posterior  mean 
E[#(O)IXi ,  ..., XT] is an inhomogeneous  linear form in Xi, ..., XT provided the 
prior density (6) vanishes at the endpoints  o f  the 0-interval. 
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P roof .  We must prove that the following expression is linear in .q, ..., x r  " 

f   (o)folX, ..... x (Olx,, . . . ,  XT)dO. (9) 

Since ,u,(0) -- if(O) by (4) and the posterior density is proportional to (7), we must 
compute 

#(O)fo(O; f b ( O ) e x p  {~ [0x° - b(0)]} dO We)dO 
J exp {~ [Ox. - b(0)]} dO 

f {x. - if(0)} exp {~  [0Xo - b(0)]} dO 

= x. - f exp {~  [Oxo - b(0)]} dO (10) 

f ~ d  exp { ~  [Ox. - b(O)]} 

f exp { ~  [Ox. - b(O)]}dO = x . ,  
= X° --  

where the numerator  vanishes because by assumption, Oxo - b(O) = - o o  at both 
endpoints of  the integration interval. By (8), this expression is indeed 
inhomogeneous linear in .q, ..., x T. • 

Remark 2.2 (Credibility factor and virtual experience) 
By (8), we may write the estimator X. resulting from (10) as follows: 

X.  = w0xo + ~lT=l wtXt  = zX,,  + (1 - z)m,  
w0 + Ci=, w, 

where z - wzc for  )v~ = Err=] w, is the c red ib i l i t y  factor ,  
WO + WE 

(11) 

T W/ 
X., = Z_.., - - X t  (12) 

t=l |V~ 

and ,,7 = E[#(O)] = x0 (see (10)). 
So the premium is the ratio of  total claims and exposure, where a 'virtual 

experience' o f m  on average in w0 exposure units is added to the actual experience 
of X,. on average, with a total weight (exposure) of  wz. • 

Remark 2.3 (Credibility estimator equals posterior mode) 
Under the same conditions of  the previous theorem, the maximum of the 
posterior density is found when 0 is such that / t ( 0 )=  Xo as well, since the 
derivative of  (7) is zero when x° = b'(O), which equals/z(0) by (4). • 

In the examples that follow, two special cases are given where the credibility 
estimators of  the B/.ihlmann-Straub model are exact Bayesian. The third example 
shows that not all cases of  exact credibility are covered by Theorem 2. I. 
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E x a m p l e  2.4 (Poisson observations with Gamma prior) 
Suppose that the risks X~ represent average numbers of  claims in homogeneous 
cells with w~ policies in it, which, given A = ,k, are Poisson(,k) distributed, for 
some positive structure random variable A. In automobile insurance, this risk 
parameter represents the 'accident-proneness' of  the drivers in the cell considered. 
In general, the G a m m a  distribution proves to describe the spread of A rather well. 
The conditional density is 

.fS,'iA (-'<l,k) - 

e-,',w (,kw) ,,'-~ 
, x E A  = { 0 ,  I/w, 2/w, ...} (wx)! 

= e x p [ w { x  l o g A  - ,k} + w .\" log w -  l o g ( ( w x ) ! ) ] .  

From the last expression we see that this density belongs to the exponential family 
(2), with 

0 = logA, 4b = I, b(O) = e °, c (x ,  qSIw) = w x log w -  log((wx)!). (14) 

By (6), the natural prior of  O = log A is, apart  from the normalization constant 
d(xo l/w0): 

[0x0 - e °] 
J{~(0) °eexp L I lwo  j , , - o o  < 0 < oo, (15) 

for some parameters x0 > 0 and w0 > 0 The corresponding density for A is then 

dO ,k.vo.'o- I e- .\w,~ J)x(,k) - - - j o ( l og ( , k ) )  d,k o<: ,k > O, (16) 

in which we immediately recognize the Gamma(oK,/3) distribution with 
= XOWO~ ~ ~ W O. 

It is easy to verify that the extra condition of Theorem 2.1 is met, since 
Oxo - b(O) tends to - o o  both for 0 ~ - o o  and 0 -+ oo. Therefore we know that 
the original Bfihlmann inhomogeneous credibility estimator of  # ( O ) =  
E[X]O](= exp(O)) is exact Bayesian. As a consequence, the conditional mean 
of/~(O),  given Xi ,  ..., XT, is linear in Xi, ..., XT. Because A is a one-to-one 
function of O, we have also 

~(O) = E[XIO ] = E[Xllog(O)] = E[XiA]. (I 7) 

So we conclude that the conditional expected value of tt(O)---E[XIA], given 
Xi ,  ..., X r ,  is linear as well. This means that if the claims are averages of  Poisson 
distributions with the usual parametrization of the first expression in (13), and the 
prior distribution of A is Gamma,  the inhomogeneous credibility estimator for the 
Bfihlmann-Straub model is exact Bayesian. • 
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Example  2.5 ( N o r m a l  d is t r ibut ion  with N o r m a l  p r io r  in the Bi ih lmann-  
S t raub  model )  
Another example of exact credibility arises if the risks X, are independent and 
N ( 8 , s 2 / w , )  distributed, conditionally given O = 8, where O is an N(m.a) 
distributed random variable. This model arises when X r - - m  ÷ . E +  ._7., for 
independent normal Z-components, with ~ N(O,a)  and .Et ~ N(O, s2 /wO.  
Then O = m + ._7.. To determine the credibility estimator, only the first and second 
order moments matter, and they are just those of the Bfihlmann-Straub model. 
Recall that contracts of other cells appear neither in the posterior mean, nor in 
the inhomogeneous credibility estimator, by the independence between the cells. 

