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ABSTRACT 

To use Bayesian analysis to model insurance losses, one usually chooses a 
parametric conditional loss distribution for each risk and a parametric prior 
distribution to describe how the conditional distributions vary across the risks. A 
criticism of this method is that the prior distribution can be difficult to choose and 
the resulting model may not represent the loss data very well. In this paper, we 
apply techniques from nonparametric density estimation to estimate the prior. 
We use the estimated model to calculate the predictive mean of future claims 
given past claims. We illustrate our method with simulated data from a mixture of  
a lognormal conditional over a Iognormal prior and find that the estimated 
predictive mean is more accurate than the linear Bfihlmann credibility estimator, 
even when we use a conditional that is not lognormal. 
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I. INTRODUCTION 

in a portfolio of  insurance policyholders (also called risks), risks are 
heterogeneous; that is, the insurance losses of  different risks follow different loss 
distributions. The premium an insurer charges a given risk depends on the 
information available concerning the loss distribution of that risk. If the insurer 
knew the exact loss distribution of a risk, then the appropriate net premium to 
charge would be the expectation of that loss distribution. On the other hand, if 
the insurer has no information about a specific policyholder, then the net 
premium is the expectation over the entire portfolio of  policyholders. For the 
situation between these two extremes, suppose the insurer has prior claim data f o r  
the risk, then the net premium is the conditional expectation of future claims 
given the prior claims. 

To use Bayesian analysis to model insurance losses, one usually chooses a 
parametric conditional loss distribution for each risk and a parametric prior 
distribution to describe how the conditional distributions vary across the risks. A 
criticism of this method is that the prior distribution can be difficult to choose and 
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the resulting model may not represent the loss data very well. One method of 
circumventing this problem is to apply empirical Bayesian analysis in which one 
uses the data to estimate the parameters of the model (Klugman, 1992). 

In this paper, we use a semiparametric mixture model to represent the 
insurance losses of a portfolio of risks: We choose a flexible parametric 
conditional loss distribution for each risk with unknown conditional mean that 
varies across the risks. This conditional distribution may depend on parameters 
other than the mean, and we use the data to estimate those parameters. Then, we 
apply techniques from nonparametric density estinaation to estimate the 
distribution of the conditional means. 

In Section 2, we describe a mixture model for insurance claims and estimate 
the prior density using kernel density estimation. In Section 3, we calculate the 
credibility estinaator assuming squared-error loss and also give the projection of 
that estimator onto the space of linear functions. Finally, in Section 4, we apply 
our methodology to simulated data from a mixture of a lognormal conditional 
over a lognormal prior. We show that our method can lead to good credibility 
formulas, as measured by the mean squared error of the claim predictor, even 
when we use a gamma conditional instead of a lognormal conditional. 

2. SEMIPARAMETRIC MIXTURE MODEL 

2.1. Notat ion  and Assumptions  

Assume that the underlying claim of risk i per unit of exposure is a conditional 
random variable YlOi, i = 1, 2, ..., r, with probability density function f(y]0i). 
For each of the r risks, we observe the average claims per unit of exposur 
x i =  (xil,xi2, ..., .x'i,,,) with an associated exposure vector wi = (wi l ,  
11:,2 , ..., Win,) ~ i = "  1, 2, ..., r. Thus, the observed average claim x 0- is the 
arithmetic average of w9 claims, each of which is an independent realization of 
the conditional random variable Y]O~. For example, if a risk is a group 
policyholder, then -\'4i may be the average claim per insured member of the group 
in t h e f  t' policy period and wij is the number of members in the group during the 
fh policy period. For the data from Hachemeister (1975), a risk is the collection of 
insureds in a particular state covered by bodily injury automobile insurance, xij 
represents the average claim severity during period j, and w,~ is the corresponding 
number of claims. 

