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ABSTRAC' i  ° 

When claims in the compound Poisson risk model are from a heavy-tailed distribution 
(such as the Pareto or the Iognormal), traditional techniques used to compute the pro- 
bability of  ultimate ruin converge slowly to desired probabilities. Thus, faster and 
more accurate methods are needed. Product integration can be used in such situations 
to yield fast and accurate estimates of ruin probabilities because it uses quadrature 
weights that are suited to the underlying distribution. Tables of  ruin probabilities for 
the Pareto and Iognormal distributions are provided. 
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I. INTRODUCTION 

Let us consider the classical compound Poisson risk model with nonnegative claims. 
Specifically, let u be the initial risk reserv, F(.) be the cumulative distribution function 
of the nonnegative claim size random variable, p~ be the expected claim size, I + 0 be 
the loading factor applied to the net premium rate, and ~ (u) be the infinite time pro- 
bability of ruin for an initial risk reserve of u. 

Gerber (1979, p. 115, equation (3.7)) has shown that ~ (u) satisfies the following 
Volterra integral equation of the second kind: 
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where 

~ ( u ) =  ---~---IA(u)+ ~oK(U,t)lll(t)dt ], 
I + 0 L  

u>_O (~) 

a(u )  = r~| l z F (  , t ,  dt ,  u _> O (2) 
ou Pl 

I - F ( u  - t )  
K ( u , t )  = , O _< t <_ u. (3) 

8 

A classic problem (of interest mainly to academic actuaries) is the numerical evalua- 
tion ~ (u). Numerous authors have studied this problem; see, for example, recent texts 
by Grandell (1991) and Panjer and Willmot (1992, Chapter 11) and references therein. 
In general, no explicit closed form solution to equation (I) exists except in the case 
where claims are mixtures of exponential distributions; see Bowers et al. (1986, 
Chapter 12.6). 

There are, however, several broad approaches to the evaluation ~ (u). The older 
approaches are ad hoc: focusing inverting the Laplace transform, or on matching the 
first few moments of the claim size distribution or on the Cramer-Lundberg approxi- 
mation; see Ramsay (1992a) for a comparison of some of these methods. 

Since the early 1980s, the shift has been to approaches based on discretizing some 
aspect of the risk process and deriving recursive expressions for ~ (u); see, for exam- 
ple, Goovaerts and De Vylder (1984), Panjer (1986), Dickson (1989), Dickson and 
Waters (1991), Ramsay (1992b), and Dickson, Egidio dos Reis and Waters (1995). 
Panjer and Wang (1993) describe the conditions under which these recursions are 
stable. 

Though these recursive approaches may be able to determine ~ (u) to any desired 
degree of accuracy, they are not suitable for heavy-tailed distributions, such as the 
Pareto or lognormal distributions, for two main reasons: 
1. To achieve a reasonable degree of accuracy, the interval of discretization must be at 

most one unit of the mean in lenght. If we standardize the unit of currency such that 
p~ = 1, then to obtain ~ ( I0 )  we must recursively estimate every intermediate unit 
point ~(u)  for k = 0,1,2 ..... 9,10. This may be acceptabel if we need only small 
values of u; however, for large values of u, say u = 500 units, this method can be 
slow. For the Pareto, ~(500) is not insignificant. 

2. The quadrature rules inherent in the recursive schemes are usually of low order. 
This further reduces its accuracy and its rate of convergence. To improve accuracy, 
the intervals of discretization are made even smaller. This substantially increases 
the number of intermediate calculations required, making the process of finding 

(u) slower. 
The objective of this paper is to present a method of evaluating ~(u) using so- 

called product integration. We show that this method can be fast and accurate when 
dealing with heavy-tailed distributions. 
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2. PRODUCT INTEGRATION 

Consider the numerical solution of the Volterra integral equation 

x ( s )=y( s )+  k(s,t)x(t)dt, a_<s_<b (4) 

where k(.,.) is the kernel (and is known) and x(.) is the unknown function to be deter- 
mined. Assume k(.,.) or one of  its low-order derivatives is badly behaved in one of  its 
arguments. (For example, k(.,.) may be singular or nearly singular). In such a situation, 
the Newton-Cotes integration (e.g., trapezoid rule, Simpson's rule, etc.) may produce 
inaccurate results or suffer a reduced rate of convergence. 

Delves and Mohamed (1985) and Linze (1985) recommend the use of product inte- 
gration ~ to take account of the fact that k(.,.) may be badly behaved. Our development 
of  the product integration quadrature rule follows the exposition and notation of  Del- 
ves and Mohamed (Chapters 4.4 and 5.5). For a more detailed description of the pro- 
duct integration technique, see Linz (1985, Chapter 8). 