The conditional density of the X, can be written as 

I - ( x ,  - 0) 2 
.fr,10(x,18) = ~ e x p  

~/2'a'S2 / W, 2S2/W, 

{ }] Fx,8-1/282 1/2 + = exp,- - ~  -- " log(2rrs2/w,) , 
L a-/w, 

which is (2) when 

.2 

b(O) = 1/282 , ~b = s 2, c(x,, sZ/w,) = - I /2  { . ~  + log(27r sZ/w,)}. 

(18) 

(19) 

The natural conjugate prior density is again normal, see (6) and (18), so 

1 - ( 8  - 177) 2 8m - 1/282 
r e (8 )  = ~ e x p  2a ~ exp s2 / ( s2 /a  ) , (20) 

which, apart from the normalization constant, equals expression (6) when 
-) 

xo = ,71, O0 = s-, wo = s2/a. (21) 

Because 8Xw - 1//282 again tends to - o c  both for 8 ---, - o o  and 0 ~ oo, we find 
from Theorem 2.1 that the posterior mean equals the Bfihlmann-Straub estimator 

< o l x , ,  x.r] woxo + w,x, 
"'" = wo + ~ 5 = ,  w, 

_ _ E T = I  w , X ,  
~- (I - z)m, 

with z = a Y'~t~l ,v, (22) 
. ~E,T__, w, + s2" 

Other situations, apart from Examples 2.4 and 2.5, in which exact credibility 
holds are (Negative) Binomial data with Beta prior, and Inverse Gaussian data 
with the corresponding natural prior. 
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E x a m p l e  2.6 (Exac t  credibi l i ty  in n o r m a l - n o r m a l  mode l s )  
Theorem 2.1, which extends Jewell's original theorem to the weighted case, 
cannot be applied to Jewell's hierarchical credibility model, see, e.g., Goovaerts  et 
al. (1990). Written in the same additive components form of the previous 
example, the statistic for sector p, cell j ,  and time period t is 

Xpj, = m + Z t, + Zpj + ZFj,, (23) 

where the Z-components  of  the risks are independent with mean zero and 
variances b, a and sX/wlvt. First we try to consider only one sector p. Then, as is 
required in Theorem 2. I, the observations of  other sectors are independent of the 
ones considered. Conditionally on 0 ,  which in this case is Zt,, the observations in 
sector p have the same mean. They are, however, not independent, since the 
observations in cell j of  this sector have a common risk component  Z~ i. If  on the 
other hand we only look at a specific cel l j  in some sector p, taking O = Z t, + Zpj 
we do have that conditionally given O, the observations are independent and have 
equal mean. But in this case the other observations cannot be disregarded when 
estimating the risk premium of this cell, since observations in cell i -¢ j of sector p 
are dependent on those of cell j through the common component  ~p. 

Still, when-we assume in addition that the - -componen t s  are normally 
distributed, the credibility estimators for the Jewell model can easily be shown to 
be exact Bayesian. This is because for each choice M = m + Z p ,  
M = m + Z p + Z t ,  i and M = X p j ,  T+I, M has a multivariate normal joint 
distribution with the vector of  observations )~. This, as is well-known and can 
be found in any statistics text of  a reasonable level, implies that E[Mt)~is linear in 
Y. 

Also under normality assumptions, the estimators in Hachemeister 's regres- 
sion credibility model can be shown to be exact Bayesian. • 

R e m a r k  2.7 (Var iance  c o m p o n e n t s  o u t l o o k  on  credibi l i ty  theory)  
In the authors '  opinion, credibility is currently taught in an unnecessarily 
complicated way. For didactic reasons, models should not be formulated using a 
hard-to-explain risk variable O, a function t~(O) of which is the variable of 
interest. Setting credibility in a Bayesian framework also isn't exactly helpful for 
the acceptance of credibility techniques by practitioners, especially in Europe. 
Since in most countries actuaries generally are not fully qualified mathematicians, 
formulating credibility estimation as a projection in a Hilbert space, however 
elegant mathematically, is also aiming too high. Rather, one should formulate the 
credibility models as additive independent variance components models such as 
(23). As argued in Dannenburg, Kaas and Goovaerts  (1996), this presents no loss 
of  generality, since only the first and second moments of  the data and (weighted) 
averages thereof are needed for the calculation of credibility estimators. To 
calculate covariances and correlations is almost trivial in this framework, but a 
much more laborious process via the conditional expectations, given O, needed in 
the more usual model. • 
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