Assume that the parameter 0 is the conditional mean, E[YIO ] = 0. There may 
be other parameters that characterize the conditional distribution, such as the 
shape parameter ~ for the gamma density. However, in this paper, we assume that 
parameters, other than the conditional mean, are fixed across the risks. The loss 
distribution of a given risk is, therefore, characterized by its conditional mean, 
although that mean is generally unknown. Denote the probability density 
function of 0 by 7r(0), also called the s tructure  f unc t i on  (Biihlmann, 1970). The 
structure function characterizes how the conditional mean 0 varies from risk to 
risk. We argue that assuming 0 to be continuous is reasonable because in the 
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Bayesian paradigm,  our  uncertainty abou t  0 for any part icular  risk would be 
represented by a cont inuous r andom variable. Also, if r is large, then the variable 
0 can be well approx imated  by a cont inuous  r andom variable. Even if r is not 
large, the collection of  r risks may be a sample from a larger popula t ion of  risks 
whose distribution can be approx imated  by a cont inuous distribution. Assume 
that the experience of  different risks is independent.  

Note  that  our model is a special case of  the one given by Biihlmann and 
Straub (1970). Because X!/is the r andom variable of  an average of  w# iid claims 
Yi, Y2, ..., Y.',i, given Oj, we have that E[X~]O,] = E[ Y]O,] = 0, is independent  of  
the period j .  It also follows that 

Cov[X, ,x,klo,] { v,,.[r[o4 = wij i f  j = k, 
o, i f  j #  #, 

as in the Biihlmann-Straub model. In the literature, E[YIO~ ] is called the hypothe- 
t ical mean and Var[YlO~ ] the process variance. Note that we assume the 
observations for a risk arise as arithmetic averages of  an underlying claim 
random variable YIO, while Biihlmann and Straub (1970) do not assume this in 
their more general model. 

The goal of  credibil ity theory is to predict the future claim y (or an average of  
future claims) of  a risk, given that the risk's claim experience is x and exposure w. 
In this paper, we restrict our attention to credibil i ty formulas that are functions of 
a single statistic because they are easier to estimate and to use. We choose the 

Z~'L__, '"ijx~i 
sample mean as our statistic, 2i - -  ~ " '  I W0 because the claim experience x is a 

vector o f  averages. However ,  we do not restrict a claim es t imator  to be linear. 

To  pick a parametr ic  condit ional  distr ibution for Y]O, we use the following 
criteria: 

• E[YI01 = 0  
• The sample mean is a sufficient statistic for 0. 
• The functional form off (y]0)  is closed under averaging. Tha t  is, if X is an 

average of  w claims that follow the distribution given byJ(y[0),  then the density of  
has the same functional form as f(y]0). 

Three such families of  densities tire common l y  used in actuarial  science to 
model insurance Iosses - - ( I )  the normal ,  with mean 0 and fixed variance o 2, (2) the 

Q, 
gamma,  with mean 0 = ~  and fixed shape paramete r  c~, and ( 3 ) t h e  inverse 

0-' 
gaussian, with mean 0 and fixed A - Va,'[X]O---~]" Indeed, Y]O ~ U(O: o 2) implies 

that if X is an average of  w iid claims YI, Y~, ..., Y,., given 0, then 

probabi l i ty  density function of  YJO is 
QfC~ 

/(yl0) r(o,)0~,- ~ 0, y>o. 
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m 

Finally, if YIO ~ InvG(O, A), then X]O ~ InvG(O, wA) and the probability 
density function of Y[O is 

[ 0'-  o) 
j(ylO) = exp - ~  "y~5 j ,  Y > O. 

We use the family of  gamma conditional distributions in an example in Section 4. 
In practice, one might use the normal conditional if the conditional variance is 
assumed constant across the risks. One might use the gamma conditional if the 
conditional coefficient of  variation is assumed constant across risks or the inverse 
gaussian conditional if one wanted to use a loss distribution with a long tail. Note 
that for these three families, the predictive mean is a function of the sample mean 
for any prior distribution rr. See Young (1997) for examples of credibility 
estimators that are ftmctions of  a one-dimensional sufficient statistic, not 
necessarily the sample mean. 

In the Bayesian spirit, for a given loss function L = L(y, d(.~)) of the future 
claim y and the claim predictor d, we propose that the credibility estimator d be 
the function that minimizes the expected loss 

ElL(y, d(E))], 
in which we take the expectation with respect to the joint density of the sample 
rnean and future claim. In our mixture model, this joint density is 
ff(y]O) f(.-f]O) rr(O) dO Therefore, we require an estimate of the density 7r(O). 