First we factorize k(s,t) as 

k(s ,  t )  = p(s, t)k(s,t) 

where k(.,.) is smooth and well-behaved and can be accurately approximated by a 
suitable Lagrangian interpolating polynomial, and p(s,t) is badly behaved. Next we 
decompose the interval [a,b] into n subintervals {hi} where 

hi=Si+l-Si, i = 0 , 1  .... , n - 1  

and 

a =  s 0 < S  I < . . . < S  n =b. 

Product integration proceeds by approximating the integral in equation (4) for s = si, 
i = 1,2 ..... n, using a quadrature rule of the form 

i 
f,~' p(si, t)k(si, t)x(t)dt = Z wo k(si' t)x(t.i ) (6) 

j=o 

where t i = si for i = 0,1,2 ..... n. The weights are determined by insuring that the rule of 
equation (5) is exact when k (s,t)x(t) is a polynomial in t of degree _< d. Product inte- 
gration is only applicable if the following (d + 1) moments ,ttlj exist and can be calcu- 
lated for each i, where 

t.LO = tJp(si,t)dt, j = 0,1 ..... d .  

In this paper we assume k(sl, t)x(t) is linear ( d =  1) in t, i.e., 

~(si,t)x(t ) (tJ+l - t ) ~ ( s i , t ) x ( t j ) + ( t - t j ) -  = - -  k(si, tj+l )x(tj+l ). 
hj hj 

Linz (1985, Chapter 8, p. 141) attributes the origin of the product integration technique to Young 
(1954). 
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It f o l l o w s  that 

i-~ I ( t , t t  7 t) _ fii" =X.['" p(si.,) L ' = °  ,, . /', k(,.t,)x(,,) 

(t - t j )  
+ k(si,tj+ I )x(tj+j ) 

hj 
t 

= ~ wo~(s ~, tj )x(t j  ) 
,=0 

where  

~qp(s i , t ) ( t l - t )d t  f o r j  = 0 
Wio = o h 0 

( t j+ l  t)  
Wij f f  J+' P(Si ,  t)  = dt 

Ij h j  

f/J + P(Si , t )( t - t j -I)dt  for j = 1 , 2  . . . . .  i - I  
j-~ h j_  I 

f:~ ( t - t i - I )d t  f o r j  = i %2 = i-, p(s,,t) hi-I 

To faci l i tate  easy  co m puta t io n  o f  the we ights ,  w e  introduce  two  new variables:  

f/ 
l)+l 

Vi) = ( t  j +  I - t)p(s,,t)dt 
2 

I)*l 
cij = [ P(si,t)dt. 

A s  t - tj = (tj+ I - t./) - (tj+ I - t), then 

Vi0 
Wio = -  

ho 
v"i-t f o r j  = 1,2, .  i -  I VtJ + Cij -- - -  . . ,  

WO = hj  h/_  I 

vi,i-I 
wit = ("t.l-I hi_l 

Thus ,  the approx imate  so lut ion  to equat ion  (4)  is de termined  recurs ive ly  us ing  
i 

"~" (Si )  = Y(Si ) + Z wij ~" (Si, t] )'~n ( t j )  
j=0  

for i = 1,2,...,17., with 

.i,, (s0)  = y(a) .  

Th e  resul t ing  es t imate  o f  x(s) is xn (s,,).  

(6) 

(7) 

(8)  

(9)  

(lO) 

(ll) 

(12)  
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3.  A C C E L E R A T I N G  T H E  C O N V E R G E N C E  

We can improve the accuracy of our estimate 2, ,(s)by dividing the interval [a, s] into 
smaller subintervals. Following the arguments of Ramsay (1992), Richardson's  extra- 
polation technique can be used to accelerate the convergence of :~,, (s) to x(s) as n --+ ~ .  
To this end, let us divide the interval [a, s] into n./intervals of equal length, where 

n j = y × 2  j j = 0,1,2 .... (13) 

and 7 is a positive integer. For given j and [a, s], we have 

Snj = S 

h = (s - a) / nj for i = 0, 1,2 . . . . .  Ilj -- 1 

S i = I i = a + ih for i = 0, 1, 2 . . . . .  nj - 1 

The Richardson extrapolat ion technique generates a lower diagonal matrix of  ap- 

proximations: 
T/:,' r /  = TrJ , + T/-I (14) 

2 - I  

for r =  I, 2 . . . . .  j a n d j  = 1, 2 . . . .  with To j = .~,,j (s). The final estimate of x(s) is: 

.~(s) = Tj .  (15) 

4. THE MAIN RESULTS 

Product integration is used to compute ruin probabilities for the Pareto and Iognormal 
distributions. Without loss of generality, set p~ = 1 for each distribution. Tables 1 and 
2 show the final estimated values of the ruin probabilit ies after the Richardson extra- 

polation technique has been applied. 

4.1 The Pareto Distribution 

Consider the Pareto distribution defined on (0, oo) with unit mean, i.e., 

( ]~+' 
F(t)  I o~ = - - -  o : > 0 a n d t > 0 .  

k a + t /  

Equations (2) and (3) imply 

A(u) = ( ~ - ~ ' )  a 

K ( u ' t ) = I a l a + l a + u - t  

Even though K(u, t) and all of  its derivatives are smooth and wellbehaved, they con- 
verge slowly as u --~ ~ .  As all of the moments ,uij exist for any finite s, product inte- 

gration can be used. 
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Next  set 

p(s , t )  = K(s , t )  
- f l  i f0_<t_<s;  

k ( s , t ) =  (O otherwise.  

To determine the product integration weights ,  we need vii and c,j from equations (6) 
and (7). 

I,'ij ---- d i j  "t- (0~ -1- s i - l j +  I ) c t j  

w h e r e  

In(l + s i - l j )  - ln(l + s i - t j+  l ) if  a ~ I; 

I/ ;1 d o = 0(. 2 O( I a-I  _ O~ if ~ ~ 1. 

c i j  = 
Ot + s I - t j  Ol + s i - t j +  I 

Tabel I shows the ruin probabilities for the Pareto distribution with ~ = I and several 
values of  0. From equation (13), we use 7 =  20 a n d j  = 0, l, 2, 3 and 4. (Thus, n 4 = 
320.) 

TABLE ] 

RUIN PROBABILITIES: PARETO DISTRIBUTION (O~ = l) 

tP (u )  f o r  Various Values o f  0 
u O= 0.10 O= 0.25 O= 0.50 O= 0.75 O= 1.00 

10 0.627128 0.372677 0.206646 0.138242 0.102523 
20 0.498142 0.245260 0.119274 0.075908 0.055049 
30 0.411437 0.178338 0.081426 0.051056 0.036887 
40 0.347893 0.137559 0.060856 0.038038 0.027509 
50 0.299155 0.110519 0.048164 0.030142 0.021847 
60 0.260646 0.091524 0.039650 0.024884 0.018080 
70 0.229551 0.077594 0.033588 0.021150 0.015402 
80 0204018 0.067029 0.029075 0.018369 0.013404 
90 0.182761 0.058794 0.025596 0.016222 0.011859 
100 0.164860 0.052227 0.022839 0.014517 0.010630 
200 0.076323 0.023800 0.010860 0.007028 0.005194 
300 0.046612 0.015154 0.007083 0.004621 0.003429 
400 0.032827 0.011071 0.005247 0.003438 0.002557 
500 0.025123 0.008708 0.004165 0.002737 0.002038 
600 0.020273 0.007170 0.003451 0.002273 0.001694 
700 0.016962 0.006092 0.002946 0.001943 0.001449 
800 0.014566 0.005294 0.002569 0.001696 0.001266 
900 0.012756 0.004681 0.002278 0.001505 0.001124 
1000 0.011341 0.004194 0.002046 0.001353 0.001011 
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4.2 Lognormal Distibution 

In this case things will be more complicated because of  the presence of  the normal 
cumulative distribution function. Again we assume that 
p, = I. This implies 

A ( u )  = ~,?1 - F ( t ) d t ,  u _> 0 

j u = e  -~2/2 ( a s p ~ = l )  

where p and (7 are the parameters of the Iognormal and 

u e - t  2 12 

A source of  difficulty is in the computation of v 0 adn c 0, i.e., 

f,,+, ~ (  In(si - t )  -/. . /  
vii = ..It ( t j +  l - t)(l - - ) ) d t  

j (7 

St j+' (1 - qb( .In(si - t )  - # ) ) d r .  
Cij = / (7 

As the function ~(.)  is known only approximately, these integrals must be computed 
numerically; see for example Abramowitz and Stegun (1964, Chapter 26) for several 
approximations. The approximation used in this paper is: 

- ~ b k t  k + e ( u )  
• (.)=1 ~ ~,k=, / 

where  IE(u)} < 7.5 x 10 "8, and 

t =  l / ( l + p u )  p=0 .2316419  
b~ =0.319381530 b,~ = -I.821255978 

b2 = -0.356563782 b5 = 1.330274429 
b 3 = 1.781477937 

Gaussian integration rules many be used to evalutate the integrals. 
Table 2 shows the ruin probabilities for the Iognormal distribution with (7 = 1.80 

and several values of 0. From equation (13), we use 7 =  10 and j =  0, I, 2, 3 and 4. 
(Thus, n4 = 160. These values are very close to those of Thorin and Wikstad (1977), 
where appropriate. 
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TABLE 2 
RUtN PROBABILITIES~ LOGNORMAL DISTRIBUTION (O'= 1.80) 