2.2. Kernel Density Estimation 

We use kernel density estimation (Silverman, 1986) to estimate the probability 
density rr(0). A I<erneIK acts as a weight function and satisfies the condition 

K ( , ) d ,  = 1. 
• O O  

l fwe were to observe directly the conditional means 0., 02, ..., 0,., then the kernel 
density estimate of  rr(0) with kernel K would be given by 

I .¢-L.., 1 ~ ( O - O i ~  
7 ~i,/7/K k,----~--j, (2.1) 

in which h, is a positive parameter called the windowwidth, or bandwidth. Assume 
that the kernel is symmetric; therefore, the expectation of 0 is the sample mean. 

Because we observe only data xi and wi and not the true conditional means 0i, 
we rely on the law of large numbers and use the sample mean Ei to estimate 0i 
consistently, i = 1, 2 . . . . .  r, (Serfling, 1980). In the expression in (2.1), one may 
wish to weight the terms in the sum according to the relative number of 
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claims for the i a' risk so that the expectation of 0 is the sample mean 
nl 

x = ~ 2 ,  }--~v=, "',J."0 _ }--]i=, '''~' in which wi = }-~.~, wo. We, therefore, propose the 
X ; L  Z2=, -  2L, .', 

following kernel density estinaator for re(0) 

,(o) =  2L, '"' i 
wtothi ~ hi J' 

(2.2) 

r in which W,o, = ~"--i wi = ~=~  ~ ~ l  w,j. See the Appendix for a discussion of the 
asymptotic mean square consistency of Or(0). 

Two commonly used symmetric kernels are (1) the Gaussian kernel, G, 

I ,2 
a(t) = -- .~e-r ,  -cx:~ < t < cxD, 

~/ 2 rr 

and (2) the Epanechnikov kernel, Epa, 

Ep (l) = 5, , - v ' 3  < I < 

. else. 
(2.3) 

In our example in Section 4, we use the Epanechnikov kernel because its domain 
is bounded, and we can, therefore, easily restrict the support of #(0) to fie in the 
positive real numbers. 
Remark: The Epanechnikov is optimal with respect to mean integrated square 
error (Silverman, 1986). The efficiency of the Gaussian kernel with respect to the 
optimal Epanechnikov kernel is roughly 95°/, (Silverman, 1986), so one does not 
lose much efficiency by using the Gaussian kernel. Silverman, therefore, suggests 
that one choose the kernel according to auxiliary requirements, such as ease of 
computing. D 

There are many techniques for choosing the window width h,.; see, for 
example. Silvennan (1986, Section 3.4) and Jones, Marron, and Sheather (1996). 
In our example in Section 4, we use a (modified) fixed window width selected by 
reference to a standard distribution (Silverman, 1986, Section 3.4.2). The window 
width h that minimizes the mean integrated squared error is given by 

h= { / t 2  K(t) d t} -2 /S{ /K( t )2  d t } ' / 5 { f  ¢r"(O)dO}-USr -'/5. (2.4) 

To approximate this optimal window width It, ones assumes that 7r(0) is say, 
normal, with mean 0 and standard deviation a. In that case, the term fTr"(O) dO 
equals ~Tr-U2a -s. We modify the window width h at each point Ni to ensure that 
the density has support on the nonnegative real numbers. Specifically, we set hi 

equal to/1, if h < - ~  otherwise, we set h i equal to - ~ .  
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3. C R E D I B I L I T Y  USING S Q U A R E D - E R R O R  Loss 

In this section, we use squared-error  loss to determine a credibility estinaator, as is 
used in greatest accuracy credibility theory, (Willmot,  1994) or (Herzog,  1996). 
The squared-error  loss function has the form 

L0, ,  u(.~)) = ( . , , -  a(:v)) 2. 

It is s t ra ightforward to show that the minimizer of  the expected loss is the 
predictive mean (Bfihhnann, 1967), which in this case is the posterior  mean of  0 
given the sample mean .-g which we est imate by 

p(.v) = f E[ YlO]mr(Ol:V)dO = LIOI.V]. 