~ (u) for Various Values of u and 0 
u O= 0.10 O= 0.25 0 = 0.50 O= 0.75 O= 1.00 

10 0,739768 0 , 5 1 8 8 3 2  0 , 3 3 6 8 7 4  0 , 2 4 5 7 4 9  0.192154 
20 0,656692 0 , 4 1 0 7 8 1  0 , 2 4 0 1 8 7  0 , 1 6 5 6 6 9  0.125229 
30 0,593553 0 . 3 3 9 5 3 8  0 , 1 8 4 5 3 9  0 , 1 2 2 9 4 0  0,091161 
40 0,541731 0 , 2 8 7 3 9 6  0 , 1 4 7 7 1 3  0 , 0 9 6 0 7 7  0,070371 
50 0,497634 0 , 2 4 7 1 9 0  0 , 1 2 1 5 1 2  0 , 0 7 7 6 7 6  0,056424 
60 0,459303 0 . 2 1 5 1 6 4  0 , 1 0 1 9 8 9  0 , 0 6 4 3 6 1  0,046484 
70 0.425505 0 . 1 8 9 0 6 8  0 , 0 8 6 9 5 6  0 , 0 5 4 3 4 3  0,039091 
80 0,395396 0 , 1 6 7 4 3 7  0 , 0 7 5 0 8 6  0 , 0 4 6 5 8 0  0,033413 
90 0,368362 0 , 1 4 9 2 6 5  0 , 0 6 5 5 2 8  0 , 0 4 0 4 2 3  0,028940 
100 0,343939 0 . 1 3 3 8 3 0  0 . 0 5 7 7 0 4  0 , 0 3 5 4 4 6  0,025344 
200 0.188093 0 , 0 5 5 5 5 3  0 , 0 2 2 1 2 8  0 , 0 1 3 4 8 2  0,009651 
300 0,113139 0 , 0 2 9 1 4 7  0 , 0 1 1 5 6 7  0 . 0 0 7 1 1 2  0,005124 
400 0,072445 0 , 0 1 7 5 2 4  0 , 0 0 7 0 6 7  0 , 0 0 4 3 9 0  0,003180 
500 0,048684 0 , 0 1 1 5 3 4  0 , 0 0 4 7 4 7  0 , 0 0 2 9 7 4  0,002164 
600 0,034048 0 . 0 0 8 0 9 6  0 , 0 0 3 3 9 7  0 , 0 0 2 1 4 3  0,001565 
700 0.024637 0 , 0 0 5 9 6 0  0 , 0 0 2 5 4 4  0 , 0 0 1 6 1 4  0,001182 
800 0,018360 0 , 0 0 4 5 5 1  0 . 0 0 1 9 7 1  0 , 0 0 1 2 5 7  0,000922 
900 0,014040 0 , 0 0 3 5 7 7  0 , 0 0 1 5 6 9  0 , 0 0 1 0 0 4  0,000738 
1000 0,010981 0 , 0 0 2 8 7 8  0 , 0 0 1 2 7 6  0 , 0 0 0 8 1 9  0,000603 

5. CONCLUDING COMMENTS 

The important strength of  the product integration technique in solving equation (I )  is 
that it converges significantly faster and is more accurate than the Goovaerts  and de 
Vylder (1984) technique, or the improved version proposed by Ramsay (1992b). This 
is acheived by using a quadrature rule that exploits some of the features of the kernel, 
thus requiring a reduced amount of recursions. Even though the weights w 0 (and hence 
c,~ and %) have to be computed directly from the kernel, these extra computations are 
fast and easy to perform. 

Because product integration converges relatively rapidly, it does not require the use 
of  small intervals, thus reducing the possibili t iy of subtracting nearly equal numbers 
(and hence rounding errors). In addition, it requires a small fi'action of  the computa- 
tions required by the Goovaerts-De Vylder-Ramsay approach to obtain the same de- 
gree of  accuracy. This should not be surprising because product integration uses much 
more information from the integrand than do the common Newton-Cotes quadrature 
formulae. 

A further area of research is the determination of the error bounds of the solutions 
generated via the product integration technique. Linz (1985, Chapter 8, p. 131) shows 
that the error bounds and orders of  convergence for product integration follow the 
standard results of approximation theory. Thus, product integration based on the trape- 
zoidal rule is of order O(h2). 

Addit ionally,  one may be able to use the Goovaer ts-De Vylder-Ramsay approach 
and combine it with product integration to produce a faster scheme with explicit  error 
bounds. 
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