For  a general kernel K alld bandwidths  hi, this est imated posterior  mean of  0 can 
be written 

f o f(~lO)~(o)uo 
£[Ol:V] = JlOVlO)#(o)~/o 

(v) Z,= ,  ,f O.I(~IO)K UO 
(3.1) 

Recall that 2 is an average of  w iid claims, each of  which follows the density 
/(y[0),  as in Section 2.1. I f we constrain the es t imator  d to be linear, then it is well- 
known that the least-squares linear es t imator  of  E[YiX ~] = El0[2] is 

a(:v) = (~ - Z)EIY] + Z~, (3.2) 

EVa,'[YIO] 
w with k - (Bfihh-nann, 1967). Using our est imate for in which Z = w + k Vhr[O] 

the prior density (2.2), we obtain /7[Y] = /7[0] = x, as noted in Section 2.2. In the 
,.2 

O-~ 
case of  the normal  conditional:  k - _~ in the case of  the g a m m a  condi- 

tional, k = E[02] ; and in the case of  the inverse gaussian condit ional ,  
~ (E'[02] - .~ 2 ) 

k - t [ o ~ ]  
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To  end this section, we show that  as w approaches  cx~, ~(~:) approaches  the 
true expected value 00, for the given risk. Because X]0 has mean 0 and variance 
Wor(YI0) 

under certain regularity conditions,  (DeGroo t ,  1970) and (Walker,  
W 

1969), the densityf(.~[0) approaches  the delta function with its mass concentra ted 
at the point 7g = 00 Then,  

J'Of(~lO)+(O)dO 007i"(00) = 00, w.p.I .  
,!i2~;4:v)--,~i-nL jJ(:~lo)'~( o)do - +( Oo) 

Thus,  as an actuary gets more claim informat ion for a given policyholder (w gets 
large), the est imated expected claim approaches  the true expected claim with 
probabi l i ty  1. 

4. S I M U L A T E D  D A T A  F R O M  A L O G N O R M A L - L O G N O R M A L  M I X T U R E  

The lognormal  distribution is used by actuaries to model the distribution of  claim 
severity. It is also used to model the distribution of  total claims in some lines of  
insurance, such as health insurance. In this section, we assume that we are given 
individual claim data; that is, we = I, for all risks i and policy periods j ,  and X =  
Y. We model the lognormal - lognormal  mixture as follows: 

{ 'I . l ( . , l ~ ) -  exp 7 ~  In , . ,-> 0, 
0-X 

in which a > 0 is a known parameter ,  and 

{ 2} 
,'r(~b) - r exp - 27.----5_ In , q~ > 0, 

in which /J, > 0 and 7-> 0 are known parameters .  Tha t  is, (ln X)]q~--~ 
N(ln 0, a2), and In 0 ,,~ N(ln #, 7"z). The marginal  distr ibution of  X is lognor- 
mal; l n X  ,-~ NOn#, 0 .2 + r2). 

Given claim data for a specific policyholder,  X = x = <  .xl, x2, ..., x,, > 
I[0,.oo]'~., the posterior  distr ibution of  ~l x is Iognormal;  ( lnq~) lx , - -N 

In#  , -r 2), in which 

(0  -2 In # ÷ T2tx~ 

t = Z','=, h,(x,) and 
9 9 

' O - T -  
7"*" = 

O .2 + t77" 2 • 
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Thus, the ,,predictive distribution of X,,+l Ix is Iognormal; 
N(ln/~ *,o-9 that the true predictive mean is a ~ + 7-':3. i t  f o , o w s  

function of t 
/ 

= = + . (4.1) l ,(x) E(X,,+, Ix) exp n7-2 2(or 2 + n7-2 ) j 

We performed 200 simulations of a lognormal-lognormal mixture of  claims. We 
let cr 2 = 0.25, 7 -2 = 0.50, and /L = 2000e -°2s. The marginal expectation of X is 
2267, and the marginal standard deviation is 2395. For each simulation run, we 
simulated claim data from this lognormal-lognormal mixture for r = 100 risks 
(values of  ~b). For each of the 100 risks, we simulated ni = wi = 5 claims. To 
estimate the distribution of the conditional means, we used kernel density 
estimation with the Epanechnikov kernel, as given by (2.3). Also, we used a fixed 
window width h, chosen by reference to a normal distribution with mean 0 and 
standard deviation a. We estimated the standard deviation by the interquartile 
range of the sample means, R, divided by 1.34 (Silverman, 1986, Section 3.4). The 

bandwidth tl was calculated by h=(I)-2/5(O.268)US(O.212)-Us---~--IOO-U5 
1.34 

0.312R as in (2.4). We truncated this bandwidth h for a given risk if, by 
otherwise using it, the prior density would have a negative support. Specifically, if 

2:i 2:i 
h > ~ then we set the bandwidth hi equal to ~ to guarantee that the support 

of  the estimated density of  0 be contained in the nonnegative real numbers, as 
described in Section 2.2. 

Instead of assuming that the conditional is Iognorma[, we assumed that the 
coefficient of  variation is constant from risk to risk and, therefore, fit a gamma 
conditional to each risk. In each simulation run, we estimated the parameter ~ by 

the median of the following sample statistic X:2 We used the 
"-'-I'- Z~=l (Xij -- 2:i) 

estimated prior density along with the gamma conditional to estinaate the 
marginal density of  X. 

We used the estimated mixture model to estimate the predictive mean of X,,+~ 
given claim data x. We also computed the Biihlmann credibility estinaator, 
l i n (x ) ,  for which we estimated the expected process variance by 

, v . , 00  
E P V -  100(5-  1)z....,i=l 

and the variance of the hypothetical means by 

l 5--..,00 EkV 
V H M  - 100----~ L_.,i=l 5 ' 

(Willmot, 1994, Section 5.1). 
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TABLE 4.1 

D E S C R I P T I V E  S T A T I S T I C S  O F  Jl, MSE, MSEB, A N D  R A T I O  

281 

Variable Mean Median SlDev Q I Q3 

h 564.35 561.00 91.64 500.25 623.75 
MSE 16,450 12,111 13,146 7.808 21,623 
MSEB 74,559 69.595 37,539 4.4,466 94,878 
Ratio 0.2984 0.1777 0.3239 0.0890 0.3819 

For  n = w = 1, we compared  the es t imated predict ive mean,  12(x) and the 
Biihlmann credibi l i ty  es t imator ,  l in(x),  with the true predict ive mean,  ~(x).  
To compare  these credibi l i ty  es t imators  numerical ly ,  for each o f  the 200 simu- 
lat ion runs, we calculated the mean squared errors  up to the 95 'h percenti le of  X, 
namely 6,500: MSE = j~6500 (~(x) - # (x ) )2 f (x )dx  and MSEB = f065°° (l in(x)- 
tt(x))2f(x)dr. See Table  4.1 for descript ive statist ics o f  the bandwid th  h; the 
mean squared errors ,  M S E  and MSEB; and the rat io  o f  M S E  to MSEB, Ratio. 

Thus,  we see that  up to the 95 I1' percentile,  on average,  our  es t imated 
predict ive mean per forms much bet ter  than the l inear Biihlmann credibi l i ty  
es t imator .  See Figure 4.1 for a scat ter  plot  of  MSE versus h. Note  the quadra t i c  
re la t ionship  between the two variables and that  the min imum of  M S E  occurs 
near  the average value o f  h, 564. We fit a quadra t i c  to these observa t ions  by 
minimizing the sum of  the absolu te  values o f  the errors  and ob ta ined  the fitted 
model  

MSE = 196,603 - 691.36h + 0.6402h 2, 
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FIGURE 4. I: Scatter Plot of MSE versus h with Quadratic Superimposed. 
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with vertex at 542. See Figure 4.1 for a graph of this quadratic superimposed o,1 a 
scatter plot of the observations. 

We also computed some of the mean squared errors up to the 99 't' percentile 
and found that the estimated predictive mean compared poorly relative to the 
Biihlmann credibility estinaator. We conclude that our estimate of the prior 
density at larger conditional means may suffer. Silverman (1986) suggests a 
variable bandwidth approach for estimating densities with long tails which uses 

- 4  
6"10 

4" 10 -4  

2" 10 -4  

i I I I 

o 1300 2600 3900 5200 6500 

Estimated marginal density of X 

T r u e  m a r g i n a l  d e n s i t y  o f  X 

FIGURE 4.2: Es t ima ted  a n d  T r u e  M a r g i n a l  Densi t ies  o f  Claims.  

larger bandwidths in the regions of  lower density. We tried this method without 
increased accuracy in the upper percentiles of our claim estimator. We suspect 
that the poor fit at the higher percentiles may be due to our using a medium-tailed 
gamma conditional to model a heavy-tailed lognormal. We encourage the 
interested reader to investigate using an inverse gaussian instead of a gamma 
conditional to model the conditional claim distribution. 

See Figure 4.2 for graphs of the estimated and true marginal densities of  X for 
one of  the simulations ~. Of  the graphs we plotted, Figure 4.2 is typical, in that the 
estimated marginal density of X is less skewed than the true density. 

See Figure 4.3 for the corresponding graphs of the estimated and true 
predictive means. Notice bow closely the estimated predictive mean follows the 
true predictive mean, compared with the linear B/,ihlmann estimator for claims 
less than 4000. Also note how the estimated predictive mean diverges upward for 
claims larger than 4000. This phenomenon occurred in all of the several graphs 
that we plotted and is due, we believe, to the fact that we used a gamma 
conditional to estimate a Iognormal. it may also be due to computational errors 

I In this run ,  h = 476, MSE = 12,076. a n d  MSEB = 84,571. Recall  thaT. t~= I a n d  tha t  tile c la im 
a m o u n t  6 ,500 is the 95 '~' percenti le  o f  X. 
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FIGURE 4.3: Credibility Estimators. 

6500 

because there are only a few simulated claims in the right tail. One way to adjust 
the estimated predictive mean to eliminate this divergence is to extend it linearly 
beyond some large value of  the sample mean. Another  solution may be to use a 
conditional distribution with a longer tail, such as the inverse gaussian. Yet 
another  solution may be to apply my method of  blending the criteria of  accuracy 
and linearity (Young, 1997). 

5. SUMMARY AND CONCLUSIONS 

The Bfihlmann-Straub credibility method results in a linear est imator with a 
different slope (or credibility weight) for each risk. Therefore, to apply their 
method to a risk not used to construct  the original model, one would be required 
to recalculate the model to obtain a linear est imator for the new risk. An 
advantage o f  our method is that  it is applicable to risks outside the original d a t a  
set, if one assumes that the average claims and corresponding exposures of  the 
new risk come from the same parent (mixture) populat ion as the data. Another  
advantage of  our  method is increased accuracy over a linear estimator,  as 
demonstrated in the example in Section 4, even when we use an "incorrect' 
conditional density. 

One may wish to use the underlying mixture model and kernel density 
estimation in combinat ion with other loss functions, such as a linear combinat ion 
of  a squared-error term and a second-derivative term to blend the goals o f  
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accuracy and l ineari ty (Young,  1997). Also,  it would be interest ing if one were to 
extend the model  to include a trend componen t ,  as in Hachemeis ter  (1975), and 
apply  kernel densi ty  es t imat ion  in the more  general  model.  
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APPENDIX 

A S Y M P T O T I C  M E A N  S Q U A R E  CONSISTENCY O F  (2.2) 

Let #(0) = ~i=l  w,,,,h, \ I,, ) denote  the kernel densi ty es t ima tor  o f  7r when we 

are given observa t ions  Oi, i = 1, 2, ..., r. Cons ider  the mean squared er ror  o f  the 
densi ty  es t imate  # at a fixed value 0 • 

= E ,=, ,,,,o,/,; L \ h, / - K + U (#(O) - ~-(O)) 2 

= W,o,h~L \ /,~ ) \ /,, ) j  (~(0)- 
+ 2 E  Z i  i ' ' 'i I ~ K ( O - ~ i ~ - K ( O - O i ' ~ ' ~  rr(O))]. 

By the law of  large numbers  (Serfling, 1980), .~, app roaches  Oi, with p robab i l i ty  
one, as wi approaches  infinity. Therefore,  as wi approaches  infinity, the first term 
in the mean squared er ror  goes to zero. By Si lverman (1986) or  Thornpson  and 
Tap ia  (1990), the second and third terms go to zero as r goes to infinity if 
l im hi = 0 and lira rhi = oo. 

r ~ o o  r ~ c ~  
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